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Abstract

Recognizing out-of-distribution (OOD) samples is essential for deploying robust
machine learning systems in open-world environments. While conventional OOD
detection approaches rely on feature representations from the penultimate layer of
neural networks, they often overlook informative signals embedded in intermediate
layers. In this paper, we present a straightforward feature mixing approach for pre-
trained Transformers, which combines multi-layer representations via calculated
importance weights, and identifies OOD samples using Mahalanobis distance in the
blended feature space. When in-distribution samples are accessible, we show that
parameter-efficient fine-tuning strategies effectively balance classification accuracy
and OOD detection performance. We conduct extensive empirical analyses to
validate the superiority of our proposed method under zero-shot, and fine-tuning
settings using both class-balanced and long-tailed datasets. The source code is
available at https://github.com/SEUML/X-Maha.

1 Introduction

In recent years, deep learning models have made significant progress in various domains [40, 24].
However, a critical issue with these models is their tendency to be overly confident in their predictions,
even when the input deviates greatly from the data distribution seen during training. This issue
underscores the need for effective out-of-distribution (OOD) detection when training deep neural
networks (DNNs). The detection of OODs is crucial to ensure the safety of the model in many
applications, such as medical diagnostics [43], industrial inspection [3], and autonomous driving [26].
For example, in the field of medical imaging, DNNs may fail to provide an accurate diagnosis when
presented with data that falls outside the training data distribution, such as images from an unknown
scanner. Therefore, it is imperative for a reliable model not only to recognize in-distribution (ID)
samples, but also to flag any OOD input as “unknown”.

Existing OOD detection methods design various scoring functions to assign an input sample a
likelihood to be OOD, using 1) predicted probabilities [14, 33, 31, 9, 32], 2) output logits [48, 2], and
3) learned features [25, 9, 36] by the model. However, these approaches neglect the rich information
in the features learned by the layers of shallow neural networks. Our motivation stems from the
observation that while the final features of a neural network are nonlinear transformations of shallow
features and inherently retain some information from earlier layers, features extracted from different
layers provide diverse representations of the data. Given that certain features may be particularly
effective for distinguishing between ID and OOD samples, it is crucial to comprehensively leverage
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(a) Fine-Tuned Model

(b) Zero-Shot Model (c) Fine-Tuned Model on OpenOODv1.5

Figure 1: (a-b): AUROC of X-Maha and competing methods based on fine-tuned/zero-shot models.
The experimental settings are the same as in Table 2. We denote RelativeMaha as R-Maha. (c)
AUROC of X-Maha and competing methods on OpenOODv1.5 benchmark using fine-tuned model.

the information from all layers to enhance OOD detection performance. While the motivation is
appealing, a core challenge remains: how to effectively utilize shallow layer features for OOD
detection?

To address the above issue, we propose a new OOD detection approach by leveraging features from
all layers with an adaptive fusion module. We draw inspiration from the geometric properties of
“neural collapse” [37], which states that the convergence of within-class covariance approaches zero in
the terminal phase of training as each activation collapses toward its respective class mean. Therefore,
we propose to measure the total variance of features across different layers of the neural network
to describe their importance weights for OOD detection. Layers with larger total variance have
more influence, while the contribution of layers with smaller total variance is down-weighted. The
advantage of this method is that layer weights are computed based on the data, without the need for
manual parameter tuning. Using the weighted fused features, we calculate the Mahalanobis distance
between the test sample and the data distribution of each ID class to calculate its OOD score.

Furthermore, we fine-tune the pre-trained visual models, including Vision Transformer (ViT) [8]
and CLIP [39], using in-distribution data to adapt the feature representations to down-stream tasks.
We empirically find that parameter-efficient fine-tuning strategies consistently outperforms full
parameter fine-tuning and are more robust to hyperparameter choice, which coincides with prior
works [44, 11]. Specifically, by freezing the pre-trained model and adding a small number of learnable
parameters. Based on this finding, we develop a general fine-tuning framework and implement all
comparison methods within this framework in our experiments. We also conducted an in-depth
analysis of various fine-tuning strategies. Figure 1 presents the results for in-distribution samples
(from ImageNet) processed by ViT-B/16 under various experimental settings. Our X-Maha (X-
Mahalanobis) consistently achieves state-of-the-art OOD detection performance in both fine-tuned
and zero-shot scenarios, and demonstrates superior performance on the challenging OpenOODv1.5
benchmark.

To systematically evaluate our approach, we focus on both class-balanced ID datasets, which are
commonly used in existing OOD detection literature [31, 48, 2], and long-tailed ID datasets because
the distribution of real-world data is often imbalanced and highly skewed on a per-class basis,
with a majority of classes containing a small number of samples [53, 52, 61]. Notably, long-tailed
OOD detection has been studied in several recent works by improving 1) representation learning
[49, 54, 51, 5], and 2) probabilistic calibration [22, 35]. However, these methods often require the use
of OOD data to train the model. In contrast, our approach only requires fine-tuning the model using
ID data, and more importantly, with no changes needed for the proposed feature mixing module.

Our contributions are summarized as follows:

1. We propose a new OOD detection method that exploits features from shallow layers of
pre-trained Transformers to enhance OOD separation.

2. We propose a simple but effective strategy to fuse multiple layer features with the importance
weights by measuring the covariance of features in each layer.
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3. We justify the effectiveness of the proposed method in zero-shot setting, and fine-tuning
settings using both class-balanced and long-tailed datasets. Additionally, we show that the
propose method can generalize to various fine-tuning strategies and pre-trained models.

2 Related Works

Out-of-distribution detection. In recent years, the field of OOD detection has gained considerable
attention. The Maximum Softmax Probability (MSP) method [13] serves as a foundational baseline,
utilizing softmax predictions as OOD scores. Building on this, ODIN [30] improves the softmax
score by perturbing input data and rescaling logits, enhancing its effectiveness in distinguishing
OOD samples. Further advancements explore alternative scoring mechanisms, such as the energy
score [31], which is further refined through feature clipping in ReAct [45]. Additionally, gradient-
based approaches have been explored to differentiate between ID and OOD data [19, 1]. Among
previous studies, the use of the Mahalanobis distance has shown significant promise. A prior work
[28] proposes to ensemble the Mahalanobis distance score calculated by features of each layer and
determine the optimal ensemble weights using an auxiliary OOD validation dataset. Trusted [7]
introduces a novel approach that combines feature fusion during training with the Mahalanobis
distance during testing, guided by the optimal transport principle. On top of the CLIP model, CLIPN
[50] learns a “no” prompt to capture the negation-semantic with images using an auxiliary dataset,
and performs OOD detection depending on the similarity between the input image and the “no”
prompt. Similarly, NegLabel [23] extracts potential negative labels from a corpus database and
employs zero-shot CLIP for OOD detection by combining ID classes and negative labels.

Long-tailed out-of-distribution detection. In long-tailed OOD detection, prior research has ex-
amined several strategies to mitigate the challenges posed by class imbalance, including the use of
oversampling techniques and threshold adjustments to improve performance [29]. Open Sampling
[51] incorporates OOD data to address the class imbalance problem. PASCL [49] focuses on en-
hancing representation learning for tail classes by leveraging a contrastive learning method, helping
to improve the separation between minority classes and OODs. Prior work [22] identifies several
common scenarios where the OOD-to-ID probabilities should be the ID-class-prior distribution and
proposes two strategies to modify existing inference-time detection methods. EAT [54] proposes ex-
panding the class space of ID classes with virtual classes to tackle OOD data. COCL [35] introduces
a calibrated learning approach aimed at improving outlier class detection in long-tailed tasks.

Parameter-efficient fine-tuning. PEFT methods freeze the pre-trained model and introduce only
a few learnable parameters for adaptation, which can effectively reduce overfitting and accelerate
convergence. Adapter [8] introduces a bottleneck module to optimize only a small subset of param-
eters. BitFit [58] focuses on fine-tuning only the bias terms of the model, significantly reducing
the number of parameters that need to be updated during training. VPT [21] prepends learnable
prompts at each layer, offering two versions: VPT-Shallow, which uses prompts at shallow layers,
and VPT-Deep, which applies them across deeper layers. LoRA [17] further optimizes efficiency by
applying low-rank adaptations, minimizing the overall parameter count while retaining performance.
AdaptFormer [4] builds on the Adapter method by shifting from a sequential to a parallel design.
LIFT [44] provides an empirical analysis showing that the commonly used full fine-tuning strategy is
prone to overfitting, especially on long-tailed datasets.

3 Method

In this section, we present a simple Mahalanobis-based OOD detection method by mixing features
from all Transformer layers based on importance weight.

3.1 Preliminary

We first introduce the problem setting and notations used throughout this paper.

1. We denote the training set as Dtrain = {(xi, yi)}Ni=1, where xi ∈ Rd represents an input
image, yi ∈ [C] denotes its ground-truth class label, and C denotes the total number of
classes in the training set. At test time, our goal is to flag images that do not belong to any
of the training classes using our OOD detector.

3



(a) Maha on 11-th Layer (b) Maha on Penultimate Layer (c) X-Maha

Figure 2: X-Maha: We illustrate how to improve Mahalanobis-based OOD detection. (a) Mahalanobis
distance applied to the 11-th layer. (b) Mahalanobis distance applied to the penultimate layer features.
(c) X-Maha which is applied to all layer features. Each subfigure comprises two components: a feature
visualization map and the corresponding OOD score distribution of test data. The visualizations are
based on data sampled from CIFAR-100 (ID) and Tiny ImageNet (OOD) using fine-tuned ViT-B/16.

2. Without loss of generality, let the deep neuron network be F = f ◦ g, where f(·) is known
as the feature exactor and g(·) is the classifier. For each layer ϕ(·) in f , we define the
transformation learned by the l-th layer as ϕl(·). For an instance x, its output from the l-th
layer is denoted as xl = ϕl(x). In particular, we denote the final feature learned by the
model xL = ϕL(x), where L denotes the number of Transformer layers.

3. In this paper, we build our OOD detector based on the Mahalanobis distance. For any test
image x, we calculate the negative distance between the image feature f(x) and feature
distribution of each class as the scoring function:

M(x;µc,Σ) = − (f(x)− µc)
⊤
Σ−1 (f(x)− µc) , (1)

where µc is the mean feature vector of class c and Σ is the covariance matrix of ID data.
4. To measure the Mahalanobis distance, we calculate the empirical class mean and covariance

matrix of training samples as follows:

µc =
1

Nc

∑
i:yi=c

f (xi) ,Σ =
1

N

C∑
c=1

∑
i:yi=c

(f (xi)− µc) (f (xi)− µc)
⊤
, (2)

where Nc is the number of training samples with class c. This is equivalent to fitting the
class-conditional Gaussian distribution with a tied covariance to the training samples under
the maximum likelihood estimator [28].

