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ABSTRACT
Multi-label learning aims to predict a subset of relevant labels for
each instance, which has many real-world applications. Most extant
multi-label learning studies focus on a fixed size of label space. How-
ever, in many cases, the environment is open and changes gradually
and new labels emerge, which is coined as streaming multi-label
learning (SMLL). SMLL poses great challenges in twofolds: (1) the
target output space expands dynamically; (2) new labels emerge
frequently and can reach a significantly large number. Previous
attempts on SMLL leverage label correlations between past and
emerging labels to improve the performance, while they are in-
efficient when deal with large-scale problems. To cope with this
challenge, in this paper, we present a new learning framework,
i.e., the probabilistic streaming label tree (Pslt). In particular, each
non-leaf node of the tree corresponding to a subset of labels, and a
binary classifier is learned at each leaf node. Initially, Pslt is learned
on partially observed labels, both tree structure and node classifiers
are updated while new labels emerge. Using carefully designed up-
dating mechanism, Pslt can seamlessly incorporate new labels by
first passing them down from the root to leaf nodes and then update
node classifiers accordingly. We provide theoretical bounds for the
iteration complexity of tree update procedure and the estimation
error on newly arrived labels. Experiments show that the proposed
approach improves the performance in comparison with eleven
baselines in terms of multiple evaluation metrics. The source code
is available at https://gitee.com/pslt-kdd2021/pslt.
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1 INTRODUCTION
Multi-label learning (MLL) [7, 37] aims to annotate objects with the
relevant labels from an extremely large number of candidate labels.
MLL recently owns many real-world applications. For example,
in webpage categorization [17], labels (categories) are collected in
Wikipedia and one needs to annotate a new webpage with all rele-
vant labels from such a big candidate set; in image annotation [4],
one wishes to tag each individual picture with multiple labels from
such a candidate label set; in recommendation systems [14], one
hopes to make informative personalized recommendations from a
candidate set of items (labels).

Most existing literature of multi-label learning focuses on a fixed
set of labels [1, 13, 20, 26–29, 34, 36, 37]. That is, they assume that all
the labels in the learning process are given at once. In the opposite,
this paper investigates an important problem in data streams, i.e.,
multi-label classification under streaming emerging labels, since in
many real-world applications, the environment is open and changes
gradually. For instance, in webpage categorization, new labels (cat-
egories) are created for historic events in Wikipedia, such as the
“2022 Winter Olympics”; in recommendation systems, many new
labels (items) are becoming available to users. If multi-label models
do not take new labels into account, it deteriorates the performance.

The main challenges of SMLL are in twofolds: (1) the target out-
put space expands dynamically; (2) new labels emerge frequently
and can reach a significantly large number. To cope with these prob-
lems, one of previous works SLL [33] assumes that each label can
be represented as a linear combination of other labels and it learns
a binary linear classifier for each new label incorporating the rela-
tionship with past labels. However, the linear representation across
labels limits the SLL performance, and the training knowledge from
classifiers of past labels is neglected. Recently, DSLL [25] proposes
a novel DNN-based framework to effectively model the correlation
between past labels and emerging new labels. DSLL has the ability
to explore and utilize deep correlations between new labels and
past labels without computationally intensive retraining. However,
DSLL needs to train a separate model for newly arrived labels based
on initial teacher model and has difficulties to deal with large-scale
applications. Moreover, a unified model is desired in many cases,
which evolves using emerging data stream.

In this paper, we propose a tree-based streaming multi-label
learning framework, i.e., the Probabilistic Streaming Label Tree
(Pslt), which can seamlessly take advantage of emerging new labels.
In Pslt, labels are organized in the tree with the hope of capturing
hierarchical correlations among labels. Our algorithm works by
first partitioning the label space, such that each label corresponds to
a leaf of the tree. In particular, a clustering algorithm is employed to
determine the partition of labels and Pslt learns a binary classifier
for each child node for the purpose of inference. This procedure
repeats recursively until the stop condition is meet. While dealing
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Figure 1: Illustration of the streaming multi-label learning setup. At each timestamp 𝑇𝑖 , the label matrix is expanded by a batch
of emerging new labels, where each row represents the label vector for a sample and +1s or −1s respectively denote labels are
relevant or irrelevant to the sample.𝑀𝑖 denotes the model at time 𝑇𝑖 which evolves from𝑀𝑖−1 such that its output label space
expands accordingly. We use tree-based models for the purpose of demonstration.

with emerging labels, Pslt evolves itself by considering both tree
structure and node classifiers. It first performs the label insertion
procedure which passes new labels from the root to leaf nodes
guided by label proximity. Noted that if the size of a leaf node
meets the size limit, an additional partition is triggered. After label
insertion, node classifiers are learned or modified using emerging
labels. In the experiments, we observe that Pslt outperforms eleven
baselines on several datasets and it is far more effective than the
deep learning based method DSLL. We demonstrate the studied
SMLL setup in Figure 1.

We summarize our main contributions as follows.
• We study a general problem setup, i.e., the streaming multi-
label learning. A new framework based on the probabilistic
label tree is proposed to effectively update the model by
leveraging label correlations.

• Analyses on the iteration complexity of the model update
procedure and estimation error on emerging labels are pro-
vided. Memory complexity of the model is also presented.

• The proposed approach achieves state-of-the-art performance
in comparison with eleven baselines in terms of multiple per-
formance metrics on three benchmark multi-label datasets.

The rest of the paper is organized as follows. Section 2 introduces
the previous related work. Section 3 gives the problem and describes
the proposed framework in detail. Section 4 presents the theoretical
analysis. Section 5 presents the experimental results validating the
model and providing several insights. We conclude this work in
Section 6.

2 RELATEDWORK
Tree-based Multi-label Learning. Most extant multi-label learn-
ing approaches focus on fixed label space. Tree-based methods

greatly reduce inference time, which generally scales logarithmi-
cally in the number of labels. There are typically two types of trees
including instance trees [18, 21] and label trees [3, 10, 32], depend-
ing whether instance or label is partitioned in tree nodes. These
methods can readily scale up to problems with hundreds of thou-
sands of labels. Recently, OPLTs [8, 9] is proposed to learn in the
online manner. In OPLTs, new labels traverse down from the root
to leaves by randomly choosing a child node or calculating score
that maximizes balancedness of tree and fitness of data, in which
label correlations are neglected.

Learning with Emerging Classes. One of previous work SLL
[33] assumes that: (1) a label is represented as a linear combina-
tion of other labels, and (2) the relationship (linear combination)
between labels can be inherited by classifiers of different labels.
Constrained by these hypotheses, SLL trains a linear classifier for
new labels with the relationship between past labels and new la-
bels. However, the linear representation across labels limits the SLL
performance, and the training knowledge from classifiers of past
labels is neglected. To alleviate this issue, DSLL [25] propose a novel
DNN-based framework to effectively model the emerging new la-
bels by using leveraging knowledge of previous trained model to
learn high-order representations. From the point of view that new
classes are outliers, [38] and [15] use anomaly detection to detect
new classes and update models with emerging data, this is different
from the streaming multi-label learning. [39] further extends this
problem to semi-supervised learning for the presence of unlabeled
samples in emerging data. In this paper, we show that it is natural
and efficient to incorporate emerging new labels in the probabilistic
label tree framework, which takes advantage of label correlations
in the meanwhile.
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3 PROBABILISTIC STREAMING LABEL TREE
3.1 Problem Formulation
We first introduce the streaming multi-label learning setup and 
some notations. Suppose that an initial training data set is denoted 
by D = {(𝒙1, 𝒚1); ...; (𝒙𝑁 , 𝒚𝑁 )}, where 𝒙𝑖 ∈ R𝐷 is a real vector 
representing an input feature (instance) and 𝒚𝑖 ∈ {0, 1}𝐿 is the 
corresponding output label vector for the 𝑖-th example. The input 
feature matrix is denoted as X = [𝒙1; ...; 𝒙𝑁 ] ∈ R𝐷×𝑁 and the initial 
output label matrix is 𝒀 = [𝒚1; ...;𝒚𝑁 ] ∈ {0, 1}𝐿×𝑁 . Note that, 𝑌𝑖 𝑗 = 
1 if the 𝑗-th label is relevant to sample 𝒙𝑖 and 𝑌𝑖 𝑗 = −1 otherwise. 
By observing D, multi-label learning aims to derive a proper model 
that generates the prediction for a test sample. Then new labels 
arrive batch by batch in a streaming fashion. For simplicity, we
denote 𝒚𝑛𝑒𝑤

𝑖
= [𝑦𝐿+1

𝑖
; ...;𝑦𝐿+𝑚

𝑖
] as the newly observed 𝑚 labels

for sample 𝒙𝑖 , where 𝑚 ≥ 1. The goal of streaming multi-label
learning is to derive a unifiedmodel by taking care of the continually
emerging new labels. We summarize definition of notations used
in the rest of this paper in Table 1.

