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Abstract
In real world applications, data are often with mul-
tiple modalities. Researchers proposed the multi-
modal learning approaches for integrating the in-
formation from different modalities. Most of the
previous multi-modal methods assume that train-
ing examples are with complete modalities. How-
ever, due to the failures of data collection, self-
deficiencies and other various reasons, multi-modal
examples are usually with incomplete feature rep-
resentation in real applications. In this paper, the
incomplete feature representation issues in multi-
modal learning are named as incomplete modal-
ities, and we propose a semi-supervised multi-
modal learning method aimed at this incomplete
modal issue (SLIM). SLIM can utilize the extrin-
sic information from unlabeled data against the in-
sufficiencies brought by the incomplete modal is-
sues in a semi-supervised scenario. Besides, the
proposed SLIM forms the problem into a unified
framework which can be treated as a classifier or
clustering learner, and integrates the intrinsic con-
sistencies and extrinsic unlabeled information. As
SLIM can extract the most discriminative predic-
tors for each modality, experiments on 15 real
world multi-modal datasets validate the effective-
ness of our method.

1 Introduction
Multi-modal learning becomes attractive as the development
of data collection technicals, and can be widely used in appli-
cations with relatively independent data sources, e.g., biolog-
ical data with gene expression, array-comparative genomic
hybridization, single-nucleotide polymorphism and methy-
lation. Multi-modal learning approaches can utilize infor-
mation from multiple modalities, among which information
from each single modality can complement each other to im-
prove the generalization ability of the whole learner, e.g.,
clustering [Arora et al., 2016; Iwata and Yamada, 2016], clas-
sification [Yang et al., 2015; 2016], regression [Yang et al.,
2017]. It is notable that the mainstream multi-modal learning
approaches assume that training examples are with complete
modalities.

Nevertheless, the assumption mentioned above is exces-
sive, since there are many reasons for insufficiencies or in-
completeness, including data collection failures from the
damage of data sensors, data corruption by network commu-
nication, data privacy policies, etc., e.g., in web pages classifi-
cation with document/image representations, documents and
images are two modalities, yet some web pages only have
document or image information; for user identification in
cross-network, the user profile features, content information
or linkage information can be regarded as multiple modali-
ties, yet some users only have one or partial modalities due to
personal preference or privacy issues. Existing multi-modal
learning approaches cannot directly be applied on the incom-
plete modal situation. With some straight forward strategies,
e.g., removing the examples only with partial modal features,
filling in the incomplete modal features with missing data
techniques, current multi-modal learning approaches can be
executed, yet the model trained will clearly loses information
and introduces extra noises.

Aiming at the incomplete modal issues, there are some pre-
liminary investigations. Trivedi et al. [2010] proposed a par-
tial modal approach, which uses one modal kernel matrix as
the similarity matrix and completes the missing modal ker-
nel using Laplacian regularization; Shao et al. [2016] pro-
posed an online multi-modal clustering algorithm OMVC to
learn the latent feature matrices for each individual incom-
plete modality and pushes them towards a common consen-
sus; Zhao et al. [2016] proposed an unsupervised method
which well handles the incomplete multi-modal data by trans-
forming the original and incomplete data to a new and com-
plete representation in a latent space. These methods mainly
focus on making full use of the inherent information, i.e.,
the consistencies between multiple modalities. In this paper,
we consider the defects of insufficient information caused by
the incompleteness among modalities should be remedied by
supplementing extrinsic information.

Transductive multi-modal learning methods are proposed
for utilizing extrinsic information from test sets, e.g., Kara-
suyama and Mamitsuka [2013] proposed a new method
SMGI, integrating multiple graphs for label propagation,
which appeals to the sparsity of graph weights and can eas-
ily eliminate irrelevant graphs; Cai et al. [2013] proposed a
novel approach to integrate heterogeneous features by per-
forming multi-modal semi-supervised classification on unla-



beled as well as unsegmented instances, which learns a com-
mon shared class indicator matrix and weights for different
modalities. However, these transductive methods are difficult
to extend to classification under the incomplete modal setting
with unseen test data.