3.2 X-Maha: Feature Mixing for Mahalanobis-based OOD Detection

By default, the Mahalanobis distance in Eq. (1) uses the final output of the feature extractor, i.e.,
f(x), neglecting rich information in shallow layer features. Therefore, we now proceed to present
our approach to demonstrate that shallow features can help improve OOD detection performance.
For any test image x and a fine-tuned model, we first obtain its hidden representations xl

i of the l-th
layer, ∀1 ≤ l ≤ L. Notably, we may use “features” and “representations” interchangeably throughout
the paper. We then integrate features from all layers by different importance weights. Formally, we
compute the fused feature representation of x by:

Φ(x) =

L∑
l=1

αlxl, (3)

where αl is the weight of the l-th layer. To measure the Mahalanobis distance, we also calculate the
class mean feature vectors and global covariance matrix in the fused feature space. We reformulate
Eq. (2) by fusing shallow features as follows:

MX-Maha(x; µ̃c, Σ̃) = − (Φ(x)− µ̃c)
⊤
Σ̃−1 (Φ(x)− µ̃c) , (4)

where Σ̃ = 1
N

∑C
c=1

∑
i:yi=c (Φ(xi)− µ̃c) (Φ(xi)− µ̃c)

⊤ and µ̃c =
1
Nc

∑
i:yi=c Φ(xi).

Figure 2 provides an intuitive example in which shallow features can exhibit better discriminativity
between ID and OOD data than the final layer features. By mixing features as in Eq. (3), X-Maha
can effectively alleviate feature overlapping between ID and OOD data.

We now provide a simple way to set αl. To reflect the importance of each layer, we propose to
calculate the weights by measuring the instance-discrimination capacity or variability of the features.

4



Definition 3.1 (Measure of Variability). Given a collection of xl, we calculate the mean feature by
µl = 1

N

∑N
i=1 x

l
i, then and measure the feature variability of the l-th layer by:

αl = Tr((Al)⊤Al), (5)

where Al = (xl
1 − µl,xl

2 − µl, · · · ,xl
N − µl)

⊤ is the centralized feature matrix of the l-th layer,
and Tr(·) denotes the trace of a matrix, which is the sum of its diagonal elements. We normalize the
weights so that the sum of the weights across all layers is equal to 1.

The trace of the matrix Tr((Al)⊤Al) is proportional to the total variance of the features in the l-th
layer. A higher value of this trace indicates that the features at this layer are, on average, more spread
out across the training samples. This substantial variability suggests that the layer captures diverse
and discriminative patterns, making it highly sensitive to differences between instances. Therefore,
assigning a higher weight to such layers during feature fusion amplifies the contribution of these
more informative representations. Notably, Eq. (5) presents one simple way to set mixing weights,
though not necessarily optimal. We leave further optimization for future work, as our focus here is on
demonstrating the effectiveness of mixing features from shallow layers.

Distinctions with prior works. Our work differs from Mahalanobis [28] and Trusted [7], which
also use internal representations. 1) Mahalanobis calculates the OOD score using the representation
of each layer individually and weights them together by training a logistic regression model using the
validation set. Our approach computes importance weights from training data and does not require
any validation set. 2) Trusted treats every layer equally with the same importance and averages
the representations. It is clear that certain layer representations may be more effective in detecting
OODs, whereas others may bring noise. Our approach can prevent the degradation of the overall
OOD detection performance even in the case when the features from some layers are not effective:
the weights would be nearly zero for those ineffective layers.

3.3 On the Fine-tuning Strategy for OOD Detection

Parameter-efficient fine-tuning is more robust than fully fine-tuning. To adapt the pre-trained
models to downstream classification and OOD detection tasks, we learn a linear classifier and fine-
tune the feature extractor using ID training data. In this paper, we adopt the logit adjustment loss [34]
as the optimization objective for its simplicity and good generalization ability. The key advantage
of this choice is that, for class-balanced ID datasets, it simplifies to the conventional cross-entropy
loss; however, for long-tailed ID datasets, it allows the model to balance predictive confidence across
classes. Formally, the logit adjustment loss is defined as:

LLA(x, y = j) = − log
exp(zj + log P(y = j))∑

k∈[C] exp(zk + log P(y = k))
(6)

where y = j denotes the ground-truth label of the input x, and zj is the logit (pre-softmax activation)
for class j. The class-prior probability P(y = j) is estimated from the training distribution.

(a) ImageNet-LT ACC (b) ImageNet-LT AUROC

Figure 3: Comparison of the sensitivity of FFT and
PEFT to learning rate.

However, when choosing the fine-tuning strat-
egy, we observe that full parameter fine-tuning
(FFT) is significantly more sensitive to hyper-
parameters, such as learning rate, compared
to parameter-efficient fine-tuning (PEFT), es-
pecially when the ID data follows a long-tailed
label distribution. Figure 3 highlights the impact
of learning rates on both fine-tuning strategies
in CIFAR-100 (ID) classification accuracy and
OOD detection AUROC, averaged on six OOD
datasets. The x-axis denotes the learning rate.
The results indicate that FFT requires careful tuning of learning rates to achieve optimal performance,
while PEFT demonstrates more robust performance across a wider range of hyperparameters. More-
over, FFT necessitates tuning hyperparameters like the learning rate individually for each dataset,
whereas PEFT allows for consistent hyperparameter settings across multiple datasets, reducing the
burden of hyperparameter search.
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Extension of our approach to vision-language models. Notably, our proposed X-Maha ap-
proach is model-agnostic and can be used for CLIP-like models. Specifically, we calculate the
cosine similarity between the image embedding and ID class text prompt embeddings with min-
imal computational overhead. This similarity score is integrated into X-Maha to improve the
effectiveness of OOD detection. Formally, the revised scoring function is defined as follows:
G (x) = maxc∈[C] MX-Maha(x; µ̃c, Σ̃) + λ · sim(v, tc), where v denotes the image embedding
of x extracted by the pre-trained image encoder, and tc represents the text prompt embedding of class
c, i.e., both image and text embeddings are obtained from pre-trained CLIP. The similarity measure

sim(v, tc) is defined as: sim(v, tc) = ev
⊤tc∑

k ev
⊤tk

, where we use the default prompt template “a

photo of a {classname}” to obtain text embedding tc in our experiments. The hyperparameter λ
controls the relative influence of the predicted similarity scores of the vision-language model. Notably,
we set λ = 0 when using vision-only models. A test image is classified as OOD if G (x) ≥ ρ, where
ρ is selected such that a high proportion of ID data exceeds this threshold. For samples classified
as ID, the class label is determined as ŷ = argmaxc∈[C] pc, where p = F (x) denotes the predicted
class probabilities from the classifier.

4 Experiments

We extensively evaluate X-Maha across different datasets and pre-trained models. Due to space
constraints, in the main paper, we report the experimental results of models fine-tuned on class-
balanced or long-tailed ID datasets.

4.1 Experiments Setup

In this section, we compare our approach with the latest algorithms across both small- and large-scale
OOD detection benchmarks. In line with prior research, we utilize CIFAR-100 and ImageNet as the
in-distribution (ID) datasets. Additionally, we incorporate the more challenging long-tailed variants,
CIFAR-100-LT and ImageNet-LT, as ID training sets to further demonstrate the effectiveness of our
proposed method in OOD detection scenarios in the appendix. The imbalance ratio for CIFAR-100-LT
is set to 100, reflecting a highly imbalanced class distribution.

OOD datasets. When CIFAR-100 or CIFAR-100-LT is used as the ID dataset, we evaluate OOD
detection performance on a range of diverse datasets, including Textures [6], SVHN [57], CIFAR-10,

Table 1: OOD detection performance on CIFAR-100 (ID) and six OOD datasets.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 97.65 11.81 94.91 28.17 94.92 26.32 88.58 44.50 86.75 64.21 92.23 41.41 92.51 36.07
MLS 99.79 0.83 97.38 10.31 97.07 13.42 93.28 25.16 98.09 10.93 98.98 5.39 97.43 11.01
Energy 99.86 0.57 97.48 9.47 97.09 12.88 93.51 23.61 98.59 7.58 99.26 3.78 97.63 9.65
Mahalanobis 99.97 0.12 99.16 3.92 97.09 16.49 97.99 8.96 99.61 1.07 99.67 1.33 98.92 5.32
Residual 99.99 0.02 97.66 12.81 92.08 41.38 99.10 3.68 99.93 0.00 99.92 0.08 98.12 9.66
Vim 99.89 0.44 97.68 8.63 97.13 12.73 94.09 21.96 98.85 5.72 99.39 2.94 97.84 8.74
NECO 99.83 0.83 97.95 8.70 97.31 13.98 94.25 21.93 98.29 10.77 99.08 5.35 97.78 10.26
Trusted 100.0 0.00 98.78 5.77 93.35 33.51 98.09 9.76 100.0 0.01 100.0 0.00 98.37 8.17
KL-matching 98.60 6.10 96.66 14.93 96.34 17.12 90.05 34.17 88.15 49.34 93.67 28.21 93.91 24.98
NNguide 99.24 3.03 98.70 5.00 97.12 17.42 92.48 28.02 93.44 40.52 96.25 21.11 96.21 19.18
RelativeMaha 98.25 6.35 97.44 12.72 96.41 17.73 91.66 34.44 90.66 49.66 94.49 30.37 94.82 25.21
KNN 99.19 3.10 98.51 6.13 96.42 20.66 91.56 30.20 92.79 45.19 96.06 21.73 95.76 21.17
X-Maha (ours) 100.0 0.00 99.50 1.91 96.47 19.52 99.80 1.11 100.0 0.00 100.0 0.00 99.29 3.76