Table 1: Notations.

Notations Definition

𝑁 size of training set
𝐷 feature dimension
𝐿 size of label set
𝑿 ∈ R𝑁×𝐷 feature matrix, 𝑿 = [𝒙1; . . . ; 𝒙𝑁 ]
𝒀 ∈ {0, 1}𝑁×𝐿 label matrix, 𝒀 = [𝒚1; . . . ;𝒚𝑁 ]
𝑽 label representation matrix, 𝑽 = [𝒗1; . . . ; 𝒗𝐿]
𝑙 𝑗 the 𝑗-th label
𝑇 a probabilistic streaming label tree
𝐾 branch factor for tree node
V𝑇 the set of nodes of 𝑇
L𝑇 the set of leaf nodes of 𝑇
𝑟𝑇 the root of 𝑇
𝐿𝑣 number of leaf nodes in the subtree rooted at 𝑣
Path(𝑣) set of nodes in the path from root to node 𝑣
𝒄𝑣 the set of labels in node 𝑣
𝒘 ∈ R𝐷 node classifier
𝑚 number of emerging new labels

3.2 Tree Construction
In this subsection, we describe the procedure of building probabilis-
tic streaming label tree. Our approach processes one node of the
tree a time, starting with the root node. At each non-leaf node, it
partitions the labels into a fixed number of disjoint subsets as child
nodes and learns a binary classifier for each of the children for the
purpose of inference. The procedure might repeats multiple times.

Label Representation. During label partitioning, representa-
tions for labels are necessary, based on which label proximities are
calculated. Ideally, labels with similar semantic meaning are desired
to be grouped in same clusters. Since label semantic representations
are usually unaccessible in many real-world applications. To this
end, we provide a simple and effective walk around. Specifically,

label representations are constructed by averaging all the train-
ing examples for which it is relevant to the corresponding labels.
Formally, the label representation matrix 𝑽 = [𝒗1; . . . ; 𝒗𝐿] is given
as 𝑽 = 𝒀⊤𝑿 . Using the mean vector of positive instances as label
representation has been used in many research fields, e.g., few-shot
learning [22], which has demonstrated adorable performance.

Label Partitioning. The aim of label partitioning is to split S
into disjoint subsets by taking label similarity into account. This is
achieved by 𝑘-means clustering, which also presents many choices
such as number of clusters and degree of balancedness among the
clusters. The same process is repeated on each of the newly-created
𝐾 child nodes in an iterative manner. Let 𝒄𝑘 denotes the set of labels
of the 𝑘-th cluster, the objective function of label partitioning can
be formulated as

min
𝒄1,...,𝒄𝐾

𝐾∑︁
𝑘=1

∑︁
𝑖∈𝒄𝑘

𝑑𝑖𝑠𝑡 (𝒗𝑖 , 𝝁𝑘 ) (1)

where 𝑑𝑖𝑠𝑡 (·, ·) represents a distance function and 𝝁𝑘 denotes the
center of the 𝑘-th cluster. The distance function is defined in terms
of the cosine similarity as𝑑𝑖𝑠𝑡 (𝒗𝑖 , 𝝁𝑘 ) = 1− 𝒗⊤𝑖 𝝁𝑘

| |𝒗𝑖 | | · | |𝝁𝑘 | | . Problem (1)
is NP-hard and an approximate solution can be found using the
standard 𝐾-means algorithm [12].

Learning Node Classifiers. Once the label space is partitioned
into a tree structure, we learn a 𝐾-way One-vs-All classifier [6, 34]
at each node of the tree. These classifiers are learned independently
by considering only the training samples that have at least one
positive label in the current node labels. We distinguish the leaf
nodes and non-leaf nodes in the following way: (i) for non-leaf
nodes, the classifier learns 𝐾 linear classifiers separately, each maps
to one of the 𝐾 children. During prediction, the output of each
classifier determines whether the test point should traverse down
the corresponding child. (ii) for leaf nodes, the classifier learns to
predict the actual labels on the node. The One-vs-All procedure
is shown as ONE-VS-ALL in Algorithm 1. Formally, at each node,
we consider the following optimization problem for learning linear
classifier for each of the 𝐾 child:

min
𝒘

𝑓 (𝒚,𝒘) := R (𝒘) +𝐶
𝑁∑︁
𝑖=1

ℓ
(
𝑦𝑖 ,𝒘

⊤𝒙𝑖
)
, (2)

where {𝒙𝑖 , 𝑦𝑖 }𝑁𝑖=1 are constructed training data for a particular child
node. For non-leaf nodes, 𝑦𝑖 = +1 iff at least one relevant label of
𝒙𝑖 is in the child node, otherwise −1. For leaf nodes, 𝑦𝑖 denotes
the true label of 𝒙𝑖 with respect to label 𝑙 𝑗 . Concretely, if squared
hinge loss, i.e., ℓ (𝑦,𝑦) = max (0, 1 − 𝑦 · 𝑦)2, and 𝐿2-regularization,
i.e., R(𝒘) := | |𝒘 | |22, are used, the objective of linear SVM becomes,

min
𝒘

𝑓 (𝒚,𝒘) := ∥𝒘 ∥2
2 +𝐶

𝑁∑︁
𝑖=1

max
(
0, 1 − 𝑦𝑖𝒘⊤𝒙𝑖

)2
. (3)

The above problem can be readily solved using off-the-shelf LIB-
LINEAR [5] which generally scales linearly with the number of
training samples.

3.3 Inference
With the tree structure and node classifiers learned in the above
manner, testing points are passed down from the root to leaf nodes.
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(a) Tree 𝑇𝑡−1 after 𝑡 − 1
iterations.
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𝒘̃𝑏

(b) Variant 1: A leaf node for emerging
label 𝑦5 is added as a child of an
internal node 𝑆𝑎 .

𝑆

𝑆𝑎

𝑆𝑐

𝑦1

𝒘𝑦1

𝑦2

𝒘𝑦2

𝒘𝑐

𝑆𝑑

𝑦5

𝒘𝑦5

𝒘𝑑

𝒘̃𝑎

𝑆𝑏

𝑦3

𝒘𝑦3

𝑦4

𝒘𝑦4

𝒘̃𝑏

(c) Variant 2: A re-partition of internal
node 𝑆𝑎 is conducted after inserting
emerging label 𝑦5.

Figure 2: Two variants of tree extension for an emerging new label 𝑦5. Nodes in gray indicate the modification of their node
classifiers. We use𝒘 and 𝒘̃ to denote the previous and modified classifier weights, respectively.

Algorithm 1 TSLL.TRAIN(𝑿 , 𝒀 ,L, 𝑽 , 𝐾, 𝑑𝑚𝑎𝑥 )
1: 𝑛 = 𝑛𝑒𝑤 NODE
2: 𝑛.L = [𝐿]
3: 𝑛𝑇 .𝒗 = 1

|L |
∑
𝑖∈L 𝑽𝑖

4: 𝒄1, . . . , 𝒄𝐾 = 𝐾-MEANS(L, 𝑽 , 𝐾 )
5: for 𝑖 = 1, . . . , 𝐾 do
6: 𝑐ℎ𝑖𝑙𝑑.L = 𝒄𝑖
7: 𝑐ℎ𝑖𝑙𝑑.𝒗 = 1

|𝒄𝑖 |
∑
𝑗 ∈𝒄𝑖 𝑽𝑗

8: 𝑛.𝐶ℎ = ∅
9: if 𝑑𝑚𝑎𝑥 > 0 then
10: 𝑛.𝑖𝑠𝐿𝑒𝑎𝑓 = FALSE
11: 𝑐ℎ𝑖𝑙𝑑 = TRAIN(𝒄𝑖 , 𝑽 , 𝐾, 𝑑𝑚𝑎𝑥 − 1)
12: 𝑛.𝐶ℎ = 𝑛.𝐶ℎ ∪ {𝑐ℎ𝑖𝑙𝑑}
13: else
14: 𝑛.𝑖𝑠𝐿𝑒𝑎𝑓 = TRUE
15: 𝑛.𝑾 = ONE-VS-ALL(𝑿 , 𝒀 , 𝑛.L)
16: end if
17: end for
18: return 𝑟