Different to above solutions, we propose a novel Semi-
supervised multi-modal Learning approach with the Incom-
plete Modal data (SLIM). SLIM utilizes the intrinsic modal
consistencies and extrinsic unlabeled information in one uni-
fied framework as well as can perform in both transductive
and inductive configurations. Consequently, SLIM is with
wider applicable range and can be applied in both classifica-
tion and clustering tasks. Besides, SLIM can also learn the
most discriminative classifiers for each modality separately.
Meanwhile, noting that real world datasets are always with
noise and outliers resulting in unreliable solution, the square-
root loss is used for robust weight learning for each modality.
Finally, more discriminative classifiers and robust clustering
performance can be achieved in SLIM. We empirically inves-
tigate the effectiveness of SLIM, and it achieves significantly
better performance on various tasks.

In the following of this paper, we start with a brief review
of related works. Then the proposed SLIM approach and the
experimental results. After that, we conclude the paper.

2 Related Work
The exploitation of multiple modal learning has attracted
much attention recently. In this paper, our method integrates
the intrinsic consistencies and extrinsic unlabeled informa-
tion in a semi-supervised scenario with incomplete multiple
modal data, which can be treated as a classifier or clustering
learner. Therefore, we consider our work related to multi-
modal learning and semi-supervised learning.

Most of the previous multi-modal methods assume that
training examples are with complete modalities. However,
multi-modal examples are usually with incomplete feature
representation in real applications. Therefore, many re-
searchers have devoted to handling the incomplete modal data
recently. Li et al. [2014] established a latent subspace where
the instances corresponding to the same example in different
modalities are close to each other, and similar instances in
the same modality should be well grouped; Shao et al. [2015]
proposed the MIC (Multi-Incomplete-view Clustering), an al-
gorithm based on weighted nonnegative matrix factorization
with L2,1 regularization, which learns the latent feature ma-
trices for all the modalities and generating a consensus ma-
trix so that minimize the difference between each modality
and the consensus matrix; Xu et al. [2015] proposed an effec-
tive algorithm to accomplish multi-modal learning with in-
complete modalities by assuming that different modalities are
generated from a shared subspace, which exploits the connec-
tions between multiple modalities, enabling the incomplete
modalities to be restored with the help of the complete modal-
ities. However, these methods mainly focus on the inherent
information, i.e., the consistencies between multiple modali-
ties or the data structures among multiple modalities. In this
paper, we consider that the defects of insufficient informa-
tion caused by the incompleteness among modalities should

be remedied by supplementing extrinsic information instead.
Transductive multi-modal learning, as a matter of fact,

utilizes the extrinsic information from test sets. Eaton et
al. [2010] proposed a constrained clustering that can operate
with an incomplete mapping, which propagates given pair-
wise constraints using a local similarity measure to those
instances that can be mapped to other modalities; Yin et
al. [2017] proposed a novel subspace learning framework
for incomplete and unlabeled multi-modal data, which di-
rectly optimizes the class indicator matrix, the inter-modal
and intra-modal data similarities are preserved to enhance the
model. These multi-modal learning approaches with incom-
plete modal information partially incorporate with the semi-
supervised learning techniques to relax the issues introduced
by modality incompleteness. However, these approaches are
under the configuration of transductive learning and are diffi-
cult to extend on unseen test data.

In this paper, we propose a novel approach named Semi-
supervised multi-modal Learning with the Incomplete Modal
information (SLIM), which utilizes the intrinsic modal con-
sistencies and extrinsic unlabeled information in one unified
framework, and can perform under both transductive and in-
ductive configurations. As a consequence, SLIM can be ap-
plied in both classification and clustering tasks. Besides, con-
sidering that different modalities have various noise levels,
we utilize the square-root loss rather than learning the weight
for each modality. Finally, more discriminative classifiers and
robust clustering performance can be achieved in SLIM.