CLIP-VIT-B/16
MSP 91.14 41.33 86.22 57.75 87.35 53.18 82.11 62.50 74.83 80.64 84.02 60.61 84.28 59.33
MLS 96.11 20.73 91.58 41.81 93.32 30.69 88.58 45.86 88.49 51.20 93.15 33.12 91.87 37.23
Energy 96.56 18.03 91.85 41.92 93.77 28.89 89.06 44.49 89.66 45.66 93.92 29.21 92.47 34.70
Mahalanobis 99.23 1.68 96.89 23.27 89.01 52.26 93.75 32.28 98.81 6.44 99.29 3.13 96.16 19.84
Residual 99.05 1.86 95.61 31.96 82.22 67.74 94.48 31.92 99.19 3.05 99.36 2.03 94.98 23.09
Vim 97.23 14.33 92.88 36.41 93.82 28.66 89.94 41.40 91.58 38.73 95.13 23.97 93.43 30.58
NECO 97.67 12.20 94.04 33.31 93.57 31.58 90.25 41.08 92.65 34.50 95.90 21.27 94.02 28.99
MCM 72.98 92.09 90.75 63.39 75.53 88.66 65.54 93.36 50.79 99.11 60.97 97.79 69.43 89.06
Trusted 99.98 0.04 97.21 17.80 86.32 61.45 97.13 15.68 99.95 0.03 99.96 0.08 96.76 15.85
KL-matching 94.32 25.12 90.69 38.25 90.69 38.52 84.16 52.94 77.85 70.96 86.99 47.80 87.45 45.60
NNguide 97.91 10.23 97.36 13.61 92.62 17.12 89.88 41.93 86.77 60.83 93.14 35.04 92.95 33.13
RelativeMaha 96.70 14.36 96.44 19.35 91.64 46.09 86.99 51.46 82.57 61.12 91.69 34.71 91.01 37.85
KNN 97.38 13.88 96.93 16.57 91.32 46.27 90.31 39.47 86.24 60.08 93.00 34.22 92.53 35.08
X-Maha (ours) 99.94 0.00 98.13 8.99 88.74 52.46 97.31 13.23 99.93 0.05 99.95 0.04 97.33 12.46
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Tiny ImageNet [27], LSUN [56], and Places365 [60]. For experiments with ImageNet and ImageNet-
LT as the ID datasets, our primary evaluation employs five established OOD datasets: Textures
[6], Places365 [60], iNaturalist [47], ImageNet-O [15], and SUN [55]. Extended analysis using
OpenOODv1.5 [59] is presented in the Appendix.

Baselines. We compare our method with MSP [13], MLS [12], Energy [31], Mahalanobis [28], Resid-
ual and Vim [48], NECO [2], MCM [36], Trusted [7], NNguide[38], KNN[46], RelativeMaha[41],
and KL-matching [12]. For Mahalanobis, we follow the setting in [10], which uses only the final
feature instead of an ensemble of multiple layers [20, 28]. It is worth noting that all these baselines
are reimplemented based on our fine-tuned models, except that MCM uses zero-shot CLIP.

Implementation details. We implement our approach and all competing methods in the same
framework on top of the ImageNet-21k pre-trained Vision Transformer (ViT) [8] and the official pre-
trained CLIP model. We fine-tune the pre-trained models using in-distribution data for downstream
tasks. We employ a batch size of 64 for all experiments. For CIFAR-100 and CIFAR-100-LT, we set
the initial learning rate to 0.01 with a cosine annealing scheduler and fine-tune for 10 epochs. For
ImageNet and ImageNet-LT, the initial learning rate is set to 0.1, with a cosine annealing scheduler,
and the models are fine-tuned for 5 and 20 epochs, respectively. We set λ = 1 on ImageNet and
λ = 0.1 on CIFAR-100 for the CLIP model to calculate the scoring function. For the Adaptformer
module, we set the dimension to C

2L , where C is the number of classes, and L is the number of
blocks in the ViT model. Other hyperparameters include a momentum of 0.9, and a weight decay of
5× 10−4, following LIFT [44]. For all baseline methods, we ensure a fair comparison by using the
same hyperparameter settings. All experiments are conducted on a single NVIDIA RTX 3090 GPU.

Table 2: Performance on ImageNet (ID) and five OOD datasets. † indicates the results are taken from
their papers, except that results for MCM on ImageNet-O are reproduced using official codebase.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 84.89 51.88 84.52 59.44 85.31 56.52 95.86 18.73 82.24 60.00 86.56 49.31
MLS 90.12 37.80 88.01 51.67 89.72 47.21 97.98 8.75 89.79 44.65 91.12 38.02
Energy 90.72 34.65 88.15 50.40 90.06 45.31 98.23 7.41 90.73 41.00 91.58 35.75
Mahalanobis 92.93 26.31 89.27 47.56 91.53 39.82 99.33 2.72 92.12 37.50 93.03 30.78
Residual 92.84 30.66 84.80 61.14 88.34 50.14 98.02 9.51 87.11 52.50 90.22 40.79
Vim 91.04 33.33 88.37 49.82 90.30 44.34 98.37 6.86 90.92 40.20 91.80 34.91
NECO 92.13 30.16 89.92 46.49 91.95 40.11 98.99 4.12 91.45 39.80 92.89 32.14
NECO† 92.86 32.44 90.38 42.66 93.15 33.98 99.34 3.26 94.53 25.20 94.05 27.51
Trusted 43.56 86.45 46.82 96.95 50.95 94.75 49.36 91.48 39.15 95.45 45.97 93.02
KL-matching 87.85 40.92 86.76 53.02 87.89 49.19 97.84 8.84 86.25 49.20 89.32 40.23
NNguide 90.98 35.90 87.63 54.90 89.12 51.52 98.62 5.55 90.40 48.00 91.35 39.17
RelativeMaha 90.28 39.80 88.05 52.59 89.83 47.53 99.06 3.54 90.23 46.10 91.49 37.91
KNN 89.18 42.16 85.45 64.49 85.69 66.31 98.03 9.86 87.45 60.45 89.16 48.65
X-Maha (ours) 96.65 11.70 89.64 46.00 92.04 37.78 99.40 2.26 93.76 29.80 94.30 25.51

CLIP-VIT-B/16
MSP 83.05 57.59 79.83 68.39 79.33 70.29 89.74 41.95 78.60 71.00 82.11 61.84
MLS 88.76 45.43 86.02 57.05 86.39 58.28 95.57 23.45 86.53 61.15 88.65 49.07
Energy 89.26 44.01 86.59 54.39 87.12 54.85 96.38 17.67 87.32 58.30 89.33 45.84
Mahalanobis 85.05 66.49 84.34 72.06 85.15 75.37 90.35 65.00 80.71 79.00 85.12 71.58
Residual 76.25 80.05 75.64 88.95 75.40 91.87 71.20 94.15 67.87 88.10 73.27 88.62
Vim 89.30 44.20 86.70 54.49 87.22 55.21 96.17 18.83 87.17 59.25 89.31 46.40
NECO 88.77 47.02 87.86 52.40 88.61 53.92 95.24 25.30 85.29 64.00 89.15 48.53
MCM† 86.11 57.77 89.77 44.69 92.57 37.59 94.61 30.91 79.51 75.70 88.51 49.33
Trusted 95.87 19.80 74.59 78.06 76.71 76.42 84.61 72.77 84.12 62.40 83.18 61.89
KL-matching 86.64 46.45 83.28 59.25 83.21 61.23 94.18 24.99 83.19 62.45 86.10 50.87
NNguide 87.60 51.05 81.94 71.29 82.98 74.77 93.14 38.88 85.27 67.85 86.19 60.77
RelativeMaha 85.14 62.00 81.81 63.13 83.45 63.73 94.53 25.21 83.07 67.75 85.60 56.36
KNN 83.35 68.35 77.31 81.27 76.03 87.32 87.74 75.30 81.63 79.75 81.21 78.40
X-Maha (ours) 89.11 49.52 90.64 41.44 93.11 35.77 95.49 23.04 82.39 69.40 90.15 43.83

4.2 Main Results

Result on CIFAR-100. As shown in Table 1, our proposed method, X-Maha, outperforms state-of-
the-art approaches across multiple OOD datasets. In particular, the average performance of X-Maha
on both the CLIP model and the ImageNet-21k pre-trained ViT significantly surpasses previous
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methods. X-Maha achieves perfect separation of ID and OOD data on Texture, LSUN, and Places365
datasets. However, we observe a decrease in the performance when using CIFAR-10 as the OOD
data. This reduction can be attributed to the high similarity between CIFAR-10 and CIFAR-100 in
terms of characteristics, resolution, and visual style—both datasets consist of low-resolution, 32× 32
images with somewhat blurred features, making certain samples challenging to differentiate, even
for human observers. This resemblance leads to overlapping feature representations in the shallow
layers, resulting in relatively diminished performance. Notably, MCM [36] is a zero-shot CLIP-based
OOD detection method, and its performance is significantly inferior to other methods, highlighting
the necessity of fine-tuning for downstream tasks.

Result on ImageNet. Table 2 summarizes the performance of our proposed method, X-Maha,
on the ImageNet dataset. Across both pre-trained models, namely, the ImageNet-21k pre-trained
ViT and CLIP-ViT-B/16, X-Maha consistently outperforms existing methods. Specifically, when
using the ImageNet-21k pre-trained ViT, X-Maha improves the FPR95 by more than 2% on average
compared to the second-best method Mahalanobis [28]. Notably, while MCM [36] does not require
fine-tuning, it achieves competitive performance across four OOD datasets, except ImageNet-O. Its
overall average performance is on par with the Vim [48] and NECO [2] methods. However, X-Maha
still outperforms MCM by ∼ 1.5% in AUROC and ∼ 5.5% in FPR95.

Result on CIFAR-100-LT. Table 3 presents the results on the long-tailed version of CIFAR-100
dataset. It can be seen that our method consistently outperforms previous approaches. When using
the CLIP model, our method effectively reduces the FPR95 by an average of 6.31% (from 23.56% to
17.25%).