Typically, at each node, the testing point 𝒙 is evaluated by 𝐾 binary
classifiers corresponding to𝐾 child nodes. Let 𝑧𝑣 = I

(∑
𝑗 ∈𝒄𝑣 𝑦 𝑗 ≥ 1

)
denotes at least one relevant label of 𝒙 is in the node labels 𝒄𝑣 , pro-
vided that the true label 𝒚 of 𝒙 is observed. Then, it holds based on
the chain rule that for any node 𝑣 ∈ V𝑇 :

𝜂𝑣 (𝒙) = P (𝑧𝑣 = 1 | 𝒙) =
∏

𝑣′∈Path(𝑣)
𝜂

(
𝒙, 𝑣 ′

)
, (4)

where Path(𝑣) denotes the path from root to node 𝑣 and 𝜂 (𝒙, 𝑣) =
P

(
𝑧𝑣 = 1 | 𝑧pa(𝑣) = 1, 𝒙

)
for non-root nodes, where pa(𝑣) denotes

the parent node of 𝑣 , and 𝜂 (𝒙, 𝑣) = P (𝑧𝑣 = 1 | 𝒙) for the root. With-
out loss of generality, we have 𝜂 (𝒙, 𝑟𝑇 ) = P

(
𝑧𝑟𝑇 = 1 | 𝒙

)
= 1, that is,

𝒙 is relevant to at least one label in the root labels. To calculate Equa-
tion (4), P

(
𝑧𝑣 = 1 | 𝑧pa(𝑣) = 1, 𝒙

)
is estimated by node classifiers of

𝑣 . Notice that for leaf nodes we get the conditional probabilities of
labels, that is, 𝜂𝑙 𝑗 (𝒙) = P

(
𝑦 𝑗 = 1 | 𝒙

)
, ∀𝑙 𝑗 ∈ L𝑇 and 𝑗 ∈ [𝐿].

3.4 Tree Update
In this subsection, we describe the way of updating pre-trained tree,
which involves two parts, i.e., label insertion and node classifier
modification.

Label Insertion. While inserting a new label 𝒚𝑛𝑒𝑤 , we first
calculate its representation from observed positive samples, which
is hereby denoted as 𝒗𝑛𝑒𝑤 . Then𝒚𝑛𝑒𝑤 is traversed downwards start
from root of 𝑇 . The passing direction is decided by the similarity
between𝒚𝑛𝑒𝑤 and child nodes. In specific, the most proximate child
node 𝑗 is obtained by

𝑗 = arg max
𝑖∈[𝐾 ]

𝒗⊤
𝑖
𝒗𝑛𝑒𝑤

| |𝒗𝑛𝑒𝑤 | | · | |𝒗𝑖 | |
. (5)

We use cosine similarity as the proximity measure which is in
consistent with the label partitioning procedure while building the
tree. The label insertion procedure is done recursively until a leaf
node is reached. To take case of newly arrived labels, we update
node labels by inserting the new label to nodes which it passes
by and node representations are updated accordingly. To do this
on-the-fly, sum of representations of labels is maintained and the
summation is updated by each newly arrived label. Note that it is
not desired to have too many labels in a single leaf node because
the time complexity of training a 𝐾-way One-Vs-All classifier is
linear in the number of labels. To this end, the leaf node is further
partitioned when the node label size meets a threshold.We illustrate
two tree variants in Figure 2.

Node Classifier Modification.With emerging new labels in-
serted in proximate tree nodes, it is desired to update the node clas-
sifiers using collected data related to new labels. However, training
classifiers for each node from scratch is computational prohibitive.
We update node classifiers using previous trained ones as initializa-
tion. In particular, for node 𝑣 , we use each of its 𝐾 classifier𝒘 for
initialization as 𝒘̃ = 𝒘 and update 𝒘̃ using newly arrived samples
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𝒘
via gradient-based optimization methods. After that, 𝒘 is substi-
tuted by ˜ for future use. For the newly inserted label, a binary 
classifier is desired for the purposed of inference.

Algorithm 2 TSLL.PREDICT(𝑟𝑇 , 𝒙)
1: 𝑄 = ∅
2: 𝑄.𝑎𝑑𝑑 ((𝑟𝑇 , 1))
3: 𝒚̂ = 0
4: while 𝑄 ≠ ∅ do
5: (𝑣, 𝜂𝑣 (𝒙)) = 𝑄.𝑝𝑜𝑝 ()
6: if 𝑣 .𝑖𝑠𝐿𝑒𝑎𝑓 then
7: 𝑦𝑣 = 𝜂𝑣 (𝒙)
8: else
9: for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑣 .𝐶ℎ do
10: 𝜂𝑐ℎ𝑖𝑙𝑑 (𝒙) = 𝑔(𝑣 .𝑾⊤

𝑐ℎ𝑖𝑙𝑑
𝒙)

11: 𝑄.𝑎𝑑𝑑 ((𝑐ℎ𝑖𝑙𝑑, 𝜂𝑣 (𝒙) × 𝜂𝑐ℎ𝑖𝑙𝑑 (𝒙)))
12: end for
13: end if
14: end while
15: return 𝒚̂

Algorithm 3 TSLL.UPDATE(𝑛,𝑦𝑛𝑒𝑤 , 𝒗𝑛𝑒𝑤 ,A)

1: if 𝑛.𝑖𝑠𝐿𝑒𝑎𝑓 then
2: 𝑛.L = 𝑛.L ∪ {𝑦𝑛𝑒𝑤}
3: 𝒘𝑛𝑒𝑤 = trainBinaryClassifier(𝑦𝑛𝑒𝑤 )
4: 𝑛.𝑾 = 𝑛.𝑾 ∪ {𝒘𝑛𝑒𝑤 }
5: else
6: 𝑐𝑜𝑠𝑖𝑚 = 0
7: 𝑛𝑒𝑥𝑡𝐶ℎ = NONE
8: for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑛.𝐶ℎ do
9: 𝑐𝑜𝑠𝑖𝑚′ = 𝑐ℎ𝑖𝑙𝑑.𝒗⊤𝒗𝑛𝑒𝑤

| |𝑐ℎ𝑖𝑙𝑑.𝒗 | | · | |𝒗𝑛𝑒𝑤 | |
10: if 𝑐𝑜𝑠𝑖𝑚′ ≥ 𝑐𝑜𝑠𝑖𝑚 then
11: 𝑐𝑜𝑠𝑖𝑚 = 𝑐𝑜𝑠𝑖𝑚′

12: 𝑛𝑒𝑥𝑡𝐶ℎ = 𝑐ℎ𝑖𝑙𝑑

13: end if
14: end for
15: for𝒘 ∈ 𝑛.𝑾 do
16: Initialize 𝒘̃ = 𝑛.𝒘
17: Solve subproblem by A using 𝑦𝑛𝑒𝑤 and 𝒘̃
18: Set 𝑛.𝒘 = 𝒘̃
19: end for
20: UPDATE(𝑛𝑒𝑥𝑡𝐶ℎ,𝑦𝑛𝑒𝑤 , 𝒗𝑛𝑒𝑤 ,A)
21: end if

4 THEORETICAL ANALYSIS
In this section, we first show that the node classifier modification
procedure can be done effectively with an iteration complexity
bound. Then, we establish an estimation error bound, which guar-
antees the learning performance of the tree. Finally, we analyze the
total time and memory complexities of the proposed approach.

4.1 Analysis on the Iteration Complexity of
Node Classifier Modification

With a little bit of notation abuse, Let𝒚 be meta-label vector used to
train𝒘 and 𝒚̃ be the modified label vector after inserting new labels.
We further denote the discrepancy between 𝒚 and 𝒚̃ as ℓ𝐻 (𝒚, 𝒚̃) =∑𝑁
𝑖=1 I(𝒚𝑖 ≠ 𝒚̃𝑖 ), and derive an upper bound for the classifier update

procedure for tree node as follows.

Lemma 1. Assume ℓ (·) in Problem (2) is 𝛼-Lipschitz and the op-
timal solution before and after incorporating emerging labels be𝒘∗

and 𝒘̃∗ respectively, which satisfy | |𝒘∗ | |2 ≤ 𝐵 and | |𝒘̃∗ | |2 ≤ 𝐵. Then

𝑓
(
𝒚̃,𝒘∗) − 𝑓 (

𝒚̃, 𝒘̃∗) ≤ 4𝐶𝛼𝐵
𝑁∑︁
𝑖=1
I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1)

To go a step further based on Lemma 1, we develop the following
theorem to show that we could significantly reduce runtime upper
bound with the initialization.

