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Abstract
Lacking training examples is one of the main ob-
stacles to learning systems. Transfer learning aims
to extract and utilize useful information from re-
lated datasets and assists the current task effec-
tively. Most existing methods restrict tasks con-
nection on the same feature sets, or require aligned
examples cross domains, even cannot take full ad-
vantage of the limited label information. In this
paper, we focus on transferring between hetero-
geneous domains, i.e., those with different feature
spaces, and propose the Metric Transporation on
HEterogeneous REpresentations (MAPHERE) ap-
proach. In particular, an asymmetric transforma-
tion map is first learned to compensate the cross-
domain feature difference based on linkage rela-
tionship between objects; then the inner-domain
discrepancy is further reduced with learned optimal
transportation. Note that both source domain and
cross-domain relationship are fully utilized in MA-
PHERE, which helps improve target classification
task a lot. Experiments on synthetic dataset vali-
date the importance of the “metric facilitated” con-
sideration, while results on real-world tasks show
the superiority of the MAPHERE approach.

1 Introduction
A large amount of training examples leads to the effec-
tiveness of a learning algorithm [Mohri et al., 2012]. In
real applications, however, this is not always the case due
to the high instance/label collection cost [Li et al., 2014;
Li and Zhou, 2015]. The insufficiency of the training exam-
ples could be compensated by related tasks/data which are
easier to obtain, so the knowledge from the source tasks can
be extracted and adapted to help the learning on the target do-
main. Various methods and applications show that it is possi-
ble and necessary to deal with the divergence and do such
kind of information transformation [Pan and Yang, 2010;
Si et al., 2010; Long et al., 2014; Tommasi et al., 2014].
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One common shift between tasks lies in the change of the
statistics [Ben-David and Urner, 2012], including both condi-
tional and marginal distributions. Thus, the consistency per-
sistence followed by the distribution estimation lies the basis
of the adaptation process. For example, instance weight keeps
the statistical consistency between domains [Gretton et al.,
2012]; the Optimal Transport (OT) also show effectiveness to
transfer source domain instances to the target space in an un-
supervised way based on the least effort principle [Courty et
al., 2017a; 2017b]. Without restricting to this homogeneous
case, the knowledge transfer could also be extended between
heterogeneous feature sets. As in [Jiang and Li, 2017], paired
inputs help learn better representation for a certain modality.

We consider a general supervised case on not-aligned het-
erogeneous domains with labeled examples, where source do-
main has relative more instances. There exist two apparent
obstacles: the gap between two different feature sets, i.e., the
two heterogeneous domains; and the change of distribution
during the learning of the target task. In this paper, we solve
the above two problems of heterogeneous transfer learning
with the help of distance metric in a joint manner and pro-
pose the Metric Transporation on HEterogeneous RErepre-
sentations (MAPHERE) approach. Specifically, we treat all
target domain instances as anchors, and an asymmetric trans-
formation is learned to map instance from the source to the
target domain, whose advantage is two-side. On the one hand,
the projection implements a bridge to reduce the discrepancy
between domains; besides, it finds a metric in the target do-
main for measuring a better distance between objects. Based
on the metric facilitated pairwise cost, optimal transport de-
picts the distribution shift between tasks well. Since the sim-
ilar and dissimilar relationship between both source domain
and cross-domain examples direct the whole transfer, the la-
bel information is fully utilized to leverage and preserve the
domain structure. Leveraging the distance metric and trans-
portation, the nearest neighbor classifier can determine labels
on the target task. Experiments on synthetic datasets show
that by adjusting original distance measure between instances
effectively, the utilization of metric with side information as-
sists the target classification a lot. In addition, on real applica-
tions over images and texts, our MAPHERE approach appears
better performance w.r.t. the state-of-the-art methods.

The rest of the paper starts with the related work. Then
the MAPHERE approach is described in detail after a brief



introduction to the homogeneous optimal transport domain
adaptation method. Last are experiments and conclusion.