Table 3: OOD detection performance on CIFAR-100-LT (ID) and six OOD datasets.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 97.21 13.12 95.52 24.13 91.92 38.50 85.27 48.02 84.06 64.81 90.47 43.10 90.75 38.61
MLS 99.83 0.62 96.38 18.35 94.94 25.58 90.36 34.08 98.58 7.52 99.26 3.06 96.56 14.87
Energy 99.89 0.43 95.65 24.00 94.49 29.42 90.38 34.32 99.09 4.00 99.52 1.62 96.50 15.63
Mahalanobis 99.96 0.20 99.33 2.51 95.09 25.98 97.63 9.26 99.48 2.26 99.57 1.71 98.51 6.99
Residual 99.98 0.05 97.33 17.74 86.41 62.76 98.52 6.90 99.83 0.47 99.80 0.45 96.98 14.73
Vim 99.91 0.28 96.18 20.72 94.56 29.01 91.27 31.59 99.25 3.20 99.60 1.23 96.80 14.34
NECO 99.86 0.64 97.37 13.58 94.91 24.62 91.22 29.21 98.39 10.21 99.22 3.78 96.83 13.67
Trusted 100.0 0.00 99.12 3.60 87.34 52.84 97.67 10.37 99.97 0.00 99.98 0.00 97.35 11.13
KL-matching 98.48 6.40 97.44 12.11 94.00 26.88 87.56 38.91 86.65 52.78 92.94 31.01 92.84 28.02
KL-matching 98.48 6.40 97.44 12.11 94.00 26.88 87.56 38.91 86.65 52.78 92.94 31.01 92.84 28.02
NNguide 99.19 3.30 98.89 3.16 95.10 25.71 90.95 30.58 92.92 34.72 95.60 23.14 95.44 20.10
RelativeMaha 97.25 11.19 96.01 26.31 94.65 26.99 89.94 45.41 90.46 53.53 92.43 38.72 93.46 33.69
KNN 98.82 4.57 97.44 14.68 92.51 36.42 88.45 37.86 89.78 43.25 94.14 28.30 93.52 27.51
X-Maha (ours) 100.0 0.00 99.75 0.43 94.22 29.86 99.75 1.12 99.99 0.00 99.99 0.01 98.95 5.24

CLIP-VIT-B/16
MSP 91.05 39.34 86.13 48.73 85.33 55.47 78.22 68.10 73.52 76.50 83.16 57.92 82.90 57.68
MLS 96.76 16.95 88.44 49.78 91.85 36.84 87.05 47.53 90.35 36.77 94.29 25.52 91.46 35.57
Energy 97.31 13.09 86.40 59.64 92.37 34.15 88.01 43.79 92.25 28.45 95.49 19.49 91.97 33.10
Mahalanobis 99.11 1.03 95.92 29.87 84.76 60.58 90.97 43.83 99.08 4.07 99.28 1.99 94.85 23.56
Residual 98.90 1.42 94.83 33.99 77.19 73.51 91.24 48.57 99.28 1.94 99.34 0.87 93.46 26.72
Vim 98.12 9.17 88.61 52.92 92.19 35.68 88.97 41.63 94.26 21.87 96.76 14.76 93.15 29.34
NECO 98.00 9.57 91.32 41.13 91.11 40.21 87.51 46.54 93.99 23.37 96.71 16.22 93.11 29.51
Trusted 99.97 0.11 93.57 43.80 80.76 70.36 95.46 25.58 99.95 0.10 99.95 0.08 94.94 23.34
KL-matching 95.01 21.76 90.76 31.69 88.87 44.17 81.68 57.93 79.31 63.65 87.64 43.21 87.21 43.73
NNguide 96.24 15.50 95.95 20.93 87.06 57.99 84.36 60.30 88.23 48.69 91.11 32.20 90.49 39.27
RelativeMaha 97.25 11.19 96.01 26.31 94.65 26.99 89.94 45.41 90.46 53.53 92.43 38.72 93.46 33.69
KNN 97.48 12.68 91.39 44.15 84.87 59.53 84.54 53.89 83.62 56.77 90.25 41.52 88.69 44.76
X-Maha (ours) 99.90 0.02 97.41 16.80 85.35 59.44 94.85 27.10 99.89 0.10 99.91 0.03 96.22 17.25

Result on ImageNet-LT. Additionally, Table 4 presents the results on the long-tailed ImageNet
dataset. It can be seen that our method consistently outperforms previous approaches. On average,
our method reduces FPR95 by 5.29% and 2.87% for ImageNet-21k pre-trained ViT and CLIP,
respectively. The AUROC also improves by 1.77% when using the CLIP model.

4.3 Ablation Studies

Why X-Maha works? Unless otherwise specified, in this subsection, we use the ImageNet-21k
pre-trained ViT as the default base model. Figure 4 presents a comparison of OOD score distributions
with and without the application of our proposed X-Maha method. When X-Maha is not applied,
only the final layer features are used to compute the Mahalanobis distance as a scoring function.
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Table 4: OOD detection performance on ImageNet-LT (ID) and five OOD datasets.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 86.04 47.50 85.20 56.52 86.36 53.07 97.17 11.97 83.68 57.40 87.69 45.29
MLS 90.18 38.71 88.76 49.34 90.39 45.44 98.47 6.71 88.91 47.90 91.34 37.62
Energy 90.87 35.51 89.29 45.97 91.05 41.04 98.78 5.06 89.83 42.80 91.96 34.08
Mahalanobis 92.99 26.95 89.48 46.34 91.71 38.35 99.28 2.84 91.66 38.85 93.02 30.67
Residual 91.60 35.74 82.23 65.71 86.58 55.54 97.44 12.67 84.05 59.05 88.38 45.74
Vim 91.23 34.10 89.47 45.23 91.27 39.83 98.88 4.77 90.05 41.70 92.18 33.13
NECO 91.66 31.44 89.21 43.71 91.44 37.07 98.93 4.09 89.64 42.70 92.18 31.80
Trusted 91.98 32.36 82.11 66.31 85.72 58.34 98.09 9.29 90.91 40.15 89.76 41.29
KL-matching 88.72 38.71 87.41 50.03 89.14 45.83 98.44 6.19 87.24 47.50 90.19 37.65
NNguide 91.06 35.85 87.66 52.60 89.53 48.61 98.66 5.33 90.08 46.55 91.40 37.79
RelativeMaha 89.97 40.74 88.22 52.89 89.92 48.20 98.97 4.01 89.67 47.40 91.35 38.65
KNN 89.80 39.86 85.86 59.61 87.30 56.79 98.21 7.43 87.97 56.10 89.83 43.96
X-Maha (ours) 96.92 11.79 89.82 45.36 92.18 36.16 99.33 2.51 93.46 31.10 94.34 25.38

CLIP-VIT-B/16
MSP 81.55 60.34 79.32 65.16 78.44 66.53 90.60 38.49 78.37 71.60 81.66 60.42
MLS 87.00 52.27 85.31 56.20 85.47 57.19 95.03 25.21 84.33 65.10 87.43 51.19
Energy 87.81 50.07 86.37 51.85 86.76 53.08 95.94 19.61 85.12 63.65 88.40 47.65
Mahalanobis 83.81 67.64 84.44 66.85 85.50 69.58 87.49 72.57 78.82 80.20 84.01 71.37
Residual 74.81 80.71 75.62 86.49 76.56 87.93 63.27 96.67 64.43 89.30 70.94 88.22
Vim 87.90 49.72 86.52 51.32 86.96 52.47 95.55 21.06 84.96 63.90 88.38 47.69
NECO 86.67 53.67 86.71 53.11 87.17 54.63 94.08 29.95 82.90 67.60 87.51 51.79
Trusted 71.96 70.46 44.51 97.89 49.78 97.77 49.44 98.59 48.79 89.05 52.90 90.75
KL-matching 85.35 51.56 82.84 57.00 82.51 57.56 94.54 23.36 82.52 64.00 85.55 50.70
NNguide 86.06 56.44 82.53 65.49 83.68 66.66 90.59 47.29 83.07 71.15 85.18 61.41
RelativeMaha 83.81 67.38 81.84 63.31 82.74 64.13 93.95 31.74 82.25 71.10 84.92 59.53
KNN 82.58 66.42 78.66 74.60 78.64 77.96 83.97 70.68 79.61 79.10 80.69 73.75
X-Maha (ours) 89.94 46.79 90.47 42.51 92.71 37.95 94.79 27.57 82.94 69.10 90.17 44.78

Figure 4: Comparisons of OOD score distribution before and after applying our X-Maha method.
CIFAR-100 is used as the ID dataset and the OOD dataset from left to right is Texture, Tiny ImageNet,
LSUN, and Places365. The horizontal axis represents the OOD score (small values indicate a high
likelihood of being OOD samples).

It can be seen that the score distributions for ID samples remain largely consistent, whether or not
the X-Maha method is applied. However, the use of X-Maha causes a significant leftward shift in
the score distribution for OOD samples. This shift occurs because the features in the final layer of
unseen OOD samples are not effectively captured. Furthermore, re-weighted information from the
shallow layers amplifies this shift, resulting in better discrimination. As a result, the X-Maha method
enhances the separation between ID and OOD samples in the embedding space. This improvement is
critical for more accurate identification and differentiation of ID and OOD samples, thus boosting the
overall performance and reliability of the detection process.

Importance weights of each layer. As depicted in Figure 5, our proposed method can adaptively
assign importance weights to different layers. Overall, the first 6 layers are assigned relatively
lower weights compared to the rest of the Transformer layers. Notably, the final layer’s weight
is particularly prominent. This is because the last layer of the feature extractor learns the most
discriminative features for in-distribution classes and is important for OOD detection. As shown
in the figure, rather than relying solely on the penultimate layer’s features, our method effectively
utilizes shallow layer features as well.

Impact of features from shallow layers. Figure 6 illustrates the effect of fusing features from
varying numbers of layers. The x-axis represents the number of layers counted from the penultimate
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Figure 5: Distribution of layer-specific weights for CIFAR-100, ImageNet, ImageNet (CLIP), and
ImageNet-LT where the y-axis denotes AUROC (%).

Figure 6: Impact of the number of layers used for feature fusion on OOD detection performance. The
ID dataset from left to right is CIFAR-100, ImageNet, ImageNet (CLIP), and ImageNet-LT, where
the vertical axis represents AUROC.

layer towards the first, while the y-axis indicates the average OOD detection AUROC. As shown
in the figures, using only the penultimate layer’s features yields decent results, but fusing the last
6 layers of the Transformer achieves the best performance, highlighting the importance of shallow
features. For features from the sixth layer and beyond, their impact on the results is minimal. As
discussed in the previous analysis, our method assigns lower weights to these layers accordingly.

Table 5: Comparisons of different feature mixing strategies. ‘In21k’ denotes ViT pre-trained on
ImageNet-21k.

CIFAR-100 ImageNet

Method CLIP In21k CLIP In21k Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Trusted 96.76 15.85 98.37 8.17 83.18 61.89 45.97 93.02 81.49 44.73
SA 96.53 13.19 98.77 6.58 82.68 64.59 94.01 27.62 93.00 28.00
PM 96.15 18.13 98.16 10.05 81.03 77.59 81.86 27.47 89.30 33.31
Flatten12 42.10 89.67 29.00 90.93 - - - - 34.05 90.15
Flatten6 93.31 15.99 81.75 49.33 - - - - 87.53 32.66
Ours 97.33 12.46 99.29 3.76 90.15 43.83 94.30 25.51 95.27 21.39

Ways to fuse shallow features. We compare our proposed feature mixing method with other fusion
strategies including 1) Trusted [7] which directly employs the arithmetic mean to fuse features from
each layer during both the training and test phases; 2) Score Aggregation (SA) [28] which calculates
the OOD score via Mahalanobis distance using features from each layer separately and weighted
them together. Since SA requires a validation set containing both ID and OOD data, we use the
weights derived from our method to calculate the weighted sum of scores; 3) Power Mean (PM) [42]
proposes to reweight each layer’s feature based on feature norms; 4) Flatten12 concatenates all layers’
features into a single vector, while Flatten6 concatenates the last six layers’ features. The results are
presented in Table 5. It can be seen that our proposed adaptive fusion method achieves a significant
advantage in aggregating shallow features, further confirming its effectiveness.