3 Proposed Method
In our incomplete multiple modal learning setting, an in-
stance is characterized by multiple modal features while only
with one unified label. Suppose we are given a dataset with
N examples and K modalities. The i−th instance xi of
k−th modality can be represented as xik ∈ Rdk , where
dk is the dimension of the k−th modality. Each instance
may has complete or partial modalities as shown in Fig. 1.
Without any loss of generality, suppose we have Nc ho-
mogeneous examples with complete modal features, mean-
while, we have Nk heterogeneous instances for each modal-
ity. Thus, the incomplete modal example set can be rep-
resented as D = {Xc, X1, X2, · · · , XK}, where Xc =

{(xi1 ,xi2 , · · · ,xiK )}Nc
i=1 ∈ RNc×d denotes the examples

present in all modalities, d = d1 + d2 + · · · + dK , Xk ∈
RNk×dk denotes the incomplete examples present in the k−th
modality. While under the semi-supervised learning scenario,
we assume that there are l labeled examples including com-
plete or incomplete examples. For labeled examples, the label
of example xi can be represented as yi ∈ {1, · · · , C}, C is
the class number, and the labeled example sets can be repre-
sented as Θl. The goal of SLIM is to cluster the N examples
into their corresponding clusters, while learning discrimina-
tive predictors for each modal prediction.

3.1 The Formulation of SLIM
In this section, we will describe the SLIM in detail. In in-
complete modal learning, SLIM aims to utilize the intrinsic
modal consistencies and extrinsic unlabeled information in
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Figure 1: An illustration of the Incomplete Multi-Modal Data in
real-world application as 3-Source Text data. 3 Sources are col-
lected from three online news sources: BBC, Reuters, and Guardian
(represented as blue, orange, green rectangles), where each news
source can be seen as one modality for the news reports. The miss-
ing modalities are denoted as clinodiagonal rectangles.

one unified framework, and can perform in both transductive
and inductive configurations. Specifically, SLIM can be de-
composed into two targets: first, with the incomplete modal
examples, we aim to learn the predictors to classify the test in-
stances of each modality accurately. Besides, we wish to clus-
ter the unlabeled instances by modeling a joint transformed
matrix factorization problem with respect to each modal sim-
ilarity matrix and the learned predictions, and pushes them
towards a consensus. Thus, SLIM can be defined as:

min
Wk,bk,F

K∑
k=1

(L̂k(Fk, F ) +
λ2

2
L̃k(X̂k, F )) (1)

There are K modalities, the first term L̂k(Fk, F ) denotes the
loss of classification of the k−th modality, Fk and F are the
classification results and the labels of all the instances on
k−th modality to be learned. The second term, L̃k(X̂k, F )
considers both the intrinsic and extrinsic information for in-
complete modalities. More specifically, it models with a joint
transformed matrix factorization problem, here X̂k ∈ RN×dk
is the matrix of the k−th modality with missing rows fill-
ing with zeros. In detail, we treat the incomplete similarity
matrix of each modal and the learned predictions as a trans-
formed matrix factorization problem, and wish to keep the
consistency between them, λ2 > 0 is a balance parameter.

Specifically, objective function L̂k on the k−th modal-
ity in Eq. 1 can be generally represented as the form:
min
Fk

L̂k(Fk, F ) = `(Fk, F ) + λ1

2 r(Fk). Here r(Fk) is the

regularizer for modal-specific classifier. λ1

2 is a scalar coeffi-
cient to balance the weights of the two terms. Eq. 1 indicates
the classifier in `(·) and the prediction results F for instances
are connected. Without any loss of generality, the loss func-
tion `(Fk, F ) can take any convex forms, and we use square
loss and linear classifier here for simplicity:

min
Wk,bk

1

2ηk
‖X̂kWk + 1bk

> � Pk − F � Pk‖2F +
λ1

2
‖Wk‖2F (2)

Where Wk ∈ Rdk×C is the linear classifier, bk ∈ RC is the
bias for current predictor, 1 is the all one vector, � represents
element wise product operator, Pk ∈ RN×C is the indicator
matrix, where [Pk]i,· = 1 iff i−th instance is complete on

k−th modality, otherwise [Pk]i,· = 0. In multi-class cases,
we expand the label yi for instance xi to a vector with C ele-
ments, where yi,j = 1 indicates the i−th instance is with label
j, otherwise, yi,j = 0, similarly, F ∈ RN×C denotes the pre-
dictions of all instances to be learned, ηk is the number of the
complete examples of k−th modality.

The intrinsic information, i.e., the consistencies between
the indicator matrix of different modalities are one of the
most prominent information for relief the insufficiencies from
modality incompletenesses. Therefore, the consistency loss
can be treated as the main component for the 2nd term L̃k:
‖RΩ(Mk) − RΩ(Y Y >)‖2F, where Mk ∈ RN×N is the
similarity matrix of the labeled examples of k−th modal-
ity. [RΩ(Mk)]i,j = [Mk]i,j iff i−th instance and j−th in-
stance have complete entries on k−th modality, otherwise
[RΩ(Mk)]i,j = 0, and RΩ(Y Y >) has the same definition,
Y denotes the label matrix of the labeled examples.