2 Related Work
Owing to the ability to take advantage of related task knowl-
edge to relieve the limited data burden of the current problem,
transfer learning methods attract a lot of attention in the ma-
chine learning fields. Assuming there are only limited usable
labeled examples in the target domain, how to extract as much
information as possible from both current examples and from
related domains in other tasks are stressed. Based on the type
of source domain, methods of transfer learning could be par-
titioned to the homogeneous and heterogeneous cases [Pan
and Yang, 2010]. For the former scenario, empirical esti-
mation of distributions, for the marginal distribution [Ben-
David et al., 2010; Courty et al., 2017b] or the joint distribu-
tion [Courty et al., 2017a], are optimized to keep the consis-
tency between two tasks. While in the heterogeneous case,
the paired relationship between objects [Kulis et al., 2011;
Jiang and Li, 2017; Shi and Knoblock, 2017], the joint train-
ing over transformation and classifier [Hoffman et al., 2013],
or a shared subspace [Aljundi et al., 2015] are learned to link
two different domains together. Learned metric transforma-
tion in MAPHERE approach gives rise to the advantage trans-
ferring knowledge from source to the target domain without
the feature set limit, and the leverage of side information per-
sists the consistency between two distributions.

Optimal Transport (OT) finds a coupling between two dis-
tributions based on the ground cost, which can be used as
a map across two sets [Kolouri et al., 2017]. Facilitated
by the accelerated solver recently [Cuturi, 2013], the opti-
mal transport has been successfully applied in various ap-
plications, such as multi-label cost computation [Frogner et
al., 2015], and domain adaptation [Courty et al., 2017b;
2017a]. In the homogeneous case, the leaned transport plan is
able to map all source domain instances together with labels
to the target domain based on the Euclidean distance ground
matrix. Supervision information can be incorporated into the
group lasso regularizer on the transportation map. In MA-
PHERE, the advantage of OT is extended to the heterogeneous
case. Better cost measurement with the learned transforma-
tion also assists the cross-task transportation estimation.

Distance metric learning aims to find better representa-
tions than the Euclidean one, considering the correlation be-
tween features and task property. Both pairwise and triplet
side-information provide the direction for distance optimiza-
tion [Davis et al., 2007; Weinberger and Saul, 2009]. Trans-
formations could be learned to fuse domain information to-
gether [Geng et al., 2011; Wang et al., 2014; Luo et al., 2016].
Emphasizing domain linkages, MAPHERE transfers label and
structure information across domain effectively.

3 Homogeneous Domain Adaptation with
Optimal Transport

Consider two heterogeneous feature spaces, i.e., source do-
main with Ns examples {(xs

i , y
s
i )}Ns

i=1, where instance xs
i ∈

Rds forms Xs ∈ RNs×ds and ysi ∈ {1, . . . , C} with to-

tally C classes. While there are Nt examples {(xt
j , y

t
j)}

Nt
j=1

in the target domain. xt
j ∈ Rdt forms Xt ∈ RNt×dt and

ytj ∈ {1, . . . , C}. The number of available instances in the
target domain is much smaller than the one of the source do-
main, i.e., Nt � Ns. Denote xs

i ∼ Xs with marginal dis-
tribution µs, and xt

j ∼ Xt with marginal distribution µt, re-
spectively. 1 is an all one-value vector, whose length could be
determined by the context. In this supervised learning task,
the goal is to utilize all examples from the source domain to
help the classifier training of the target task.

First consider the homogeneous case when ds = dt, it
is reasonable to assume that the change between source and
target domains comes from an unknown, possibly non-linear
transformation T (·) on the input space. In addition, the label
information can be preserved after this transformation, i.e.,
ps(y | xs

i ) = pt(y | T (xsi )), with ps and pt correspond
to source and target conditional distributions. This transfor-
mation between domains could be discovered by the Kan-
torovitch relaxation of Optimal Transport (OT) [Courty et al.,
2017b], via optimizing a coupling Π over µs and µt:

Π = arg min
Π

∫
Xs×Xt

c(xs,xt)dΠ(xs,xt) . (1)

The coupling Π satisfies the constraint that the two marginals
of Π are exactly equal to µs and µt, and c(xs,xt) is the
ground matrix measuring cost when moving from xs to xt.
Π provides a way to push-forward one distribution to an-
other, and the value of Eq. 1 can be regarded as the divergence
between two distributions, even there is no overlap between
them. With limited instances, both source and target marginal
distributions could be estimated in the empirical form, i.e., the
uniform distribution over all examples. In this discrete case,
Eq. 1 is transformed to:

min
T≥0

∑
ij

TijCij , T1 =
1

Ns
1, T>1 =

1

Nt
1 . (2)