5 Conclusion

This paper introduces a timely improvement to Mahalanobis-based OOD detection by effectively
mixing Transformer features across layers. While shallow features may lack class discrimination, we
demonstrate their strength in separating ID and OOD data. Our method assigns importance weights
to layer features, without relying on validation data, and leverages parameter-efficient fine-tuning
to better adapt pre-trained Transformers for OOD detection. Extensive experiments validate our
approach across zero-shot and fine-tuning settings, vision-only and vision-language models, and both
balanced and long-tailed ID datasets. Ablation studies further clarify its mechanisms. We believe this
work establishes a strong baseline for future OOD detection research.
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A Additional Experiments

A.1 Zero-shot OOD detection performance

To further demonstrate the effectiveness of our proposed feature mixing approach, we evaluate the
zero-shot performance without fine-tuning pre-trained models using ID datasets. The results are
reported in Table 6.

Table 6: OOD detection performance on ImageNet-LT (ID) and five OOD datasets using the pre-
trained models without fine-tuning.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
MSP 84.92 50.12 81.63 68.06 81.77 68.88 95.02 24.12 80.04 64.65 84.68 55.17
MLS 91.01 36.22 84.48 61.71 86.96 56.93 96.88 17.52 89.31 52.45 89.73 44.97
Energy 91.17 36.44 84.11 62.57 86.91 56.66 96.30 22.56 89.72 51.90 89.64 46.03
Mahalanobis 93.13 24.63 81.79 67.52 85.16 61.30 98.63 5.59 91.26 41.30 89.99 40.07
Residual 91.78 33.83 64.01 86.88 71.16 80.23 94.44 27.58 83.22 58.95 80.92 57.49
Vim 91.51 34.47 83.98 62.44 86.90 56.37 96.57 20.37 89.94 50.15 89.78 44.76
NECO 92.54 27.00 79.76 65.31 83.77 60.32 98.55 5.37 90.27 43.50 88.98 40.30
KL-matching 87.51 40.66 83.23 64.05 84.18 61.98 96.72 16.12 83.40 55.15 87.01 47.59
X-Maha (ours) 97.15 10.20 81.51 67.20 85.49 56.49 98.69 5.13 93.15 32.15 91.20 34.23

CLIP-VIT-B/16
MSP 76.67 82.07 61.22 94.21 61.62 96.00 72.78 92.94 70.56 89.95 68.57 91.03
MLS 76.88 91.90 78.12 85.99 76.29 93.61 74.86 95.57 74.28 89.20 76.09 91.25
Energy 69.74 97.02 78.19 89.82 75.68 96.23 69.13 98.24 69.40 92.55 72.43 94.77
Mahalanobis 69.91 94.86 70.20 96.58 67.53 98.78 67.77 98.96 70.57 90.30 69.20 95.90
Residual 64.57 96.51 59.59 98.11 55.23 99.38 49.12 99.35 62.89 91.65 58.28 97.00
Vim 69.34 96.99 76.89 91.80 74.19 97.36 67.49 98.44 68.96 92.10 71.37 95.34
NECO 73.70 92.59 73.55 93.38 71.99 97.32 70.80 98.68 70.96 89.65 72.20 94.32
KL-matching 83.71 63.99 62.27 86.25 63.80 88.92 79.40 79.31 74.73 80.90 72.78 79.87
X-Maha (ours) 87.74 58.03 88.22 59.63 89.77 61.21 91.07 55.93 80.75 76.60 87.51 62.28

A.2 In-distribution classification accuracy

Our fine-tuned model also shows strong ID classification performance, as detailed in Table 7. In
terms of overall accuracy, both CIFAR-100 and ImageNet-1k perform better with balanced data
compared to long-tailed data. This indicates that data balance positively impacts model performance,
facilitating more accurate classification tasks.

When comparing different models, the pre-trained ViT consistently outperform CLIP-ViT-B/16 in
most scenarios. This indicates that the pre-trained ViT has specific advantages for these data sets and
tasks, suggesting that its pre-training approach is more suitable for these classification tasks, thereby
also enhancing its efficacy in OOD detection tasks.

A.3 Ablation studies on weights of different layers

To further emphasize the importance of differentiated layer weighting, we provide experimental tables
(i.e., Table 8, 9, 10). In these Tables, we test different scenarios where the final layer is given weights
of 0.083 (i.e., uniform), 0.5, 0.75, and 1 (which are represented by W0.083,W0.5,W0.75,W1.0), while
the other layers receive the remaining weights evenly. Overall, the OOD detection performance
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Table 7: Top 1% accuracy on ID data for the original classification task, for the models.
ID dataset Label distribution Model Accuracy (%)

Zero-shot CLIP-ViT-B/16 66.69

CLIP-ViT-B/16 82.87
CIFAR-100 Long-tailed Pre-trained ViT 89.99

CLIP-ViT-B/16 88.59
Balanced Pre-trained ViT 93.47

Zero-shot CLIP-ViT-B/16 67.12

CLIP-ViT-B/16 75.82
ImageNet-1k Long-tailed Pre-trained ViT 81.79

CLIP-ViT-B/16 79.08
Balanced Pre-trained ViT 83.50

Table 8: Ablation studies on weights of different layers on CIFAR-100 (ID).

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
W0.083 100.0 0.00 99.61 0.28 90.02 51.14 100.0 0.00 100.0 0.00 100.0 0.00 98.27 8.57
W0.5 100.0 0.00 99.43 2.36 96.76 18.26 99.62 1.81 100.0 0.00 99.99 0.01 99.30 3.74
W0.75 99.99 0.04 99.27 3.33 96.99 16.82 98.83 5.22 99.89 0.06 99.89 0.26 99.14 4.29
W1.0 99.97 0.12 99.16 3.92 97.09 16.49 97.99 8.96 99.61 1.07 99.67 1.33 98.92 5.32
X-Maha (ours) 100.0 0.00 99.50 1.91 96.47 19.52 99.80 1.11 100.0 0.00 100.0 0.00 99.29 3.76

CLIP-VIT-B/16
W0.083 100.0 0.00 99.05 2.82 83.92 65.74 99.94 0.08 100.0 0.00 100.0 0.00 97.15 11.44
W0.5 99.92 0.07 98.00 10.27 89.15 51.09 96.49 17.36 99.88 0.21 99.91 0.12 97.22 13.19
W0.75 99.61 0.85 97.84 12.34 89.36 50.66 94.38 26.56 99.24 3.85 99.55 1.68 96.66 15.99
W1.0 99.23 1.68 96.89 23.27 89.01 52.26 93.75 32.28 98.81 6.44 99.29 3.13 96.16 19.84
X-Maha (ours) 99.95 0.02 98.31 8.62 88.56 53.97 97.54 12.91 99.93 0.06 99.95 0.02 97.37 12.60

is sensitive to layer weights; however, our X-Maha approach consistently achieves remarkable
performance.

Table 9: Ablation studies on weights of different layers on CIFAR-100-LT (ID).

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
W0.083 100.0 0.00 99.85 0.01 85.54 68.56 100.0 0.00 100.0 0.00 100.0 0.00 97.57 11.43
W0.5 100.0 0.00 99.68 0.68 94.56 27.90 99.58 1.68 99.99 0.00 99.98 0.01 98.97 5.05
W0.75 99.99 0.05 99.49 1.66 94.93 26.42 98.67 5.57 99.81 0.39 99.83 0.53 98.79 5.77
W1.0 99.96 0.20 99.33 2.51 95.09 25.98 97.63 9.26 99.48 2.26 99.57 1.71 98.51 6.99
X-Maha (ours) 100.0 0.00 99.75 0.43 94.22 29.86 99.75 1.12 99.99 0.00 99.99 0.01 98.95 5.24

CLIP-VIT-B/16
W0.083 100.0 0.00 98.76 5.09 80.77 68.39 99.89 0.20 100.0 0.00 100.0 0.00 96.57 12.28
W0.5 99.88 0.04 97.37 16.90 85.52 58.97 94.36 28.65 99.87 0.11 99.89 0.05 96.15 17.45
W0.75 99.52 0.55 97.15 19.66 85.73 58.99 91.58 39.22 99.36 2.63 99.52 1.20 95.48 20.38
W1.0 99.11 1.03 95.92 29.87 84.76 60.58 90.97 43.83 99.08 4.07 99.28 1.99 94.85 23.50
X-Maha (ours) 99.94 0.00 98.13 8.99 88.74 52.46 97.31 13.23 99.93 0.05 99.95 0.04 97.33 12.46

A.4 Ablation studies on smaller pre-trained transformers

As depicted in Table 11, 12, 13, and 14, we have included models like vit_tiny_patch16_224 and
vit_small_patch16_224, shown in the upper and lower sections of each table. The outcomes from
these smaller models provide further confirmation that our OOD score remains robust and effective
across various model scales, thereby enhancing the generalizability and reliability of our proposed
approach.
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Table 10: Ablation studies on weights of different layers on ImageNet-1k-LT (ID).