Theorem 1. Assume ℓ (·) is 𝛼-Lipschitz and we have a solver A
with sublinear convergence rate that can solve each subproblem 𝑘

with 𝜖 precision in 𝑇𝑘 = 𝑂

(
𝑓

(
𝒚̃𝑘 ,𝒘

∗
𝑘

)
−𝑓

(
𝒚̃𝑘 ,𝒘̃

∗
𝑘

)
𝜖𝑝

)
iterations. We can

bound the total number of iterations of the node classifier modification

procedure by 𝑇total =
∑𝐾
𝑘=1𝑇𝑘 = 𝑂

(∑𝐾
𝑘=1 ℓ𝐻 (𝒚̃𝑘 ,𝒚𝑘 )

𝜖𝑝

)
= 𝑂

(
Δ𝒚𝑘 𝒚̃𝑘
𝜖𝑝

)
,

where Δ𝒚𝒚̃ =
∑𝑁
𝑖=1 I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1). However, under a naive

zeros initialization with 𝒘̃∗
𝑘
= 0, the upper bound is𝑇total =

∑𝐾
𝑘=1𝑇𝑘 =

𝑂

(
𝑁𝐾
𝜖𝑝

)
.

4.2 𝐿1 Estimation Error Bound
In addition to the effectiveness of node classifier modification, we
are interested in multi-label classifiers that estimate conditional
probabilities of labels, 𝜂 𝑗 = P(𝑦 𝑗 = 1 | 𝒙), 𝑗 ∈ [𝑚], as accu-
rately as possible, that is, with possibly small 𝐿1-estimation error,��𝜂 𝑗 (𝒙) − 𝜂 𝑗 (𝒙)��. According to [8], we show that the weighted ex-
pected 𝐿1 estimation error averaged over all labels can be bounded
by a weighted sum of expected 𝐿1 error of node classifiers divided
by the number of labels.

Theorem 2 (Estimation Error Bound [8]). For any tree 𝑇 ,
distribution P(𝒙,𝒚), a set of emerging new label {𝒙𝑖 ,𝒚𝑛𝑒𝑤𝑖

}𝑚
𝑖=1, the

expected 𝐿1 estimation error bound holds:

1
𝑚

𝑚∑︁
𝑗=1
E𝒙∼P(𝒙)

[��𝜂 𝑗 (𝒙) − 𝜂 𝑗 (𝒙)��]
≤ 1
𝑚

∑︁
𝑣∈V

|L𝑣 | P(𝑧pa(𝑣) = 1)E𝒙∼P(𝒙 |𝑧pa(𝑣)=1)
[��𝜂 (

𝒙, 𝑣 ′
)
− 𝜂

(
𝒙, 𝑣 ′

) ��]
where for the root node P(𝑧𝑝𝑎 (𝑟𝑇 ) = 1) = 1.

4.3 Time and Memory Complexity Analysis
In this subsection, we provide bounds for the time and memory
complexities of Pslt.

Lemma 2. Under the case specified in Theorem 1, for an emerging
new label set {𝒚𝑛𝑒𝑤

𝑖
}𝑚
𝑖=1 and a 𝑘-ary tree𝑇 , the time complexity of the

tree update is bounded by𝑂
(
𝑚

(
𝑑𝐾𝐷̂ + 𝑑𝐾 Δ𝒚𝒚̃

𝜖𝑝
+ 𝑁𝐷̂

)
+ |L𝑇 |𝜏𝑡𝐾𝐷̂

)
.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1805



Table 2: Statistics of datasets.

Dataset Domain #Train #Test #Feature #Label

MirFlickr image 10,417 2,083 1,000 38
Delicious web 12,920 3,185 500 983
EURlex text 15,479 3,869 5,000 3,993
Wiki10 text 14,146 6,616 101,938 30,938

Proof. The tree update time complexity of a new label 𝒚𝑛𝑒𝑤
𝑖

is
the sum of the complexities of the label insertion, existing node
classifier fine-tuning, and the training of its classifier. On label
insertion, 𝒚𝑛𝑒𝑤

𝑖
traverses from the root to a leaf node with at most

𝑑 steps where 𝑑 is the depth of the tree 𝑇 . At each step, cosine
similarity between the representation of 𝒚𝑛𝑒𝑤

𝑖
and tree node is

calculated with time complexity of𝑂 (𝑑𝐾𝐷̂) where 𝐷̂ is the number
of non-zero features of node representations on average. The second
part involves fine-tuning node classifier along the path. It is obvious
to see that at most 𝑑𝐾 node classifiers need to be updated. As stated
in Theorem 1, a good estimation of best parameters can be obtained
in Δ𝒚𝒚̃ =

∑𝑁
𝑖=1 I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1) iterations, where Δ𝒚𝒚̃ denote

the averaged discrepancy between 𝒚 and 𝒚̃ in the path. Hence the
time complexity reaches 𝑂 (𝑑𝐾 Δ𝒚𝒚̃

𝜖𝑝
). Additionally, to train a new

classifier for𝒚𝑛𝑒𝑤
𝑖

,𝑂 (𝑁𝐷̂) is afford for a linear classifier. Lastly, we
consider the time complexity when leaf node partition is triggered
during label insertion. In the worst case, all leaf nodes with size |L𝑇 |
meet the set node labels threshold 𝜏 , which leads to time complexity
𝑂

(
|L𝑇 |𝜏𝑡𝐾𝐷̂

)
. Overall, the total time complexity of tree update

procedure gives 𝑂
(
𝑚

(
𝑑𝐾𝐷̂ + 𝑑𝐾 Δ𝒚𝒚̃

𝜖𝑝
+ 𝑁𝐷̂

)
+ |L𝑇 |𝜏𝑡𝐾𝐷̂

)
. □

Proposition 1. The memory complexity of a 𝐾-ary tree 𝑇 is

bounded by 𝑂𝑂
(
(𝐾 + 1) ( |V𝑇 | − |L𝑇 |) 𝐷̂ + |L𝑇 |𝐷̂

)
where |V𝑇 | is

the total number of nodes and |L𝑇 | is the number of leaves in 𝑇 .

Proof. Each internal node of 𝑇 stores the mean vector of its
associated label representations and 𝐾 classifiers corresponding to
𝐾 child nodes. Moreover, each leaf node of𝑇 stores the classifiers of
corresponding labels. Firstly, let |V𝑇 | − |L𝑇 | be the number of inter-
nal nodes of𝑇 . Consequently, it takes𝑂

(
( |V𝑇 | − |L𝑇 |) 𝐷̂

)
to store

the mean representations and𝑂
(
𝐾 ( |V𝑇 | − |L𝑇 |) 𝐷̂

)
to store node

classifiers. In addition, as the number of leafs equals |L𝑇 |, it takes
𝑂

(
|L𝑇 |𝐷̂

)
to store label classifiers on average. In total, the space

complexity of 𝑇 is given as 𝑂
(
(𝐾 + 1) ( |V𝑇 | − |L𝑇 |) 𝐷̂ + |L𝑇 |𝐷̂

)
.
□

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance of our proposed approach ( Pslt) and compare with
eleven baselines using various multi-label learning metrics.

Datasets. We perform experiments on four multi-label datasets
which are publicly available from the XML repository. Detailed

statistics are summarized in Table 2, where 𝐿 denotes average labels
per sample and 𝐷̂ denotes average non-zero features per sample.1

Baselines. In our experiments, we compare the proposed meth-
ods with tenwell-established or state-of-the-art multi-label learning
algorithms:2

• Binary Relevance (BR) [34] is a set of𝑚 independent logistic
regression classifiers.

• Classifier chains (CC) [19] transforms the multi-label learn-
ing problem into a chain of binary classification problems to
incorporate label dependencies.

• RAKEL [24] considers a set of 𝑘 labels in a multi-label train-
ing set as a new single-label classification task.

• ML-kNN [36] identifies each unseen instance’s 𝑘 nearest
neighbors in the training set and utilizes the maximum a
posteriori principle to determine the label set.

• SLEEC [2] is a well-known embedding-based method, which
learns the label embedding by preserving the pairwise dis-
tances between a few nearest label neighbors.

• SML [11] is the state-of-the-art embedding-based method,
which further improves the convergence rate of SLEEC.

• SLL [33] is a streaming label learningmethod, which assumes
linear relationships between past labels and new labels.

• Deep-ML [35] introduces a shallow neural network as the
multi-label model trained to minimize a ranking loss. Here,
we deepen the network to boost performance.