C ∈ RNs×Nt with Cij = c(xs
i ,x

t
j) is the pairwise cost ma-

trix, and squared Euclidean distance is used in the following
discussion. T ∈ RNs×Nt is the transportation map from Xs
to Xt, which shows the proportion to move a unit mass of
each source domain instance to the target. Two constraints
over T require the transportation should be consistent with
the marginal distributions. OT interpolates source and tar-
get distributions, and the transported source domain instance
x̂t
i = T (xs

i ) could be represented as [Perrot et al., 2016]:

x̂t
i = arg min

x

Nt∑
j=1

Tij‖x− xt
j‖22 . (3)

After taking derivatives w.r.t. x and set it to zero, we can
get x̂t

i = NsX
>
t T
>
i , where Ti is the i-th row of T . Since

the transformation is represented by the interpolation with all
target domain instances, it is able to reflect a non-linear T .

Therefore, based on OT, domain adaptation could be pro-
gressed in two stages: first the optimal transportation map T
is evaluated based on the cross-domain pairwise Euclidean
distance cost; then all source domain instances, together with
their label information, are transferred to the target domain,
which augments the target task training set a lot. Last, a stan-
dard classifier is applied over this augmented set. The effec-
tiveness of this strategy has been validated in [Perrot et al.,
2016; Courty et al., 2017a; 2017b].
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Figure 1: The illustration of the MAPHERE approach. Instances xs
i

in the source and xt
j in the target domain could be with different

feature spaces. An asymmetric map L is first learned to get rid of
the space differences between two domains, then the optimal trans-
port map T are learned on the mapped space to further transfers the
mapped source instance x̂s

i to x̂t
i , considering the change of distri-

bution between these two tasks. With the help of source domain
information, the training number burden of target task could be re-
lieved. It is also notable that the relationship between source domain
and cross domain instances are utilized during training.

4 The MAPHERE Approach
There are two main drawbacks of the previous OT transfer
strategy. First, it is hard to estimate the right instance rela-
tionship with the Euclidean distance, since it neglects the dif-
ferences between domains [Bellet et al., 2015]. The provided
label information, although limited, can help improve the dis-
tance estimation. Besides, since Euclidean distance compu-
tation requires features with the same form of representation,
the OT based approaches are hard to be applied over heteroge-
neous feature sets. In this paper, we propose the Metric Trans-
portation on heterogeneous representations (MAPHERE) ap-
proach, taking advantage of distance metric learning to solve
above two considerations simultaneously.

In MAPHERE, an asymmetric transformation acts as a dis-
tance metric to fill the gap between diverse features, and facil-
itates the distance computation cross tasks. Based on the new
distance measure, optimal transport furthermore reduces the
differences between two domain distributions, and finds cor-
respondences between the mapped source domain instances
and the target set. Weakly supervised side information, i.e.,
the pairwise similar and dissimilar relationship between ob-
jects, is also incorporated in to direct the whole transfer pro-
cess. Thus, same class instances will have small distances,
while different class instances have larger ones. The main
flow of MAPHERE is illustrated in Fig. 1.

The location of the target task examples are anchored dur-
ing the whole training process, and the source domain in-
stances are mapped to the target feature space with a trans-
formation L ∈ Rdt×ds . This asymmetric movement avoids
the inter-domain collapse and helps the final discriminative
process [Kulis et al., 2011]. The mapped source domain in-
stance xs

i can be represented as x̂s
i = Lxs

i ∈ Rdt . With
the help of L, the mapped source domain instance x̂s

i has the
same type of representation with xt

j in the target domain.
Considering types of differences between two domains,

there may still exist a discrepancy between two sets even in
the same feature space. Therefore, the transfer process is con-
tinued by aligning the remaining distribution differences by

the optimal transport over the target domain. The ground cost
matrix between mapped source domain instances x̂s

i and tar-
get domain instances xt

i can be computed in the squared form,
Cij = ‖x̂s

i −xt
j‖22. The better the metric L revealing the rela-

tionship between instances, the more exact the cost estimation
between two sets. Based on the new distance measurement,
MAPHERE seeks a transportation plan T ∈ RNs×Nt in the
form of Eq. 2, and gets a nonlinear map between transformed
source instances and target representations.