However, in the semi-supervised scenario, more extrinsic
information can be involved for better modeling. In this pa-
per, we treat all examples, both label and unlabeled data, with
labels as F , and L̃k can be reformulated as:

min
F

1

η2
k

‖RΩ(Mk)−RΩ(FF>)‖2F

s.t. FΘl = Y, 0 ≤ F ≤ 1,

(3)

note that here each similarity matrix only has ηk × ηk real-
valued entries and we fill the rest entries with zeros. The con-
straint FΘl = Y restricts the prediction on labeled data as
same as the ground truth to avoid collapsing of predictions,
Θl here is the index set of the labeled data. In addition, we
constrain the predicted values into the same range as true la-
bels by 0 ≤ F ≤ 1 to maintain the intrinsic consistencies. It
is notable that the Eq. 3 closely relates to a kernel Kmeans and
laplacian-based spectral clustering in a wild condition [Ding
and He, 2005], which implies that the whole approach (con-
sisted with this term) can be also applied in clustering tasks.

In addition, it is also notable that real world data always
contain noise and outlying entries that result in the unreliable
similarity matrix, which will impair the final performance.
Previous multi-modal learning methods usually weight differ-
ent modalities or instances against the affections introduced
by noises for ensuring the robustness. However, in semi-
supervised learning scenario, there are only insufficient num-
ber of labeled data for weighting parameters tuning, and as
a matter of fact, the affections of noises become one of the
barriers for modeling robustly. In this paper, we further em-
ploy the square-root loss function instead of the least squares
function in Eq. 3 to reduce the affections from noisy data.
This solution can be regarded as a weighted regularized least
squares form of the original one, where the weight for each
modality is: 1

ηk‖RΩ(Mk)−RΩ(FF>)‖F due to [Liu et al., 2014].
This modification can calibrate each modality by considering
the different noise levels of all modalities and increases the
robustness of the 2nd term in SLIM:

min
F

1

ηk
‖RΩ(Mk)−RΩ(FF>)‖F

s.t. FΘl = Y, 0 ≤ F ≤ 1.

(4)



Without loss of generality, we can combine Eq. 2 and Eq. 4
in a unified framework and yield the whole SLIM model:

min
Wk,bk,F

K∑
k=1

(
1

2ηk
‖X̂kWk + 1bT

k � Pk − F � Pk‖2F +
λ1

2
‖Wk‖2F)

+
λ2

2

K∑
k=1

1

ηk
‖RΩ(Mk)−RΩ(FF>)‖F

s.t. 0 ≤ F ≤ 1, FΘl = Y
(5)

3.2 Solutions
In this section, we mainly focus on the methodology for ad-
dressing the optimization of SLIM represented as Eq. 5 which
is convex to Wk,bk yet not a jointly convex problem. An al-
ternative descent algorithm is considered to be utilized for
solving this problem, nevertheless, further derivations suc-
cessfully show that the alternative descent approach is with
closed form solutions for some key parameters.

First, it clearly shows that the optimal solution of bk is
with closed-form when Wk and F are fixed,

bk =
1

ηk
(F � Pk − X̂kWk)>1 (6)

Substitute Eq. 6 into Eq. 5, we can simplify Eq. 5 as:

min
Wk,F

K∑
k=1

(
1

2ηk
‖CkX̂kWk − Ck(F � Pk)‖2F +

λ1

2
‖Wk‖2F)

+
λ2

2

K∑
k=1

1

ηk
‖RΩ(Mk)−RΩ(FF>)‖F

s.t. 0 ≤ F ≤ 1, FΘl = Y,

(7)

where Ck = I − 1
ηk
11>�Pk. Then we can find that the Wk

is also with closed-form when F is fixed:

Wk = AkBkCk(F � Pk), (8)

where Ak = (X̂>k C
>
k CkX̂k + ηkλ1I)−1, Bk = X̂>k C

>
k .