• DNN-BCE [16] makes use of ReLU, AdaGrad, Dropout, and
other deep learning techniques to train a DNN-based model.

• C2AE [31] is the state-of-the-art deep learning method for
multi-label classification, which integrates the DNN archi-
tectures of canonical correlation analysis and auto-encoder
to learn the deep latent space.

• DSLL [25] is the state-of-the-art deep learning method for
streaming multi-label classification, which integrates the
knowledge distillation technique.

Evaluation Metrics. The predictive accuracy of multi-label
learning can be evaluated in different ways. Bipartition-based met-
rics assess amodel’s ability to predict sets of labels, whereas ranking-
based metrics evaluate MLL methods, which instead produce rank-
ings of labels. Therefore, our proposed method was evaluated in
terms of both bipartition-based metrics, i.e., macro-F1, micros-F1,
and instance-F1, and ranking-based metrics, i.e., Precision@𝑘 , cov-
erage, ranking loss, average precision (AP), macro-AUC, and micro-
AUC [30]. The details of these metrics can be referred in Appendix 6.

6 EVALUATION METRICS
Settings. To handle newly arrived labels, we investigated the per-
formance of models with different batch sizes following previous
settings [33]. In particular, for each dataset, we selected randomly
50% (e.g., 483 on Delicious) labels as past labels and constructed a
classifier for the past labels. Then, the remaining labels were treated
as new labels emerging in the mini-batch manner. For comparison,

1Datasets are available at the Extreme Classification Repository and
https://github.com/chihkuanyeh/C2AE
2The codes of baseline methods are provided by the authors or scikit-multilearn [23]
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Table 3: Ranking performance of each comparison method for learning new labels with different batch size (denoted by #label)
by treating 50% labels as past labels. ↓(↑) means the smaller (larger) the value, the better the performance.

Datasets #label micro-AUC ↑

BR CC RAKEL ML-𝑘NN SLEEC SML SLL Deep-ML DNN-BCE C2AE DSLL Pslt

MirFlickr

3 0.6589 0.5049 0.6572 0.6296 0.5476 0.6123 0.7291 0.7448 0.7592 0.8051 0.8122 0.9070
6 0.7100 0.5045 0.7187 0.6624 0.6400 0.6959 0.8388 0.8476 0.8606 0.8628 0.8713 0.8909
9 0.7311 0.5071 0.7170 0.6754 0.7001 0.7331 0.8671 0.8692 0.8778 0.8890 0.8972 0.9174
12 0.7151 0.5057 0.7223 0.6692 0.6862 0.7116 0.8630 0.8600 0.8763 0.8807 0.8886 0.8974
15 0.7157 0.5051 0.7253 0.6611 0.6805 0.7015 0.8624 0.8584 0.8787 0.8749 0.8873 0.8900

Delicious

100 0.7133 0.5658 0.6382 0.5707 0.7813 0.8274 0.7981 0.8776 0.8615 0.8545 0.8820 0.8889
200 0.7080 0.5606 0.6400 0.5692 0.7815 0.8258 0.7956 0.8626 0.8677 0.8321 0.8888 0.8965
300 0.7177 0.5719 0.6493 0.5925 0.7941 0.8387 0.8068 0.8792 0.8655 0.8777 0.9037 0.9014
400 0.7159 0.5705 0.6515 0.5916 0.7964 0.8141 0.8059 0.8736 0.8909 0.8656 0.9048 0.8968
500 0.7144 0.5679 0.6445 0.5868 0.7926 0.8124 0.8030 0.8762 0.8697 0.8657 0.9011 0.8934

EURlex

200 0.6936 0.7308 0.7015 0.6255 0.8591 0.8216 0.8813 0.8130 0.8201 0.8561 0.8884 0.9731
400 0.6738 0.7294 0.6821 0.6228 0.8481 0.8611 0.8905 0.8257 0.8423 0.8633 0.8928 0.9760
600 0.6769 0.7321 0.6743 0.6256 0.8547 0.8735 0.8995 0.8218 0.8472 0.8414 0.9001 0.9758
800 0.6825 0.7349 0.6575 0.6283 0.8548 0.8775 0.9016 0.8289 0.8491 0.8637 0.9034 0.9769
1000 0.6733 0.7361 0.6708 0.6258 0.8406 0.8691 0.9115 0.8246 0.8431 0.8456 0.9106 0.9773

Wiki10

1k 0.6293 0.6535 0.6403 0.5694 0.8092 0.8113 0.8345 0.6978 0.7830 0.8274 0.8406 0.9321
2k 0.5928 0.6244 0.6029 0.5510 0.7505 0.7557 0.7876 0.6545 0.6968 0.7937 0.8013 0.9132
3k 0.5703 0.6078 0.5815 0.5405 0.7567 0.7192 0.7417 0.6505 0.7197 0.7939 0.8023 0.9072
4k 0.5567 0.6008 0.5687 0.5364 0.7198 0.7105 0.7366 0.6556 0.7307 0.7944 0.7996 0.8989
5k 0.5502 0.5984 0.5651 0.5345 0.7087 0.7194 0.7350 0.6463 0.7228 0.7824 0.7865 0.8954

Datasets #label Ranking loss ↓

BR CC RAKEL ML-𝑘NN SLEEC SML SLL Deep-ML DNN-BCE C2AE DSLL Pslt

MirFlickr

3 0.3032 0.5336 0.2842 0.3157 0.2393 0.2253 0.1179 0.1051 0.1025 0.0881 0.0809 0.0228
6 0.2868 0.5786 0.2735 0.3337 0.2488 0.2189 0.0586 0.0571 0.0565 0.0569 0.0562 0.0655
9 0.3366 0.6854 0.3194 0.3981 0.2186 0.2386 0.0672 0.0663 0.0609 0.0580 0.0570 0.0405
12 0.4011 0.7816 0.3784 0.4690 0.2692 0.2528 0.0877 0.0865 0.0857 0.0772 0.0750 0.0626
15 0.4209 0.7966 0.3873 0.4929 0.2857 0.2710 0.0899 0.0909 0.0837 0.0858 0.0812 0.0847

Delicious

100 0.4135 0.6551 0.4550 0.6521 0.2333 0.2235 0.1438 0.0916 0.0890 0.0929 0.0830 0.0923
200 0.5115 0.8147 0.5603 0.7988 0.2712 0.2523 0.1771 0.1168 0.1217 0.1224 0.1140 0.1013
300 0.5248 0.8303 0.5710 0.7918 0.2759 0.2594 0.1758 0.1093 0.1071 0.1073 0.1031 0.1003
400 0.5311 0.8360 0.5711 0.7978 0.2661 0.2608 0.1778 0.1102 0.1079 0.1050 0.1082 0.1058
500 0.5383 0.8435 0.5841 0.8096 0.2784 0.2679 0.1822 0.1109 0.1154 0.1094 0.1067 0.1096

EURlex

200 0.1473 0.1281 0.1403 0.1787 0.0654 0.0743 0.0198 0.0879 0.0337 0.0205 0.0138 0.0062
400 0.2493 0.2048 0.2386 0.2880 0.1101 0.0901 0.0299 0.1062 0.0380 0.0274 0.0226 0.0099
600 0.3468 0.2898 0.3494 0.4041 0.1552 0.1325 0.0404 0.1848 0.0562 0.0531 0.0313 0.0134
800 0.4072 0.3400 0.4384 0.4780 0.1871 0.1618 0.0483 0.1530 0.0609 0.0495 0.0330 0.0158
1000 0.4861 0.3960 0.4939 0.5619 0.2375 0.2085 0.0585 0.2326 0.0754 0.0721 0.0370 0.0171

Wiki10

1k 0.4746 0.4375 0.4213 0.5520 0.0918 0.1082 0.0867 0.2259 0.1011 0.0483 0.0421 0.0395
2k 0.6205 0.5642 0.5705 0.6818 0.2385 0.2052 0.1259 0.3373 0.2225 0.0648 0.0606 0.0614
3k 0.7324 0.6577 0.6823 0.7766 0.3306 0.2573 0.1897 0.3727 0.1911 0.0715 0.0642 0.0746
4k 0.8167 0.7246 0.7569 0.8424 0.4037 0.3029 0.2123 0.3899 0.1831 0.0751 0.0687 0.0901
5k 0.8538 0.7495 0.7941 0.8698 0.4313 0.4368 0.2234 0.4525 0.1972 0.0833 0.0816 0.1011

MLL methods can be extended to handle these new labels through
independent modeling.