Up to now, the relationship between two tasks are linked
with transformation L and transportation T in an unsuper-
vised way. MAPHERE is also able to make use of the lim-
ited label information in both domains by considering the
pairwise linkages between objects. It is the relative com-
parison between objects that reveals more useful informa-
tion with limited instances. Formally, we construct P pairs,
P = {(xp

m,x
p
n, y

p
mn)}Pp=1, and in each pair, ypmn ∈ {−1, 1}

denotes whether two instances are similar or not. Following
formulation reveals the satisfaction of similarity relationship:

1

P

P∑
p=1

`(ypmn(γymn − ‖x
p
m − xp

n‖22)) .

`(·) is a convex loss function, which is usually an upper bound
of the 0-1 loss. γymn

is the pre-defined threshold value for
similar and dissimilar instances. For example, for square loss,
`(x) = (x− 1)2, it requires the similar (resp. dissimilar) ob-
jects should have small distances near γ1− 1 (resp. γ−1 + 1).
Thus, similar instances are pulled together, while dissimilar
ones are pushed far away. This relationship should be kept
both in source and target domains, so in MAPHERE, two
types of pairs are extracted. The first type focuses on the re-
lationship of the source domain. With similar and dissimilar
instances generated based on nearest neighbors for each ex-
ample, pairs indicate the class information of the source task.
It is notable that this type of constraint preserves the source
domain structure in the target space, and the concrete form of
the pair could be (NsX

>
t T
>
m , NsX

>
t T
>
n ), which are the last

transferred representations of source domain examples for
xm and xn. The second type of pairs includes one target in-
stance and one source mapped instance, i.e., the cross-domain
pairs. Since there are only limited target labeled examples,
we can sample same class and different class instances from
the mapped source set to generate pairs. Thus, for source do-
main instance xm and target domain instance xn, we use the
pair (NsX

>
t T
>
m ,x

t
n) in the objective. In summary, we utilize

the pairwise linkage information from both source and cross
domains, which directs the learning process of target trans-
portation T , and indirectly influences the training of cross-
domain projection L. The whole objective of MAPHERE is

min
L,T≥0

1

P

P∑
p=1

`(ypmn(γymn − d
p
mn)) + λ1

∑
ij

TijCij + λ2Ω(L)

s.t. dpmn = ‖xp
m − xp

n‖22, T1 =
1

Ns
, T>1 =

1

Nt
. (4)

The feature space transformation L and target domain trans-
portation map T are learned in a joint manner. Ω(L) is the
regularizer over L. λ1 and λ2 are two non-negative param-
eters. With learned transportation plan T , all source task in-
stances {xs

i}
Ns
i=1 could be transferred to the target domain,

together with their labels. With which, the final classification
is conducted with 1 Nearest Neighbor on the target domain.
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Figure 2: The effectiveness of MAPHERE approach on the synthetic dataset. We use different colors to differentiate the 3 classes, and use
crosses/circles to denote source and target instances, respectively. The first row of plots show the transportation maps output by different
methods, the darker the color, the smaller the transportation plan value. Different columns correspond to different methods. The first column
is the ground truth result, and (f) is the original scatter of source and target instances. Plots (g) - (j) show the transformed source domain
instances in the target domain by different methods, and original target domain instances. Best viewed in color.

5 Optimization for MAPHERE
The optimization for MAPHERE in Eq. 4 could be solved in
an alternative manner. When the cross domain mapping L
is fixed, the OT problem uses the distance between mapped
source instances and the target instances as the ground met-
ric. With the adjusted cost matrix, the transportation plan is
updated under the supervision of types of linkages. Given the
transportation T , the source domain instances are mapped to
align with target anchors using the transportation weights.