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT
W0.083 98.55 6.45 86.32 60.57 88.92 49.25 98.02 9.42 91.72 37.05 92.71 32.55
W0.5 95.02 17.96 89.76 44.79 92.08 36.60 99.36 2.63 92.68 34.30 93.78 27.26
W0.75 93.78 23.39 89.62 45.54 91.88 37.22 99.32 2.74 92.06 36.75 93.33 29.13
W1.0 92.99 26.95 89.48 46.34 91.71 38.35 99.28 2.84 91.66 38.85 93.02 30.67
X-Maha (ours) 96.92 11.79 89.82 45.36 92.18 36.16 99.33 2.51 93.46 31.10 94.34 25.38

CLIP-VIT-B/16
W0.083 92.23 36.76 91.11 39.65 93.02 36.38 94.62 29.54 83.30 67.45 90.86 41.96
W0.5 88.52 52.23 89.87 45.47 92.21 40.58 94.54 28.45 82.56 71.00 89.54 47.55
W0.75 87.68 55.39 89.69 46.37 92.08 41.23 94.41 29.30 82.23 72.40 89.22 48.94
W1.0 83.81 67.64 84.44 66.85 85.50 69.58 87.49 72.57 78.82 80.20 84.01 71.37
X-Maha (ours) 89.94 46.79 90.47 42.51 92.71 37.95 94.79 27.57 82.94 69.10 90.17 44.78

Table 11: OOD detection performance on CIFAR-100 (ID) on smaller transformers.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

VIT_TINY_PATCH16_224
MSP 92.09 35.34 83.28 61.28 83.30 63.73 79.89 69.73 72.86 84.07 82.13 65.55 82.26 63.28
MLS 98.62 6.13 92.09 35.85 87.39 54.92 87.71 52.79 88.92 57.57 94.27 30.32 91.50 39.60
Energy 99.03 4.26 92.78 32.41 87.28 55.96 88.18 51.27 90.32 51.04 95.25 24.94 92.14 36.65
Mahalanobis 99.90 0.35 96.28 15.78 87.78 56.67 92.48 33.81 98.20 9.10 98.77 6.27 95.57 20.33
Residual 99.71 0.85 86.24 52.70 76.86 72.72 90.89 42.55 97.46 14.02 97.25 13.66 91.40 32.75
Vim 99.19 3.62 92.99 31.18 87.49 54.90 88.70 48.96 91.14 47.63 95.67 22.63 92.53 34.82
NECO 99.17 3.83 92.34 34.24 87.85 53.47 89.47 46.45 92.38 43.05 96.06 21.11 92.88 33.69
KL-matching 95.41 18.40 87.58 45.71 86.32 53.75 82.47 60.45 75.28 79.24 85.65 52.82 85.45 51.73
X-Maha (ours) 100.0 0.02 96.85 14.13 86.48 60.56 97.00 15.34 99.98 0.01 99.96 0.10 96.71 15.03

VIT_SMALL_PATCH16_224
MSP 95.98 19.17 92.29 38.18 90.82 39.01 85.95 52.36 82.84 68.92 89.31 47.87 89.53 44.25
MLS 99.28 3.16 96.35 18.16 95.22 24.90 92.18 32.72 96.21 25.40 97.71 13.44 96.16 19.63
Energy 99.48 2.29 96.54 16.55 95.42 23.24 92.59 29.99 97.12 18.57 98.25 10.09 96.57 16.79
Mahalanobis 99.91 0.59 99.05 4.72 94.65 28.65 97.53 11.36 99.60 1.78 99.54 2.52 98.38 8.27
Residual 99.96 0.11 98.60 7.06 88.66 52.27 98.09 9.68 99.65 0.75 99.67 1.14 97.44 11.83
Vim 99.56 1.99 96.88 14.63 95.46 23.06 93.17 27.68 97.52 16.28 98.47 8.82 96.84 15.41
NECO 99.50 2.16 96.76 15.91 95.33 24.33 93.49 26.62 97.26 17.04 98.29 9.75 96.77 15.97
KL-matching 97.66 9.24 94.75 22.21 93.18 28.02 88.04 40.26 85.27 55.47 91.73 33.41 91.77 31.43
X-Maha (ours) 100.0 0.00 99.36 3.16 94.09 31.35 99.47 2.69 99.99 0.01 99.99 0.01 98.82 6.20

A.5 Additional time consumption analysis

Unlike the direct Mahalanobis distance, which considers only the final layer of features, our approach
necessitates the integration of features across all layers. This inevitably leads to additional time
consumption. Table 15 presents the time consumption at different stages of the test phase, measured
in seconds, on the ImageNet-LT dataset (ID) and the fine-tuned ViT model. “Pre-process” represents
the process of pre-processing the ID training set, including the calculation of the mean and covariance
matrix required for Mahalanobis distance, with additional importance weights α for X-Maha. Each
subsequent column represents the time required to process each dataset including the ID test set and
OOD datasets, and the last column represents the total time consumed. From the results, we observe
that our approach only brings about an additional 10% total time consumption, but results in an
improvement of AUROC by 2.39% and a reduction of FPR95 by 7.66% on average, demonstrating
the efficacy of our approach.

A.6 Fair comparison with MCM

The MCM method is naturally better suited for zero-shot OOD tasks compared to fine-tuning
tasks. The prevalent fine-tuning approach, which mainly targets the visual encoder, tends to disrupt
the initial alignment between the visual and text components after fine-tuning, resulting in less
effective outcomes. Our goal in including the MCM method in our experiment was not to make a
direct comparison but to empirically showcase that our proposed method enhances OOD detection
performance. Conversely, methods like ViM and NECO are methodologically and conceptually more
similar to our approach and, therefore, require a more thorough comparison. Moreover, we present
the results of MCM on the fine-tuned model (i.e., MCM-tuned) in Table 16 for comparison.
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Table 12: OOD detection performance on CIFAR-100-LT (ID) on smaller transformers.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

VIT_TINY_PATCH16_224
MSP 90.08 43.37 81.70 67.65 79.48 71.62 75.96 75.24 71.36 84.26 79.41 71.40 79.66 68.92
MLS 99.12 3.60 93.33 33.93 79.87 74.86 85.81 56.68 93.82 33.03 96.58 18.97 91.42 36.85
Energy 99.38 2.13 93.83 31.25 78.33 78.86 86.24 56.10 95.32 24.89 97.50 13.26 91.77 34.42
Mahalanobis 99.85 0.53 97.29 12.80 85.08 63.78 91.26 35.45 98.44 8.10 98.67 6.67 95.10 21.22
Residual 99.36 2.70 85.09 63.99 63.92 86.08 86.92 56.50 95.55 23.38 95.84 23.68 88.68 42.72
Vim 99.48 1.86 94.02 30.06 78.59 78.29 86.75 53.95 95.67 22.96 97.70 12.17 92.03 33.21
NECO 99.43 2.16 93.71 31.78 80.42 73.09 87.26 50.52 95.19 24.22 97.42 14.01 92.24 32.63
KL-matching 94.50 23.48 86.54 55.21 82.74 62.81 79.16 66.66 74.56 80.30 83.53 60.59 83.51 58.18
X-Maha (ours) 99.99 0.04 97.77 10.81 83.67 66.99 96.31 16.67 99.97 0.01 99.95 0.14 96.28 15.78

VIT_SMALL_PATCH16_224
MSP 96.39 16.72 92.72 37.39 87.58 49.60 82.39 57.10 80.54 68.09 87.52 49.64 87.85 46.42
MLS 99.69 1.44 95.97 21.84 91.96 41.67 92.62 29.45 97.66 14.61 98.77 6.74 96.11 19.29
Energy 99.80 1.13 95.29 27.28 91.55 45.20 93.37 25.75 98.58 8.86 99.28 3.78 96.31 18.67
Mahalanobis 99.91 0.53 99.43 2.35 93.02 35.98 97.15 12.93 99.59 2.35 99.65 1.67 98.12 9.30
Residual 99.93 0.25 96.22 24.49 83.28 64.13 95.96 21.20 99.26 3.78 99.37 2.78 95.67 19.44
Vim 99.84 0.96 95.74 25.12 91.69 44.68 93.78 24.60 98.77 7.65 99.38 3.29 96.53 17.72
NECO 99.77 1.13 96.30 20.92 91.64 41.49 92.86 27.03 97.67 14.01 98.92 5.90 96.19 18.41
KL-matching 98.12 7.73 95.63 20.27 90.16 37.62 85.25 46.40 83.94 56.00 90.77 36.06 90.65 34.01
X-Maha (ours) 100.0 0.00 99.68 1.05 92.24 39.11 99.48 2.44 100.0 0.00 100.0 0.00 98.57 7.10

Table 13: OOD detection performance on ImageNet-LT (ID) on smaller transformers.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

VIT_TINY_PATCH16_224
MSP 78.01 73.35 75.50 78.45 75.30 79.07 87.21 54.52 67.95 87.70 76.80 74.62
MLS 84.44 65.73 78.50 75.84 79.44 75.44 91.83 46.49 76.83 84.55 82.21 69.61
Energy 85.85 60.04 78.76 74.90 80.02 74.11 92.72 42.10 78.73 81.55 83.22 66.54
Mahalanobis 89.61 41.86 79.27 67.26 82.44 63.88 97.62 11.83 80.09 77.30 85.81 52.43
Residual 84.86 56.21 68.21 86.03 69.96 84.55 88.63 49.79 73.94 77.95 77.12 70.91
Vim 86.49 57.06 78.97 74.35 80.27 73.02 93.25 38.66 79.22 80.85 83.64 64.79
NECO 86.84 56.44 79.03 73.47 80.61 72.26 94.78 30.01 79.54 79.75 84.16 52.39
KL-matching 81.97 67.22 77.80 74.27 78.06 73.72 91.59 41.18 72.78 84.35 80.44 68.15
X-Maha (ours) 92.21 29.84 78.40 68.87 81.25 66.86 97.72 11.30 82.43 69.90 86.40 49.35

VIT_SMALL_PATCH16_224
MSP 82.60 60.11 81.41 66.59 81.97 63.84 94.31 25.69 77.74 73.60 83.61 57.97
MLS 87.94 50.51 84.97 60.73 86.46 56.44 96.63 17.04 84.64 65.40 88.13 50.02
Energy 88.96 46.03 85.45 58.10 87.20 53.27 97.09 14.06 85.91 60.85 88.92 46.46
Mahalanobis 91.13 36.06 86.30 54.87 89.54 46.81 99.03 4.49 87.74 55.45 90.75 39.54
Residual 88.66 45.11 79.43 70.30 84.29 60.89 96.18 20.30 82.07 65.85 86.12 52.49
Vim 89.38 44.08 85.72 56.97 87.57 52.06 97.39 12.38 86.29 59.25 89.27 44.95
NECO 89.72 43.40 85.86 56.63 88.18 51.50 98.07 9.36 87.00 58.40 89.77 43.86
KL-matching 86.01 50.67 83.63 60.68 84.80 56.71 96.68 14.62 81.90 65.35 86.60 49.61
X-Maha (ours) 93.35 25.94 86.18 55.21 89.52 46.74 99.13 3.99 89.13 50.20 91.46 36.42

A.7 Ablation studies on OpenOOD v1.5 benchmark

We conducted our experiment again using the Openood v1.5 [59] benchmark and chose Imagenet-
1K-LT as the ID dataset, as shown in Table 17. From our experience, this approach is comparable to
using ImageNet-1k while being more time-efficient. Our results surpassed those of all other methods
by a significant margin on average, highlighting the success of our X-Maha strategy.

A.8 Experiments on OpenOOD v1.5 benchmark

Table 18 presents a comprehensive evaluation of the EVA model’s out-of-distribution detection
performance using the ImageNet-LT dataset under the OpenOOD v1.5 evaluation framework.

A.9 Ablation studies on varying parameter-efficient fine-tuning methods.