6.1 Results with Emerging New Labels
In this part, we evaluate Pslt and comparison methods on newly
arrived labels with different batch sizes. For each method, it either
learns a classifier on new labels separately or by incorporating
information from previously learnedmodel. After that, performance
on new labels of each model is evaluated using test data.

Ranking performance evaluation. First, we evaluate Pslt and
comparisonmethodswith respect to the ranking-basedmetrics. Due
to the limited space, we report results for two measures, i.e., micro-
AUC and ranking loss, in Table 3. In addition, Precision@𝑘 , AP and,
coverage are reported in Table C. Regarding micro-AUC, it can be
seen that Pslt achieves the best performance in 17 out of 20 cases.
In the other three cases, Pslt achieves the second best results with

a minor gap between DSLL. For ranking loss, Pslt outperforms
the others in 11 cases. Note that conventional multi-label learning
methods fail to leverage the knowledge from past labels and the
learned classifiers. Although DSLL is able to learn high-order rep-
resentations using DNNs and takes advantage of the relationship
between past labels and new labels, the hidden structure between
labels is not well-explored. In the opposite, Pslt not only leverages
the correlations among labels but also explores the latent label
structure. The results justify the superiority of our method.

Classification performance evaluation. Second, we compare
the performance of eachmethod evaluated by bipartition-basedmet-
rics, where the prediction of each label belongs to {0, 1} by thresh-
olding rather than a continuous values. Figure 3 demonstrates the
results with respect to instance-F1, micro-F1, and macro-F1 with dif-
ferent batch size, respectively. Results for several other bipartition-
based metrics, e.g., hamming loss, macro-F1, and instance-F1, can
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Table 4: Comparison of modeling new labels with different batch sizes by considering 50% labels as past labels. #label denotes
the number of new labels. ↓(↑) means the smaller (larger) the value is, the performance will be the better.

Datasets #label Coverage ↓
BR CC RAKEL ML-𝑘NN SLEEC SML SLL Deep-ML DNN-BCE C2AE DSLL Pslt

MirFlickr

3 0.4530 0.5721 0.4468 0.4570 0.4117 0.3913 0.3568 0.3435 0.3442 0.3334 0.3236 0.2181
6 0.3983 0.5815 0.3916 0.4249 0.3602 0.3472 0.2242 0.2247 0.2216 0.2213 0.2132 0.2060
9 0.4611 0.6909 0.4552 0.5212 0.3651 0.3256 0.2321 0.2342 0.2286 0.2267 0.2153 0.1391
12 0.5654 0.7882 0.5639 0.6372 0.4714 0.4246 0.2836 0.2859 0.2751 0.2732 0.2601 0.1659
15 0.5817 0.8029 0.5733 0.6593 0.4954 0.4592 0.2862 0.2916 0.2809 0.2781 0.2663 0.2139

Delicious

100 0.4587 0.6937 0.5420 0.6992 0.3084 0.2515 0.2208 0.1510 0.1454 0.1499 0.1302 0.1588
200 0.6147 0.8873 0.7399 0.8854 0.4399 0.3693 0.3408 0.2461 0.2281 0.2383 0.2210 0.2388
300 0.6937 0.9518 0.8500 0.9486 0.5460 0.4366 0.4529 0.3167 0.2854 0.2934 0.2512 0.2910
400 0.738 0.9679 0.8871 0.9673 0.6044 0.5074 0.5147 0.3669 0.3277 0.3266 0.3245 0.3394
500 0.7716 0.9782 0.9232 0.9776 0.6626 0.4664 0.5708 0.3868 0.4150 0.3590 0.3189 0.3735

EURlex

200 0.1517 0.1356 0.1461 0.1823 0.0729 0.0813 0.0223 0.0932 0.0374 0.0234 0.0160 0.0063
400 0.2588 0.2211 0.2529 0.2978 0.1250 0.1023 0.0360 0.1176 0.0444 0.0325 0.0270 0.0101
600 0.3697 0.3242 0.3793 0.4280 0.1867 0.1439 0.0534 0.2127 0.0709 0.0669 0.0401 0.0144
800 0.4457 0.3950 0.4839 0.5200 0.2317 0.1817 0.0686 0.1874 0.0812 0.0670 0.0461 0.0174
1000 0.5408 0.4801 0.5679 0.6228 0.3102 0.2190 0.0988 0.3000 0.1076 0.1053 0.0948 0.0211

Wiki10

1k 0.5116 0.4810 0.4577 0.5757 0.3551 0.2942 0.1222 0.2812 0.1413 0.0713 0.0635 0.0579
2k 0.6751 0.6366 0.6251 0.7168 0.5469 0.3524 0.1954 0.4428 0.3217 0.1107 0.1037 0.1016
3k 0.7963 0.7573 0.7461 0.8188 0.6819 0.4835 0.3184 0.5405 0.3322 0.1441 0.1317 0.1435
4k 0.8838 0.8477 0.8339 0.8922 0.7937 0.5126 0.3933 0.6152 0.3726 0.1795 0.1674 0.1986
5k 0.9187 0.8868 0.8798 0.9226 0.8463 0.6424 0.4423 0.7134 0.4236 0.2083 0.2125 0.2450

Datasets #label Precision@𝑘 (𝑘 = 1) ↑
BR CC RAKEL ML-𝑘NN SLEEC SML SLL Deep-ML DNN-BCE C2AE DSLL Pslt

MirFlickr

3 0.3120 0.1723 0.3361 0.3269 0.3255 0.3574 0.4383 0.4580 0.4508 0.4642 0.4729 0.4445
6 0.1906 0.0134 0.2189 0.2813 0.2967 0.3353 0.4402 0.4508 0.4575 0.4558 0.4614 0.4920
9 0.3908 0.3341 0.3937 0.4249 0.3658 0.3589 0.5031 0.5122 0.5305 0.5386 0.5511 0.4387
12 0.2780 0.1263 0.3068 0.3980 0.3845 0.4053 0.5842 0.5924 0.5972 0.6028 0.6035 0.4891
15 0.2708 0.1440 0.2765 0.3826 0.4369 0.3946 0.5785 0.5655 0.6001 0.6015 0.6020 0.5650

Delicious

100 0.0776 0.1783 0.1852 0.1805 0.2914 0.2962 0.2967 0.3052 0.2659 0.3091 0.3099 0.3786
200 0.0553 0.1991 0.2251 0.2232 0.3694 0.3697 0.3704 0.3706 0.3651 0.3623 0.3712 0.5067
300 0.0333 0.2791 0.2474 0.3108 0.4672 0.4798 0.4893 0.4386 0.4650 0.4898 0.4904 0.5676
400 0.0936 0.3463 0.2424 0.3425 0.5102 0.5382 0.5338 0.5268 0.5394 0.5130 0.5501 0.5799
500 0.0424 0.3312 0.2041 0.3372 0.5171 0.5216 0.5504 0.5140 0.5024 0.5278 0.5498 0.6018

EURlex

200 0.0501 0.1124 0.1042 0.0636 0.1612 0.1601 0.1548 0.1357 0.1571 0.1641 0.1696 0.1743
400 0.0649 0.1755 0.1548 0.1031 0.2357 0.2474 0.2352 0.2132 0.2409 0.2516 0.2525 0.3041
600 0.0853 0.2512 0.2132 0.1590 0.3225 0.3135 0.3138 0.2750 0.3386 0.3401 0.3497 0.4029
800 0.0943 0.3037 0.2303 0.1970 0.3711 0.3958 0.3657 0.3479 0.3830 0.3983 0.4117 0.4652
1000 0.1016 0.3546 0.2985 0.2406 0.4129 0.4363 0.4223 0.3874 0.4611 0.4732 0.4854 0.5315

Wiki10

1k 0.2157 0.2269 0.2341 0.1196 0.3776 0.3853 0.4132 0.3094 0.3758 0.3626 0.4143 0.4384
2k 0.2142 0.2304 0.2334 0.1261 0.3478 0.3909 0.3801 0.3171 0.3284 0.3927 0.4113 0.4472
3k 0.2133 0.2491 0.2431 0.1356 0.3965 0.4087 0.4123 0.3253 0.3623 0.4076 0.4335 0.4561
4k 0.2145 0.2573 0.2541 0.1548 0.4149 0.4252 0.4034 0.3464 0.3514 0.4265 0.4504 0.4777
5k 0.2267 0.2922 0.2766 0.1750 0.4173 0.4184 0.4063 0.3581 0.3614 0.4388 0.4503 0.4981

be found in the supplementary materials. It can be observed that
Pslt achieves the best performance in most cases. Especially, Pslt
outperforms others with a large margin on Delicious dataset. How-
ever, traditional multi-label learning approaches, such as BR and
ML-𝑘NN, perform poorly on datasets with a relatively large number
of labels because interrelationships among labels are not effectively
explored in their methods.