With fixed transportation map T revealing a type of cross-
domain pairwise similarity, we tune the feature space map L:

min
L
λ1

∑
ij

Tij‖Lxs
i − xt

j‖22 + λ2Ω(L) (5)

Since Tij ≥ 0, the subproblem actually finds a map be-
tween source and target examples, weighted by the trans-
portation plan between them. The pair with larger weights
Tij shows more representation similarity considering the dis-
tribution change, thus it requires more strength to reduce their
differences. We can get the closed form solution of L, i.e.,
L = (λ1

∑
ij

Tijx
t
jx

s
i
> + λ2L0)(λ1

∑
ij

Tijx
s
ix

s
i
> + λ2L0)−1 ,

(6)
when the biased regularizer Ω(L) = ‖L − L0‖2F is used. L0

is a prior for the transformation L.
With optimized L, the cost matrix C could be computed

between transformed source and target instances. The opti-
mization subproblem for T is difficult since there are equal-
ity constraints over T in the objective, and T also exists in the
metric loss function, as shown in the following formulation:

min
T≥0

1

P

P∑
p=1

(ypmn(γymn − ‖x
p
m − xp

n‖22)− 1)2 + λ1

∑
ij

TijCij

T1 =
1

Ns
1, T>1 =

1

Nt
1 . (7)

Considering the possible nonlinear term over T , the ob-
jective can be solved with conditional gradient descent
method [Courty et al., 2017b], a.k.a. Frank-Wolfe optimizer.
It linearizes the objective by first order approximation, which
could be solved in an easier and efficient way. The conver-
gence property of the conditional gradient descent could be
found in [Jaggi, 2013]. Square loss is used in the remain-
ing part of the paper. Since there are two types of pairs, we
consider their derivatives separately. When two instances in
a pair both come from the source domain, we have the loss
term oil = (yil(γyil

− ‖NsX
>
t T
>
i − NsX

>
t T
>
l ‖22) − 1)2,

which has the derivative for Ti (similar for Tl)

∂oil
∂Ti

= −4o
1
2
ilyilN

2
s (TiXtX

>
t − TlXtX

>
t ) .

While for a cross domain pair, i.e., oij = (yij(γyij
−

‖NsX
>
t T
>
i − xt

j‖22)− 1)2, we have

∂oij
∂Ti

= −4o
1
2
ijyij(N

2
s TiXtX

>
t −Nsx

t
j
>
X>t ) .

We initialize the transformation L first, then the optimal
transport plan T could be solved based on the refined cost
matrix. Since each sub-problem decreases the total loss func-
tion of the objective in Eq. 4, the final algorithm will converge
at last. In the implementation, L0 is an identity matrix in the
homogeneous case; while in the heterogeneous scenario, L0

comes from a least square problem mapping the source do-
main instances to the center of corresponding target domain
classes. Two types of pairs are sampled based on Euclidean
distance nearest neighbors of instances (5NN and 3NN are
used to construct source and target domain same class similar
pairs, while 1NN are used to generate both domains’ impos-
tors). λ1 = 1 and λ2 = 10 are default parameters.