X-Maha is a general framework in which many lightweight fine-tuning methods can be integrated.
In addition to Adaptformer [4] which is used in our experiments by default, we test X-Maha with
another 5 parameter-efficient fine-tuning (PEFT) methods as well as full fine-tuning. Specifically, we
combine X-Maha with Bias-tuning [58], VPT-shallow [21], VPT-deep [21], LoRA [18], and Adapter
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Table 14: OOD detection performance on ImageNet-LT (ID) and five OOD datasets using the
zero-shot models without fine-tuning.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-21K PRE-TRAINED VIT-SMALL

MSP 82.24 58.21 77.75 75.34 78.32 74.35 92.41 37.39 74.87 75.70 81.12 64.20
MLS 91.03 38.14 82.05 66.33 85.45 60.21 96.08 24.66 85.79 66.60 88.08 51.19
Energy 91.76 33.60 82.07 64.62 85.92 56.38 96.00 25.85 86.59 63.60 88.47 48.81
Mahalanobis 92.94 26.74 80.88 68.96 85.09 60.41 98.59 6.10 88.12 53.75 89.12 43.19
Residual 89.39 43.03 61.84 89.78 69.77 84.65 92.23 39.67 80.85 67.70 78.82 64.97
Vim 92.03 32.50 81.99 64.63 85.96 56.15 96.28 23.85 86.91 62.05 88.63 47.84
NECO 92.33 31.10 78.84 69.23 83.22 62.75 97.91 9.57 87.92 56.55 88.05 45.84
KL-matching 85.44 49.66 79.42 72.35 80.89 69.74 94.90 29.76 78.69 67.90 83.87 57.88
X-Maha (ours) 96.57 12.43 78.75 72.76 83.04 63.38 98.28 7.48 90.59 42.60 89.45 39.73

IMAGENET-21K PRE-TRAINED VIT-TINY

MSP 76.40 73.71 70.13 86.79 68.43 88.56 82.49 70.08 64.86 87.55 72.46 81.34
MLS 87.68 51.84 73.55 81.88 76.13 82.79 90.23 57.60 77.84 83.25 81.09 71.47
Energy 88.63 46.47 73.36 81.29 76.59 81.44 90.41 56.67 78.99 81.80 81.59 69.53
Mahalanobis 91.78 30.85 73.34 79.18 77.17 76.42 94.89 28.37 80.38 75.75 83.51 58.11
Residual 88.96 43.39 53.28 95.00 56.74 94.70 74.95 79.52 74.57 78.40 69.70 78.20
Vim 89.06 44.47 73.18 81.50 76.48 81.48 90.55 56.22 79.33 81.10 81.72 68.95
NECO 90.04 41.58 72.85 81.42 76.17 81.01 94.23 36.09 80.81 77.30 82.82 63.48
KL-matching 80.83 65.53 71.26 86.35 70.28 88.57 86.62 65.47 69.79 83.85 75.75 77.95
X-Maha (ours) 95.47 17.93 71.78 79.73 74.44 78.06 96.08 20.33 85.39 57.30 84.63 50.67

Table 15: Time consumption (in seconds) comparison between Mahalanobis and X-Maha.
Dataset Pre-process ID test set Texture Places SUN iNaturalist ImageNet-O Total

Mahalanobis 685 238 36 61 56 59 14 1149
X-Maha 748 291 38 62 60 61 15 1275

Table 16: Fair comparison with MCM on CIFAR-100, CIFAR-100-LT, and ImageNet-LT ID datasets.

Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places365 Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

CIFAR-100
MCM-untuned 72.98 92.09 90.75 63.39 75.53 88.66 65.54 93.36 50.79 99.11 60.97 97.79 69.43 89.06
MCM-tuned 75.33 91.38 91.55 60.96 75.60 91.03 64.07 95.40 55.14 98.93 63.71 97.67 70.90 89.23
X-Maha (ours) 99.90 0.02 97.41 16.80 85.35 59.44 94.85 27.10 99.89 0.10 99.91 0.03 96.22 17.25

CIFAR-100-LT
MCM-untuned 72.98 92.09 90.75 63.39 75.53 88.66 65.54 93.36 50.79 99.11 60.97 97.79 69.43 89.06
MCM-tuned 75.33 91.38 91.55 60.96 75.60 91.03 64.07 95.40 55.14 98.93 63.71 97.67 70.90 89.23
X-Maha (ours) 99.94 0.00 98.13 8.99 88.74 52.46 97.31 13.23 99.93 0.05 99.95 0.04 97.33 12.46

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

IMAGENET-1K-LT
MCM-untuned 86.11 57.77 89.77 44.69 92.57 37.59 94.61 30.91 79.51 75.70 88.51 49.33
MCM-tuned 85.64 60.11 89.82 44.32 92.92 36.25 94.26 32.01 79.26 76.10 88.38 49.76
X-Maha (ours) 89.94 46.79 90.47 42.51 92.71 37.95 94.79 27.57 82.94 69.10 90.17 44.78

[16]. We report the empirical results for CIFAR-100 in Table 19, CIFAR-100-LT in Table 20, and
ImageNet-LT in Table 21. From the results, we observe that X-Maha consistently improves the
baselines by a large margin, showing its robustness to the PEFT methods.

Limitations and Broader Impacts

Limitations Despite X-Maha’s superior performance compared to the existing methods, it exhibits
certain limitations, and there are several unexplored research avenues. For example, the current
algorithm only provides a simple approach to calculate Transformer feature mixing weights, which
might not be optimal. In addition, our method assumes consistent feature dimensions across all layers,
which limits the applicability for more neural network architectures.
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Table 17: OOD detection performance on ImageNet-LT (ID) on OpenOOD v1.5.
Method NINCO Openimage-O SSB-Hard iImageNet-C ImageNet-ES iImageNet-R ImageNet-V2 Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
IMAGENET-21K PRE-TRAINED VIT

MSP 87.81 50.02 93.72 27.51 76.72 68.43 67.91 78.58 69.35 69.26 79.73 59.15 57.57 89.92 76.12 63.27
MLS 91.59 42.80 96.28 18.65 81.25 63.86 70.54 76.77 72.11 66.79 83.65 53.22 57.86 90.09 79.04 58.88
Energy 92.12 39.62 96.80 16.02 81.87 61.53 70.80 76.02 72.44 66.06 84.25 50.52 57.79 90.19 79.44 57.14
Mahalanobis 94.00 32.51 97.58 12.61 85.01 52.17 73.93 72.64 73.04 67.08 85.32 48.95 58.02 90.81 80.99 53.83
Residual 83.87 62.45 92.41 33.88 84.87 56.19 74.96 78.03 65.25 82.87 75.05 76.46 53.03 94.38 75.63 69.18
Vim 92.29 38.65 96.94 15.32 82.36 60.40 71.19 75.39 72.47 65.98 84.37 50.20 57.79 90.15 79.63 56.58
NECO 91.97 38.09 96.90 15.19 84.81 54.96 70.55 75.48 72.01 67.61 82.43 53.86 56.86 90.44 79.36 56.52
KL-matching 90.53 41.63 95.95 18.15 79.52 63.02 70.03 75.91 71.54 66.35 82.56 52.60 58.33 89.85 78.35 58.22
X-Maha (ours) 94.98 26.74 98.21 9.72 86.34 49.46 83.96 53.57 76.78 63.45 88.49 42.85 58.36 91.36 83.88 48.16

CLIP-VIT-B/16
MSP 80.11 68.94 88.22 46.72 68.06 83.66 73.44 70.44 70.31 68.46 77.27 64.00 57.12 90.78 73.50 70.43
MLS 84.17 67.11 92.93 35.17 71.99 82.44 77.66 67.65 75.66 64.21 84.61 55.96 58.24 90.38 77.89 66.13
Energy 84.15 67.78 93.73 30.59 72.25 82.43 78.02 67.13 76.51 62.51 85.87 52.26 58.22 90.28 78.39 64.71
Mahalanobis 75.13 83.28 86.95 63.82 66.11 89.49 82.68 62.64 84.27 52.46 90.02 47.33 58.18 90.31 77.62 69.90
Residual 61.56 91.54 70.43 81.35 61.00 92.63 82.86 68.28 86.30 54.65 86.28 57.41 56.47 92.06 72.13 76.85
Vim 83.91 68.20 93.57 31.15 72.28 82.57 78.85 65.06 77.52 60.34 86.73 49.79 58.35 89.88 78.74 63.86
NECO 880.96 71.90 92.48 37.13 69.22 85.10 77.84 68.17 78.69 61.76 86.00 54.92 58.18 89.83 77.63 66.97
KL-matching 83.21 66.88 92.13 34.08 70.63 81.75 76.09 67.07 72.92 64.25 81.70 55.46 57.83 90.51 76.36 65.71
X-Maha (ours) 8.30 74.67 92.90 36.93 71.64 81.79 85.49 50.94 87.84 43.49 88.76 50.31 58.22 89.50 80.45 61.09

Table 18: OOD detection performance on ImageNet-LT (ID) on OpenOOD v1.5 on EVA.
Method NINCO Openimage-O SSB-Hard iImageNet-C ImageNet-ES iImageNet-R ImageNet-V2 Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
EVA02-SMALL-PATCH14-336

MSP 85.42 58.74 93.96 28.32 67.21 81.62 71.52 70.71 71.12 65.98 82.42 50.02 56.44 90.10 75.44 63.64
MLS 85.22 59.42 93.98 28.32 66.81 81.78 70.94 71.24 72.48 65.16 82.91 49.36 56.44 90.19 75.54 63.64
Energy 60.93 89.79 70.32 86.76 51.36 95.11 50.30 95.21 70.05 74.32 71.41 79.83 51.72 93.81 60.87 87.83
Mahalanobis 88.50 52.47 95.35 24.99 73.67 73.68 74.99 66.73 74.17 64.15 86.59 47.58 57.97 90.15 78.75 59.97
Residual 46.13 99.22 61.80 96.84 48.91 95.38 59.63 92.57 57.34 91.72 64.01 89.43 48.01 96.41 55.12 94.51
Vim 46.94 99.00 63.01 96.48 49.00 95.31 59.52 92.49 58.76 91.23 65.12 88.46 48.13 96.33 54.52 94.87
NECO 79.29 63.75 93.32 28.33 61.44 83.42 68.80 72.11 70.25 66.85 81.47 49.12 54.27 91.34 72.69 64.99
KNN 85.02 68.02 93.33 39.61 68.99 86.43 74.23 68.85 75.50 63.43 86.55 45.53 57.85 90.52 77.35 66.06
NNguide 84.97 68.02 93.33 39.47 68.90 86.47 74.11 68.92 75.67 63.36 86.58 45.44 57.83 90.52 77.34 66.03
RelativeMaha 89.44 50.54 95.04 25.24 74.26 73.55 73.82 68.31 73.32 64.74 85.49 48.87 58.37 89.66 78.53 60.13
KL-matching 12.43 99.97 7.23 99.99 27.79 98.64 27.30 99.01 26.64 98.68 13.68 99.77 42.69 96.04 22.54 98.87
X-Maha 88.71 51.72 95.50 24.17 74.39 72.80 76.70 65.17 74.30 64.14 87.15 46.55 58.12 90.09 79.27 59.23

Broader Impacts This study falls within the domain of out-of-distribution (OOD) detection, a
machine learning paradigm that aims to achieve superior classification performance in known classes
while identifying OOD samples. Consequently, as this technique gains efficacy and wider adoption,
the necessity for extensive data annotation may get diminished, potentially contributing to a rise in
unemployment among data annotation professionals.