7 CONCLUSION
We study a novel problem setting called streaming multi-label learn-
ing, in which most extant multi-label learning approaches cannot
directly applied. To solve this problem, we propose a new learning
framework based on the probabilistic label tree. The benefits are

mainly in twofolds. First, it can naturally incorporate new labels
by taking advantage of label correlations between past and new
labels. Second, the modification of node classifiers is efficient and
we further theoretically derive an estimation error bound, which
guarantees the learning performance of the proposal. Experiments
in comparison with eleven baselines on four benchmark datasets
verify the effectiveness of our method.
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Figure 3: Performance comparison by considering 50% labels
as past labels.𝑚 indicates the number of new labels.
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Appendices

A PROOF OF LEMMA 1
Lemma 1. Assume ℓ (·) in Problem (2) is 𝛼-Lipschitz and the op-

timal solution before and after incorporating emerging labels be 𝒘∗ 

and 𝒘̃ ∗ respectively, which satisfy | |𝒘∗ | |2 ≤ 𝐵 and | |𝒘̃ ∗ | |2 ≤ 𝐵. Then

𝑓
(
𝒚̃,𝒘∗) − 𝑓 (

𝒚̃, 𝒘̃∗) ≤ 4𝐶𝛼𝐵
𝑁∑︁
𝑖=1
I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1) (6)

Proof. We can rewrite the LHS of Inequation (6) as

𝑓
(
𝒚̃,𝒘∗) − 𝑓 (

𝒚̃, 𝒘̃∗) = 𝑓 (
𝒚̃,𝒘∗) − 𝑓 (

𝒚,𝒘∗)
+ 𝑓

(
𝒚,𝒘∗) − 𝑓 (

𝒚̃,𝒘∗)
+ 𝑓

(
𝒚̃,𝒘∗) − 𝑓 (

𝒚̃, 𝒘̃∗) (7)

Note that the second term in Equation (7) is less than 0 because𝒘∗

minimizes the objective in Problem (2) with respect to 𝒚. We first
derive an upper bound for the first term and the bound for the last
term can be similarly achieved.

𝑓
(
𝒚̃,𝒘∗) − 𝑓 (

𝒚,𝒘∗) = R
(
𝒘∗) − R

(
𝒘∗)

+𝐶
𝑁∑︁
𝑖=1

(
ℓ
(
𝑦̃𝑖𝒙

⊤
𝑖 𝒘

∗) − ℓ (
𝑦𝑖𝒙

⊤
𝑖 𝒘

∗) )
≤ 𝐶

𝑁∑︁
𝑖=1

��ℓ (
𝑦̃𝑖𝒙

⊤
𝑖 𝒘

∗) − ℓ (
𝑦𝑖𝒙

⊤
𝑖 𝒘

∗) ��
= 𝐶

𝑁∑︁
𝑖=1
I (𝑦𝑖 ≠ 𝑦̃𝑖 )

��ℓ (
𝒙⊤
𝑖 𝒘

∗) − ℓ (
−𝒙⊤

𝑖 𝒘
∗) ��

≤ 𝐶
𝑁∑︁
𝑖=1
I (𝑦𝑖 ≠ 𝑦̃𝑖 ) 𝛼

(
2
��𝒙⊤
𝑖 𝒘

∗��)
≤ 2𝐶

𝑁∑︁
𝑖=1
I (𝑦𝑖 ≠ 𝑦̃𝑖 ) 𝛼𝐵

= 2𝐶𝛼𝐵
𝑁∑︁
𝑖=1
I(𝑦̃𝑖 = 1) ∧ I(𝑦𝑖 = −1)

The first inequality uses the fact 𝑎 − 𝑏 ≤ |𝑎 − 𝑏 | and the second
inequality uses the definition that ℓ (·) is 𝛼-Lipschitz. The third
inequality is since |𝒙⊤

𝑖
𝒘∗ | ≤ | |𝒙𝑖 | |2 · | |𝒘∗ | |2 and the assumption

| |𝒘∗
2 ≤ 𝐵. By considering that only additional positive samples

would be appended to𝒚, we have ℓ𝐻 (𝒚, 𝒚̃) = I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1).
Lastly, we derive the same result for the third term in Equation (7)
and complete the proof. □

B PROOF OF THEOREM 1
Theorem 1. Assume ℓ (·) is 𝛼-Lipschitz and we have a solver A

with sublinear convergence rate that can solve each subproblem 𝑘

with 𝜖 precision in 𝑇𝑘 = 𝑂

(
𝑓

(
𝒚̃𝑘 ,𝒘

∗
𝑘

)
−𝑓

(
𝒚̃𝑘 ,𝒘̃

∗
𝑘

)
𝜖𝑝

)
iterations. We can

bound the total number of iterations of the node classifier modification

procedure by 𝑇total =
∑𝐾
𝑘=1𝑇𝑘 = 𝑂

(∑𝐾
𝑘=1 ℓ𝐻 (𝒚̃𝑘 ,𝒚𝑘 )

𝜖𝑝

)
= 𝑂

(
Δ𝒚𝑘 𝒚̃𝑘
𝜖𝑝

)
,

where Δ𝒚𝒚̃ =
∑𝑁
𝑖=1 I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1). However, under a naive

zeros initialization with 𝒘̃∗
𝑘
= 0, the upper bound is𝑇total =

∑𝐾
𝑘=1𝑇𝑘 =

𝑂

(
𝑁𝐾
𝜖𝑝

)
.

Proof. According to Lemma 1, we have

𝑇total =
𝐾∑︁
𝑘=1

𝑇𝑘 = 𝑂
©­­«
∑𝐾
𝑘=1

(
𝑓

(
𝒚̃𝑘 ,𝒘

∗
𝑘

)
− 𝑓

(
𝒚̃𝑘 ,𝒘

∗
𝑘

))
𝜖𝑝

ª®®¬
= 𝑂

(∑𝐾
𝑘=1 4ℓ𝐻 (𝒚̃𝑘 ,𝒚𝑘 )𝐶𝛼𝐵

𝜖𝑝

)
= 𝑂

(∑𝑁
𝑖=1 I(𝑌̃𝑘,𝑖 = 1) ∧ I(𝑌𝑘,𝑖 = −1)

𝜖𝑝

)
By denoting Δ𝒚𝒚̃ =

∑𝑁
𝑖=1 I(𝑦𝑖 = 1) ∧ I(𝑦𝑖 = −1), we complete our

proof for the first iteration complexity. To prove the bound for naive
zeros initialization, recall that 𝑓 (𝒚̃, 0) − 𝑓 (𝒚̃, 𝒘̃∗) ≤ 4ℓ𝐻 (𝒚, 𝒚̃)𝐶𝛼𝐵
which is upper bounded by ≤ 𝐶𝑁ℓ (𝒚̃, 0). Since 𝐶 and ℓ (𝒚̃, 0) are
typical far less than 𝑁 in multi-label learning, the best upper bound
for 𝑓 (𝒚̃, 0) − 𝑓 (𝒚̃, 𝒘̃∗) is 𝑂 (𝑁 ). Therefore, combining the bound
for 𝑇𝑘 , we have 𝑇total =

∑𝐾
𝑘=1𝑇𝑘 = 𝑂

(
𝑁𝐾
𝜖𝑝

)
. □

C ADDITIONAL EXPERIMENTAL RESULTS
• Figure 3 shows the macro-F1 and instance-F1 results for
learning new labels with different batch size. Note that SLEEC,
SML and SLL could not properly generate bipartite classifi-
cation results, hence it is not possible to evaluate the results
with the F1 score.

• Table ?? shows the performance in terms of hamming loss.
Note that SLEEC, SML, and SLL could not properly generate
bipartite classification results, hence it is not possible to
evaluate the results with hamming loss. Additionally, due to
the sparsity of feature space, hamming loss is homogenized
on EURlex and Wiki10.