MAPHERE OTIT OTGL OTMT JDOT MMDT ARC GFK 1NNS 1NNT LMNNT LMNNH

A→C 43.5±2.1 34.6±3.0 38.7±2.2 39.6±1.4 41.3±3.7 39.8±2.3 34.3±2.1 37.8±1.9 36.0±1.3 31.9±3.2 32.4±3.0 34.7±3.7
A→D 56.6±4.7 59.3±4.0 59.6±4.7 45.6±3.5 38.1±3.6 54.3±4.3 32.1±3.8 51.5±3.6 33.6±4.4 53.3±4.3 50.0±3.5 54.7±5.0
A→W 69.9±4.8 69.6±5.0 70.2±4.2 51.5±4.8 39.6±3.7 64.9±5.7 34.0±7.0 59.4±4.3 33.7±3.6 66.3±3.9 62.6±4.5 67.6±5.2
C→A 55.1±3.3 49.2±3.8 50.4±2.8 44.6±1.7 45.2±2.7 51.1±3.4 39.4±2.8 46.4±2.9 37.4±3.0 47.3±4.2 43.0±3.8 50.4±4.7
C→D 58.3±5.7 59.2±5.2 61.6±4.8 47.5±4.8 39.9±4.6 52.8±4.8 33.4±5.5 58.1±3.9 31.9±5.8 54.2±4.8 46.0±6.5 57.4±4.5
C→W 74.2±5.4 68.5±5.6 69.4±5.5 53.8±6.7 36.9±7.4 62.8±5.2 31.5±6.9 63.3±5.9 28.6±6.1 65.1±6.3 55.8±5.1 65.1±5.3
D→A 54.7±3.0 49.4±2.9 47.3±1.8 40.8±1.5 41.3±2.0 50.4±3.4 34.8±2.0 40.8±2.6 33.6±1.8 47.8±3.6 40.6±3.8 49.7±4.0
D→C 40.0±2.0 34.1±2.6 36.8±1.6 36.5±1.5 37.4±1.2 35.7±3.3 35.0±1.3 30.6±2.0 31.2±1.2 32.2±3.0 28.0±3.0 33.8±3.0
D→W 82.2±2.0 71.1±4.1 80.5±2.5 84.6±2.2 80.2±2.1 74.4±3.1 74.0±6.2 75.0±2.9 76.9±2.2 66.2±4.6 65.4±3.8 69.7±3.8
W→A 54.9±3.1 49.9±3.3 48.4±2.4 43.0±1.9 40.5±1.6 50.6±3.7 36.1±3.0 43.3±2.3 32.2±3.0 48.3±3.5 41.7±3.7 50.9±4.0
W→C 38.0±2.0 33.0±3.0 36.1±1.6 35.4±2.0 35.4±2.6 34.9±3.6 32.7±2.4 30.0±3.1 27.7±2.6 30.7±3.9 28.6±3.4 32.6±3.5
W→D 69.7±4.1 63.1±5.1 72.4±3.5 75.4±3.2 69.8±3.5 62.5±4.4 68.2±3.4 71.9±4.1 64.6±4.3 54.8±5.2 56.9±5.1 61.1±5.8

Mean 58.1±3.5 53.4±4.0 56.0±3.10 49.9±2.9 45.5±3.2 52.8±3.9 40.5±3.9 50.7±3.3 38.9±3.3 49.8±4.2 45.9±4.1 52.3±4.4

Table 1: Classification comparison of MAPHERE with others on Office-Caltech datasets. The mean accuracy±std. are shown in the table,
where the values with the highest performance are presented in bold. Each row corresponds to a transfer task, while each column is a method.

6 Experiments
We validate the effectiveness of our MAPHERE approach
from various perspectives. Based on a synthetic example,
the importance of the “metric facilitated” consideration is
stressed; then MAPHERE is extensively compared with other
methods in both homogeneous and heterogeneous case in
both image and text classifications.

6.1 Synthetic Illustration
We first illustrate the necessity of “metric facilitated” consid-
eration in the domain adaptation task on a synthetic dataset.
A 2D three-class dataset is generated based on Gaussian dis-
tribution, where the source and target domains are with dif-
ferent centers but the same variances. There are 50 instances
in each class. The corresponding classes in source and target
domains are first generated in near locations, and then we ex-
change the label of the latter two classes in the target domain.
Since the direct space location information is not correct for
two of the three classes, the transfer learning methods should
utilize the label information to do a good transfer.

We compare with unsupervised Optimal Transport based
Domain Adaptation (OT), its supervised extension with
Group Lasso (OTGL) [Courty et al., 2017b], and Maximum
Margin Domain Adaptation (MMDT) [Hoffman et al., 2013].
OTGL considers the class information with the group lasso
regularizer on transportation plan. MMDT learns a transfor-
mation over the source domain hypothesis, and trains classi-
fier and cross-domain mapping jointly. All methods are inves-
tigated with default parameters. The learned transportation
map and mapped source domain results are shown in Fig. 2.

The first row of plots in Fig. 2 are the plots of true and
learned transportation maps, i.e., a type of similarity ma-
trix between source and target domain instances. The darker
the color, the smaller the value. Plot (a) shows the ground
truth transportation, where the permutation between last two
classes can be clearly found. The block diagonal structure
exists in (b)-(d). OT finds the cross-domain mapping with
the Euclidean distance, so source domain instances are uni-
formly mapped to the nearby target instances, neglecting their
labels. OTGL and MMDT consider the class information.