Combining Eq. 8 and Eq. 7, we can rewrite the Eq. 7 as:

min
F
tr(FTHF ) + λ2

K∑
k=1

1

2ηk
‖RΩ(Mk)−RΩ(FF>)‖F, (9)

where tr(·) is the matrix trace operator, H =∑K
k=1 ΠΓk

[CkC
>
k B
>
k A
>
k (λ1

2 AkBk + 1
2ηk

BkB
>
k AkBk −

1
ηk
Bk) + 1

2ηk
C>k Ck], where Γk = {γ1, γ2, · · · , γηk}

represents the index set of the complete instances of k−th
modality. ΠΓk

(A) represents the rows and columns in
Γk of matrix A are set as 0. And we can use the project
sub-gradient method to optimize Eq. 9 for simplicity.

g =


HF, L̄ = 0,

HF + λ2

K∑
k=1

RΩ(FF>)−RΩ(Mk)

‖RΩ(Mk)−RΩ(FF>)‖F
F,Otherwise

(10)

where L̄ = ‖RΩ(Mk)−RΩ(FF>)‖F.
With the parameters Wk, bk solved in closed-form, we can

solve the F with the projected sub-gradient of Eq. 10.

Datasets C N K dk(k = 1, 2, · · · ,K)

Movie 17 617 2 1878, 1398
Citeseer 6 3264 2 3703, 3264
Cora 7 2708 2 1433, 2708
Cornell 5 195 2 1703, 195
Texas 5 185 2 1703, 185
Washington 5 217 2 1703, 217
Wisconsin 5 262 2 1703, 262

News-M2 2 1200 3 2000, 2000, 2000
News-M5 5 500 3 2000, 2000, 2000
News-M10 10 500 3 2000, 2000, 2000
News-NG1 2 500 3 2000, 2000, 2000
News-NG2 5 400 3 2000, 2000, 2000
News-NG3 8 1000 3 2000, 2000, 2000
Reuters 6 1600 5 2000, 2000, 2000, 2000, 2000
3Sources 6 416 3 3560, 3631, 3068

Table 1: Dataset description, datasets with two modalities or multi-
ple modalities are separated with a horizontal line.

Datasets SLIM ConvexSub PVC MIC

Movie .247±.009 .123±.004 .193±.003 .172±.001
Citeseer .490±.010 .218±.003 .472±.014 .202±.003
Cora .587±.015 .214±.002 .225±.013 .201±.009
Cornell .458±.041 .340±.051 .449±.051 .313±.022
Texas .694±.053 .428±.030 .554±.074 .433±.033
Washington .586±.029 .406±.055 .583±.055 .359±.020
Wisconsin .545±.065 .378±.043 .568±.063 .355±.021

News-M2 .791±.030 .547±.016 - .530±.006
News-M5 .617±.026 .265±.017 - .228±.003
News-M10 .401±.024 .159±.007 - .117±.002
News-NG1 .773±.032 .535±.012 - .531±.008
News-NG2 .635±.019 .246±.007 - .225±.002
News-NG3 .566±.012 .178±.015 - .144±.002
Reuters .472±.014 .198±.002 - .200±.002
3Sources .858±.014 .282±.009 - .389±.019

Table 2: Clustering results in terms of purity (mean and std.), the
ratio of the multiple incomplete modal data is 90%.

4 Experiments
Data Sets: In this paper, we conduct experiments on 7 two
modalities datasets and 8 multiple modalities datasets. In de-
tail, two modal datasets include: Movie dataset is extracted
from IMDb, which has 617 movies of 17 genres, and there
are two data matrices describing the same movies, i.e., key-
words matrix and actors matrix. The main goal is to find the
genre of the movies; Citeseer dataset [Sen et al., 2008] is
originally made of 4 modalities, i.e., content, inbound, out-
bound, cites, on the same documents. We follow [Bisson and
Grimal, 2012] to choose the content and cites modalities in
our experiment. WebKB dataset [Sen et al., 2008] contains
webpages collected from 4 universities: Cornell, Texas, Wis-
consin and Washington, which have 5 categories, i.e., student,
project, course, stuff and faculty. Multiple modal datasets in-
clude: NewsGroup dataset [Bisson and Grimal, 2012] is of 6
groups extracted from the 20 Newsgroup datasets, i.e., M2,
M5, M10, NG1, NG2, NG3. Every group contains 10 sub-