The details of these metrics are described as follows. Given a
data set D = {(𝒙1,𝒚1), ..., (𝒙𝑛,𝒚𝑛)}, where 𝒙𝑖 ∈ R𝑑×1 is a real vec-
tor representing features and 𝒚𝑖 ∈ {0, 1}𝑚×1 is the corresponding
output label vector. For notational simplicity, we use 𝑌+

𝑖 · to denote
the index set of associated labels of 𝒚𝑖 . Formally, 𝑌+

𝑖 · = { 𝑗 |𝑌𝑖 𝑗 = 1}
and 𝑌−

𝑖 · = { 𝑗 |𝑌𝑖 𝑗 = 0}. With respect to 𝑗-th column of label matrix,
𝑌+
· 𝑗 = {𝑖 |𝑌𝑖 𝑗 = 1} denotes the index set of associated instance of the
𝑗-th label and 𝑌−

· 𝑗 = {𝑖 |𝑌𝑖 𝑗 = 0} denotes the set of non-associated
instances. Table 5 summarizes evaluation metrics used in this paper.
Let 𝐻 : R𝑑 → {0, 1}𝑚 be a multi-label classifier and can be de-
composed as {ℎ1, ..., ℎ𝑚}. 𝐻 can be evaluated by bipartition-based
metrics. 𝐹 is the multi-label predictor, whose predicted value could
be regarded as the confidence of relevance and can be evaluated by
ranking-based metrics.
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Table 5: Definitions of multi-label performance measures.

Measure Formulation

Hamming loss ℎ𝑙𝑜𝑠𝑠 (𝐻 ) = 1
𝑛𝑚

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
I{ℎ 𝑗

𝑖
≠ 𝑦

𝑗
𝑖
}

ranking loss rank-loss(𝐹 ) = 1
𝑛

∑𝑛
𝑖=1

|S𝑖rank |
|𝑌+
𝑖 · | |𝑌

−
𝑖 · |

S𝑖rank = {(𝑢, 𝑣) |𝑓𝑢 (𝒙𝑖 ) ≤ 𝑓𝑣 (𝒙𝑖 ), (𝑢, 𝑣) ∈ 𝑌+
𝑖 · ×𝑌

−
𝑖 · }

coverage 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝐹 ) = 1
𝑛

∑𝑛
𝑖=1 I{max 𝑗∈𝑌+

𝑖 ·
𝑟𝑎𝑛𝑘𝐹 (𝒙𝑖 , 𝑗) }

precision@𝑘 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 (𝐹 ) = 1
𝑛

∑𝑛
𝑖=1

|𝑌+
𝑖 · ∩⊤𝑘 (𝑓 (𝒙𝑖 ) ) |

𝑘
⊤𝑘 (𝑓 (𝒙𝑖 )) = { 𝑗 |𝑓 𝑗 (𝒙𝑖 ) ∈ ⊤𝑘 (𝑓 1 (𝒙𝑖 ), ..., 𝑓𝑚 (𝒙𝑖 )) }

macro-F1 macro-F1(𝐻 ) = 1
𝑚

∑𝑚
𝑗=1

2
∑𝑛
𝑖=1 𝑦𝑖 𝑗ℎ𝑖 𝑗∑𝑛

𝑖=1 𝑦𝑖 𝑗 +
∑𝑛
𝑖=1 ℎ𝑖 𝑗

micro-F1 micro-F1(𝐻 ) =
2
∑𝑚
𝑗=1

∑𝑛
𝑖=1 𝑦𝑖 𝑗ℎ𝑖 𝑗∑𝑚

𝑗=1
∑𝑛
𝑖=1 𝑦𝑖 𝑗 +

∑𝑚
𝑗=1

∑𝑛
𝑖=1 ℎ𝑖 𝑗

instance-F1 instance-F1(𝐻 ) = 1
𝑛

∑𝑛
𝑖=1

2
∑𝑚
𝑗=1 𝑦𝑖 𝑗ℎ𝑖 𝑗∑𝑚

𝑗=1 𝑦𝑖 𝑗 +
∑𝑚
𝑗=1 ℎ𝑖 𝑗

micro-AUC micro-AUC (𝐹 ) = |Smicro |
(∑𝑛
𝑖=1 |𝑌+

𝑖 · |) · (
∑𝑛
𝑖=1 |𝑌−

𝑖 · |)
Smicro = {(𝑎,𝑏, 𝑖, 𝑗) | (𝑎,𝑏) ∈ 𝑌+

·𝑖 ×𝑌
−
·𝑗 , 𝑓𝑖 (𝒙𝑎 ) ≥ 𝑓𝑗 (𝒙𝑏 ) }

Table 6: Comparison of modeling new labels with different batch sizes by considering 50% labels as past labels. #label denotes
the number of new labels. ↓(↑) means the smaller (larger) the value is, the performance will be the better.

Datasets #label Average precision ↑
BR CC RAKEL ML-𝑘NN SLEEC SML SLL Deep-ML DNN-BCE C2AE DSLL Pslt

MirFlickr

3 0.3832 0.2791 0.3580 0.3432 0.2836 0.3251 0.4602 0.5238 0.5278 0.6314 0.6341 0.3530
6 0.2370 0.1715 0.2365 0.2129 0.1717 0.2435 0.3366 0.3587 0.3978 0.4143 0.4558 0.3542
9 0.2391 0.1599 0.2444 0.2111 0.1718 0.2519 0.3840 0.3738 0.3986 0.4307 0.4925 0.3567
12 0.2529 0.1711 0.2611 0.2243 0.1837 0.2373 0.4118 0.3876 0.4507 0.4517 0.4952 0.4040
15 0.2408 0.1594 0.2460 0.2117 0.1764 0.2391 0.4056 0.3861 0.4566 0.4660 0.4985 0.3880

Delicious

100 0.0408 0.0595 0.0631 0.0531 0.0684 0.0631 0.1180 0.1028 0.1183 0.1553 0.1563 0.1576
200 0.0393 0.0580 0.0599 0.0512 0.0699 0.0707 0.1128 0.0994 0.1250 0.1420 0.1428 0.1563
300 0.0394 0.0612 0.0608 0.0524 0.0717 0.0689 0.1193 0.1220 0.1561 0.1596 0.1604 0.1625
400 0.0405 0.0584 0.0563 0.0528 0.0724 0.0774 0.1164 0.1113 0.1363 0.1514 0.1520 0.1572
500 0.0439 0.0622 0.0559 0.0580 0.0760 0.0819 0.1224 0.1290 0.1107 0.1634 0.1631 0.1606

Datasets #label macro-AUC ↑
BR CC RAKEL ML-𝑘NN SLEEC SML SLL Deep-ML DNN-BCE C2AE DSLL Pslt

MirFlickr

3 0.6625 0.5035 0.6522 0.6111 0.5185 0.5614 0.7151 0.7471 0.7472 0.7966 0.8063 0.8081
6 0.7088 0.5015 0.6854 0.5729 0.5093 0.5751 0.7666 0.7834 0.8013 0.8069 0.8114 0.8220
9 0.7414 0.5028 0.7202 0.5789 0.5307 0.5853 0.8059 0.8125 0.8238 0.8369 0.8636 0.8202
12 0.7284 0.5020 0.7080 0.5804 0.5302 0.5825 0.8007 0.8001 0.8110 0.8305 0.8423 0.8495
15 0.7290 0.5018 0.7066 0.5788 0.5379 0.5919 0.8077 0.8085 0.8276 0.8336 0.8420 0.8040

Delicious

100 0.6260 0.5338 0.6271 0.5376 0.6806 0.6894 0.7331 0.7592 0.7383 0.7718 0.8109 0.7975
200 0.6249 0.5339 0.6187 0.5355 0.6805 0.6912 0.7279 0.7388 0.7633 0.7506 0.7941 0.7961
300 0.6229 0.5358 0.6203 0.5361 0.6850 0.7015 0.7280 0.7472 0.7543 0.7844 0.8093 0.7962
400 0.6185 0.5335 0.6179 0.5360 0.6863 0.6931 0.7309 0.7178 0.7720 0.7549 0.7991 0.7979
500 0.6211 0.5364 0.6200 0.5391 0.6885 0.6997 0.7335 0.7411 0.7290 0.7616 0.8021 0.7997

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

1811


	Abstract
	1 Introduction
	2 Related Work
	3 Probabilistic Streaming Label Tree
	3.1 Problem Formulation
	3.2 Tree Construction
	3.3 Inference
	3.4 Tree Update

	4 Theoretical Analysis
	4.1 Analysis on the Iteration Complexity of Node Classifier Modification
	4.2 L1 Estimation Error Bound
	4.3 Time and Memory Complexity Analysis

	5 Experiments
	6 Evaluation Metrics
	6.1 Results with Emerging New Labels

	7 Conclusion
	References
	A Proof of Lemma 1
	B Proof of Theorem 1
	C Additional Experimental Results