For MMDT, we plot the scaled inner product similarity ma-
trix between domains as its transportation plan. Since miss-
ing a good metric between instances, it is hard for them to
find a good match between distance computation and class
correspondence. In (c)-(d), the relationship between classes
is disturbed. For MAPHERE, the class mapping is correctly
learned, which is similar to the ground-truth. The second row
in Fig. 2 demonstrates the mapped source domain instances
in the target space. Similarly, (f) is the original source and tar-
get plot. From results in (g)-(j), only our MAPHERE approach
maps source domain instances to corresponding target classes
correctly. The performance of MAPHERE validates the im-
portance to utilize the specific distance computation and the
label information in transfer learning.

6.2 Homogeneous Image Classification
We first test the performance of MAPHERE approach on
homogeneous domain adaptation task on the Office-Caltech
dataset. There are totally four domains, namely Amazon (A),
Caltech (C), DSLR (D) and Webcam (W), and 10 classes for
each. Each domain is used as source and target alternatively,
which generates 12 different tasks. We use the same protocol
(including the splits) as [Perrot and Habrard, 2015]. For each
task, we repeat the investigations 20 trials, and in each trial,
there are 8 labeled source examples (20 if the source is Ama-
zon) and 3 labeled target examples are selected. All instances
are normalized thanks to the zscore and the dimensionality is
reduced to 20 using a PCA.

We compare with optimal transport for domain adaptation
with two different class regularizers OTIT and OTGL [Courty
et al., 2017b], mapping estimation for optimal transport
OTMT [Perrot et al., 2016], joint domain adaptation method
JDOT [Courty et al., 2017a], Maximum Margin learning
for domain invariant representation (MMDT) [Hoffman et
al., 2013], Asymmetric Regularized Cross-domain transfor-
mation (ARC) [Kulis et al., 2011], Geodistic Flow Ker-
nel (GFK) [Gong et al., 2012] and Hypothesis biased Large
Margin Nearest Neighbor (LMNNH) [Perrot and Habrard,
2015]. All methods do classification with 1NN on the target
domain, with the help of transformed instances or classifier.
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Figure 3: Changes of accuracy for transfer learning methods as the
number of source task labels in each class increases. Results over
two tasks, i.e., W→C and C→A, are shown.

MAPHERE MMDT HFA 1NNT SVMT

A→C 36.1±3.7 38.7±2.1 35.1±2.9 31.9±3.2 35.2±2.9
A→D 57.6±4.1 51.1±4.6 56.7±4.0 53.3±4.3 57.0±5.5
A→W 71.9±5.8 62.8±4.8 67.9±5.0 66.3±3.9 70.0±5.6
C→A 52.2±3.9 48.9±3.5 51.6±3.9 47.3±4.2 51.0±4.2
C→D 58.9±4.7 51.4±4.6 57.1±4.4 54.2±4.8 57.6±4.4
C→W 71.2±4.6 59.7±4.4 66.6±4.7 65.1±6.3 66.5±5.4
D→A 52.4±4.0 47.0±3.1 50.7±3.7 47.8±3.6 50.4±3.8
D→C 36.3±2.9 33.7±3.1 35.4±3.2 32.2±3.0 34.9±2.6
D→W 73.5 4.2 68.7±3.5 67.4±3.5 66.2±4.6 68.4±4.4
W→A 53.9±4.0 47.9±3.3 52.0±4.4 48.3±3.5 51.5±4.1
W→C 34.0±3.7 32.8±3.6 33.9±3.9 30.7±3.9 33.2±4.1
W→D 61.0±4.3 63.2±4.8 59.8±6.0 54.8±5.2 59.9±6.8

Mean 54.9±4.2 53.0±4.5 50.5±3.8 49.8+4.2 52.9±4.1

Table 2: Classification comparison of MAPHERE with others on
Office-Caltech datasets for heterogeneous transfer. The mean
accuracy±std. are shown in the table, where the values with the
highest performance are presented in bold. Each row corresponds to
a transfer task, while each column is a method.