Datasets SLIM ConvexSub PVC MIC

Movie .353±.010 .361±.010 .309±.015 .365±.007
Citeseer .379±.011 .250±.008 .376±.014 .325±.004
Cora .454±.014 .264±.004 .294±.045 .341±.004
Cornell .386±.039 .231±.044 .272±.057 .290±.026
Texas .406±.071 .234±.031 .264±.067 .298±.028
Washington .401±.032 .264±.059 .332±.048 .282±.029
Wisconsin .408±.046 .240±.050 .301±.063 .286±.031

News-M2 .479±.056 .159±.051 - .176±.030
News-M5 .506±.029 .241±.039 - .288±.011
News-M10 .416±.028 .260±.024 - .339±.010
News-NG1 .448±.059 .141±.068 - .176±.033
News-NG2 .522±.021 .230±.024 - .300±.009
News-NG3 .518±.014 .274±.023 - .335±.006
Reuters .376±.014 .252.±.006 - .341±.007
3Sources .801±.019 .236±.010 - .401±.019

Table 3: Clustering results in terms of NMI (mean and std.), the ratio
of the multiple incomplete modal data is 90%.

sets, and we choose the first subset for all 6 groups in our ex-
periment, i.e., News-M2, News-M5, News-M10, News-NG1,
News-NG2 and News-NG3, respectively. 3-Source Text
data (3Sources)(http://mlg.ucd.ie/datasets/3sources.html) is
collected from three online news sources: BBC, Reuters, and
Guardian. The description sketches of datasets, including the
number of classes, the number of examples and modalities
together with the feature numbers are summarized in Table 1.

We run each compared method 30 times for the 15 datasets.
For all datasets, we randomly select 70% for training and the
remains are for test. For both the training set and test set. As
in [Li et al., 2014], in each split, we randomly select 10% to
90% examples, with 20% as interval, as homogeneous exam-
ples with complete modality, and the remains are incomplete
instances, i.e., in WebKB datasets, they are described by ei-
ther the content or the citation modality, but not both. For all
the examples, we randomly choose 30% as the labeled data,
and the left 70% as unlabeled ones. In the training phase, the
parameters λ1 and λ2 are selected by 5-fold cross validation
from {10−5, 10−4, · · · , 104, 105} with further splittings on
the training datasets only, i.e., there is no overlap between the
test set and the validation set for parameter picking up. Em-
pirically, when the variations between the objective value of
Eq. 9 is less than 10−6 in iteration, we treat SLIM converged.
The average accuracy and std. of predictions are recorded for
indicating the classification performance, and the NMI and
Purity are recorded as clustering performance. For all com-
pared methods, the parameters are tuned best.
Compared Approaches: Our method solves the problem of
semi-supervised clustering and classification with incomplete
modality. Thus, to evaluate the performance of our proposed
approach, for semi-supervised clustering task, we choose
3 state-of-the-art multi-modal methods: ConvexSub [Guo,
2013]; PVC [Li et al., 2014]; MIC [Shao et al., 2015], con-
sidering the limitation of the clustering compared method,
we first learn a latent representation of the original data and
then using the semi-supervised K-means to get the cluster-
ing result. For classification task, we compare with the

Datasets SLIM WNH RANC MVL-IL

Movie .211±.055 .149±.040 .203±.042 .134±.043
Citeseer .510±.028 .287±.142 .457±.076 .486±.019
Cora .617±.020 .436±.154 .537±.119 .536±.022
Cornell .502±.094 .492±.097 .441±.091 .493±.076
Texas .625±.065 .623±.077 .591±.043 .568±.050
Washington .612±.046 .552±.026 .586±.086 .584±.074
Wisconsin .611±.079 .554±.019 .570±.056 .574±.054

News-M2 .743±.071 .651±.039 .705±.030 .692±.049
News-M5 .573±.056 .337±.045 .504±.044 .571±.052
News-M10 .365±.048 .275±.039 .351±.029 .251±.025
News-NG1 .726±.066 .679±.071 .687±.043 .712±.071
News-NG2 .660±.040 .349±.020 .552±.040 .597±.053
News-NG3 .600±.024 .325±.083 .471±.030 .474±.029
Reuters .434±.053 .433±.136 .394±.072 .439±.058
3Sources .828±.040 .735±.083 .546±.144 .263±.044

Table 4: Classification results in terms of accuracy (mean and std.),
the ratio of the multiple incomplete modal data is 90%.