The LMNN and 1NN results on the source and target domains
are listed as baselines (LMNNT, 1NNS, and 1NNT). Test ac-
curacy values (mean±std.) are listed in Table 1. From the
results, OT methods can achieve good performance, which
shows that joint consideration of source and target distribu-
tions is useful, and OT is able to learn the transportation map
in some cases. Our MAPHERE approach can achieve the
best performance in most tasks, which attributes to the fea-
ture space transformation and effective utilization pairwise
linkage. Compared with ARC, which only learns a domains
transformation, the superiority of MAPHERE validates the ne-
cessity of the further distribution consideration with OT.

The changes of performance given different amount of
source labeled data are also investigated, as shown in Fig. 3.
The number of labeled examples in each source task class
increases from 4 to 20. MAPHERE is compared with ARC,
MMDT, OTMT, JDOT, OTIT, and OTGL. Due to the page
limit, 2 tasks, i.e., W→C and C→A, are listed. From the re-
sults, the performance of all methods increases when there are
more source domain labels, which shows the helpfulness of
enough source task labeled data. In addition, our MAPHERE
approach achieves best performance with all the label ratios.
Therefore, our MAPHERE approach is effective even there
are only limited number of labels from the source domain.

MAPHERE MMDT HFA 1NNT SVMT

Cornell 35.1±7.0 20.2±1.9 28.6±6.6 31.4±4.9 24.5±5.0
Wisconsin 44.0±3.5 21.3±1.5 30.8±6.2 28.2±6.7 31.2±8.8

Washington 46.9±3.4 16.5±1.9 30.3±9.8 28.0±7.7 32.8±11.9

Mean 42.0±4.6 19.3±1.8 29.9±7.5 29.2±6.4 29.5±8.6

Table 3: Classification comparison of MAPHERE with others on We-
bKB datasets. The mean accuracy±std. are shown in the table. Val-
ues with the highest performance are presented in bold.

6.3 Heterogeneous Image Classification
The extension to heterogeneous cases of MAPHERE is also
considered on the Office-Caltech dataset, with the same ex-
perimental settings as before. But in this case, the source
and target tasks have different dimensions, i.e., PCA to 30 for
source domain, and 20 for target tasks. Results are shown
in Table 2, where SVM on the target task is listed as a base-
line. Besides, we compare with HFA [Li et al., 2014], which
can learn with augmented features. MAPHERE also performs
best in this heterogeneous case. Compared with MMDT, the
superiority of MAPHERE validate the assistance of OT based
distribution alignment after transformation, and the effective-
ness of using pairwise information between objects.

7 Investigation on Web Page Classification
In this section, we investigate MAPHERE over a web page
classification problem.1 Web pages are described by their
web texts and linkage information with others. In this ex-
periment, source domain is the web texts and the target do-
main is the linkage information. Dimensionality reduction is
applied to each domain and keeps 50% energy. Source and
target dimensionality are 40, 17 (Cornell), 41, 24 (Wiscon-
sin); and 40, 27 (Washington), respectively. Each task has 5
classes. There are only 5 instances for each class in the tar-
get domain. Results are shown in Table 3. MMDT and HFA
cannot perform well in this task. MAPHERE also gets good
results, thanks to the learned transformation and the distribu-
tion change consideration.

8 Conclusion
How to utilize limited labeled examples from the related task
is important in machine learning fields, and the main obsta-
cles lie in the fact both feature space and distribution will
change. We propose the Metric Transportation on HEteroge-
neous REpresentations (MAPHERE) approach in this paper,
which learns the transformation between feature space and
the transportation plan handling the non-stationary distribu-
tion jointly. Based on the learned transformation, a better
distance metric is evaluated on the target task. The limited
label information from source task is also organized as pair-
wise linkages between both source and cross-domain objects.
Experiments on both homogeneous and heterogeneous cases
show that the MAPHERE approach deals with the transfer
learning task effectively. Future directions include the con-
sideration of novel classes in both source and target tasks.

1Data from http://www.cs.cmu.edu/ webkb/
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[Weinberger and Saul, 2009] K. Q. Weinberger and L. K. Saul. Dis-
tance metric learning for large margin nearest neighbor classifica-
tion. Journal of Machine Learning Research, 10:207–244, 2009.