WNH [Wang et al., 2013], RANC [Ye et al., 2015], MVL-
IL [Xu et al., 2015]. For compared methods which can’t
handle incomplete examples, i.e., ConvexSub, WNH, RANC,
for fair comparison, we are facilitated with the ALM (Aug-
mented Lagrange Multipliers) [Lin et al., 2010] matrix com-
pletion method by first filling in the missing information.

4.1 Experiment Results
Semi-Supervised Clustering/Classification
To demonstrate the effectiveness of our proposed method. For
all datasets, we fix the incomplete ratio of the multi-modal
data as 90%, and record the clustering results NMI, purity
of the SLIM and compared methods in Table 2, Table 3, and
prediction accuracies (avg.± std.) in Table 4. It is notable
that PVC method can only leverage two modalities, so we
have not compared with PVC for multi-modal datasets.

From the Table 2 and Table 3, it reveals that for both two
modal datasets and multiple modal datasets, SLIM almost
consistently achieve the significant superior clustering perfor-
mance on either purity or NMI comparing to all other meth-
ods, except for Wisconsin on purity and Movie on NMI. It
can be owing to that in SLIM, the similarity matrices of all
datasets are initialized with cosine similarity for more robust
generalization, rather than task specific similarity matrix con-
struction method. Besides, from the Table 4, it can be ob-
served that SLIM also achieve the best performance on most
datasets except Reuters. This phenomenon clearly reveals the
effectiveness of considering the high order consistencies be-
tween each modal similarity matrix and the learned predic-
tions, consequently, we can learn the most discriminative pre-
dictors for each modality, while acquiring better results.

Influence of Number of Incomplete Multi-Modal Data
In order to explore the influence of the ratio of the incom-
plete modalities on performance, extensive experiments are
conducted. In this section, the parameters in each investiga-
tion are fixed as the optimal values selected in above investi-
gations, the λ1 and λ2 in SLIM are set 1, while the ratio of the
incomplete data varies in {90%, 70%, · · · , 10%}, with 20%
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Figure 2: The NMI results of the Texas, Movie, News-M2, News-NG1. PER (partial example ratio) is the ratio of incomplete examples.
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Figure 3: The purity results of the Texas, Movie, News-M2, News-NG1. PER (partial example ratio) is the ratio of incomplete examples.
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Figure 4: The accuracy results of the Texas, Movie, News-M2, News-NG1. PER (partial example ratio) is the ratio of incomplete examples.

as interval. Due to the page limits, results on 4 datasets, i.e.,
Texas, Movie, News-M2, News-NG1, and the results of NMI,
purity and accuracy are recorded in Fig. 2, Fig. 3 and Fig.
4. From these figures, it clearly shows that SLIM achieves
the best on all datasets. Besides, we can also find that SLIM
achieves superiorities from high incomplete ratio, and the per-
formance of SLIM increases faster than compared methods as
incomplete ratio decreasing.

5 Conclusion
This paper focus on the issues of incomplete modalities in
multi-modal learning. Previous mainstream solutions allevi-
ate the affections of incomplete modal issues via utilizing the
intrinsic information from the data structures or prediction
consistencies among multiple modalities. A few of multi-
modal learning methods consider making use of the auxil-
iary information from test data, and thus form transductive
solutions which cannot be applied on unseen data. In this
paper, we proposed a novel multi-modal learning approach,
SLIM, with more extrinsic information exploited from un-

labeled data in a semi-supervised scenario, and yielded an
inductive learner which consequently can be applied in gen-
eral multi-modal circumstances. By leveraging the intrinsic
and extrinsic information together, SLIM possesses a unified
framework which is closely related to classification and semi-
supervised clustering. Therefore, SLIM can be easily adopted
to either classification or clustering tasks. Besides, by incor-
porating in square-root loss, SLIM becomes less sensitive to
data noise and ensures the robustness of the whole solution.
Experimental evaluations on real-world applications demon-
strate the superiority of our proposed method over the com-
pared methods. How to extend the scalability with improved
performance and theoretical analysis on incomplete multi-
modal learning can be interesting future work.
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