19



Table 19: OOD detection performance in terms of AUROC (↑) and FPR95 (↓) for different PEFT
methods, and full fine-tuning on CIFAR-100 dataset.
Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
Bias-tuning

+ MSP 97.46 12.77 94.72 27.13 94.19 29.44 88.42 44.58 86.25 64.76 91.93 41.80 92.16 36.75
+ MLS 99.71 1.24 96.60 13.31 96.96 14.23 94.69 22.00 98.07 10.86 98.73 6.84 97.46 11.41
+ Energy 99.82 0.87 96.62 12.60 97.07 13.58 95.10 20.07 98.72 6.86 99.11 4.74 97.74 9.79
+ Mahalanobis 99.93 0.34 98.80 5.32 96.18 20.60 97.31 10.71 99.58 1.32 99.45 2.68 98.54 6.83
+ Residual 99.98 0.04 97.20 16.92 90.96 49.13 98.46 6.69 99.90 0.14 99.81 0.59 97.72 12.25
+ Vim 99.85 0.74 96.84 11.84 97.09 13.58 95.48 18.94 98.96 5.21 99.24 3.90 97.91 9.04
+ NECO 99.77 1.21 97.03 12.42 96.95 15.77 94.97 20.55 98.34 10.19 98.84 6.58 97.65 11.12
+ X-Maha (ours) 100.0 0.00 99.44 2.29 95.32 25.35 99.68 1.52 99.99 0.01 99.99 0.02 99.07 4.87

VPT-shallow
+ MSP 95.84 18.09 93.78 34.50 92.09 37.35 85.90 49.15 79.15 78.05 87.17 54.51 88.99 45.27
+ MLS 98.77 5.28 96.55 18.36 94.42 25.10 86.29 47.31 88.68 59.55 92.94 35.22 92.24 31.81
+ Energy 99.04 4.57 96.58 15.87 94.42 24.75 85.83 51.00 89.64 55.53 93.47 32.64 93.16 30.73
+ Mahalanobis 99.97 0.18 92.41 44.63 93.84 32.15 98.04 9.23 99.86 0.18 99.77 0.88 97.31 14.54
+ Residual 99.98 0.05 80.46 67.16 86.92 55.54 99.02 5.17 99.95 0.10 99.89 0.37 94.37 21.40
+ Vim 99.29 3.62 96.71 15.16 94.57 24.64 87.34 45.83 91.64 46.32 94.70 26.97 94.04 27.09
+ NECO 99.30 3.56 95.99 25.70 95.02 24.55 90.59 34.88 94.24 34.05 96.17 20.60 95.22 23.89
+ X-Maha (ours) 100.0 0.00 94.28 36.41 92.37 38.48 99.78 1.15 99.99 0.01 99.98 0.06 97.73 12.68

VPT-deep
+ MSP 97.43 13.49 91.72 44.53 94.33 30.07 86.93 48.16 84.23 69.02 91.10 47.98 90.79 42.21
+ MLS 99.69 12.49 96.55 15.98 91.21 30.65 95.81 25.68 97.51 13.26 97.51 13.26 96.34 16.59
+ Energy 99.79 1.12 97.59 10.49 96.53 15.82 91.43 29.60 96.53 21.24 97.95 11.21 96.64 14.91
+ Mahalanobis 99.94 0.30 94.27 39.67 96.08 22.59 97.10 162.99 99.08 4.88 99.16 4.47 97.60 14.15
+ Residual 99.97 0.04 91.25 53.35 89.88 50.67 98.07 10.16 99.69 0.74 99.58 1.64 96.41 19.43
+ Vim 99.83 0.83 97.68 10.13 96.57 15.91 92.09 27.75 97.05 18.26 98.22 9.96 96.91 13.81
+ NECO 99.72 1.44 96.53 17.02 96.71 17.06 92.73 26.10 96.80 20.68 98.03 11.12 96.75 15.57
+ X-Maha (ours) 99.99 0.02 96.36 25.31 95.33 26.39 99.59 2.03 99.95 0.00 99.93 0.18 98.52 8.99

LoRA
+ MSP 97.36 12.77 94.85 29.23 94.36 29.49 87.26 46.89 84.76 68.83 90.95 45.35 91.59 38.76
+ MLS 99.57 1.91 97.88 8.89 96.98 14.76 89.51 34.34 95.70 27.11 97.68 12.53 96.22 16.59
+ Energy 99.68 1.38 98.09 7.79 97.09 14.28 89.57 34.75 96.37 23.26 98.09 10.67 96.48 15.36
+ Mahalanobis 99.96 0.11 99.33 2.69 96.65 17.98 97.72 9.47 99.39 2.07 99.47 2.35 98.76 5.78
+ Residual 99.99 0.02 98.15 9.65 91.25 44.12 98.85 4.83 99.84 0.14 99.80 0.45 97.98 9.87
+ Vim 99.75 1.13 98.29 6.91 97.121 14.25 90.50 32.38 96.96 20.00 98.38 9.27 96.83 13.99
+ NECO 99.69 1.67 98.43 6.15 96.98 15.96 91.95 27.74 96.66 21.84 98.17 9.97 96.98 13.89
+ X-Maha (ours) 100.0 0.00 99.78 0.88 95.99 21.52 99.82 0.96 99.99 0.00 99.99 0.01 99.26 3.89

Adapter
+ MSP 97.34 12.54 95.56 23.93 91.73 38.80 85.30 48.04 84.70 62.47 90.66 42.81 90.88 38.10
+ MLS 99.90 0.32 98.31 8.01 94.26 29.06 92.18 29.58 99.10 3.69 99.50 1.51 97.21 12.03
+ Energy 99.93 0.18 98.28 7.56 93.67 34.00 92.43 28.42 99.48 1.43 99.71 0.61 97.25 12.03
+ Mahalanobis 99.97 0.12 99.44 1.82 95.04 26.43 97.58 9.60 99.55 1.76 99.63 1.36 98.53 6.85
+ Residual 99.98 0.02 97.78 14.80 86.21 64.68 98.51 6.91 99.85 0.47 99.84 0.36 97.03 14.54
+ Vim 99.95 0.16 98.48 6.36 93.77 33.18 93.09 26.10 99.57 0.98 99.75 0.45 97.44 11.20
+ NECO 99.90 0.30 98.60 6.92 94.41 27.76 92.31 26.44 98.91 6.70 99.45 2.68 97.26 11.82
+ X-Maha (ours) 100.0 0.00 99.50 2.54 96.79 18.07 99.72 1.50 100.0 0.00 100.0 0.00 99.33 3.68

Full fine-tuning
+ MSP 97.24 15.39 91.45 46.78 93.64 33.62 87.79 48.74 85.44 72.87 91.58 48.41 91.19 44.30
+ MLS 99.72 1.12 90.65 36.84 96.55 16.03 90.43 30.61 97.84 11.13 98.97 3.63 95.69 15.56
+ Energy 99.76 0.89 90.44 38.61 96.57 15.89 90.47 30.36 98.11 9.60 99.13 3.08 95.75 16.40
+ Mahalanobis 99.87 0.55 96.80 16.06 96.87 15.38 97.46 13.26 97.69 16.25 98.96 6.61 97.94 11.35
+ Residual 99.98 0.12 98.13 9.62 95.11 26.57 99.13 4.86 99.70 1.04 99.86 0.54 98.65 7.13
+ Vim 99.82 0.57 91.57 34.06 96.64 15.50 91.95 25.90 98.39 7.19 99.28 2.27 96.27 14.25
+ NECO 99.71 1.33 93.01 31.88 96.96 15.53 92.41 26.21 97.35 17.86 98.78 6.72 96.37 16.59
+ X-Maha (ours) 99.93 0.32 97.12 14.56 96.91 15.18 97.92 11.72 98.64 8.87 99.40 3.41 98.32 9.01
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Table 20: OOD detection performance in terms of AUROC (↑) and FPR95 (↓) for different PEFT
methods, and full fine-tuning on CIFAR-100-LT dataset.
Method Texture SVHN CIFAR10 Tiny ImageNet LSUN Places Average

AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95
Bias-tuning

+ MSP 97.23 12.91 95.68 23.01 91.66 38.32 85.10 49.19 83.91 65.44 89.82 45.37 90.56 39.04
+ MLS 99.89 0.37 97.73 10.36 94.29 28.15 93.67 24.36 98.87 5.06 99.29 2.91 97.29 11.87
+ Energy 99.93 0.25 97.42 13.18 93.78 33.19 94.14 22.64 99.38 2.08 99.59 1.38 97.37 12.12
+ Mahalanobis 99.96 0.20 99.58 1.27 94.59 28.56 97.26 10.39 99.54 2.14 99.55 1.84 98.40 7.40
+ Residual 99.97 0.05 97.98 11.87 85.50 67.10 98.00 9.44 99.77 0.53 99.74 0.71 96.83 14.95
+ Vim 99.95 0.16 97.74 10.84 93.87 32.51 94.67 20.93 99.50 1.49 99.66 0.99 97.57 11.15
+ NECO 99.89 0.51 98.15 8.82 94.32 27.12 93.33 22.52 98.59 9.34 99.23 4.02 97.25 12.06
+ X-Maha (ours) 100.0 0.00 99.91 0.08 93.33 35.86 99.76 1.18 100.0 0.00 100.0 0.00 98.83 6.19

VPT-shallow
+ MSP 94.99 22.66 94.31 32.06 88.65 52.40 82.64 58.58 78.45 82.38 85.96 59.76 87.50 51.31
+ MLS 99.43 2.85 96.76 18.52 87.77 54.41 81.14 64.50 93.33 40.85 95.01 27.59 92.24 34.79
+ Energy 99.61 1.72 96.05 24.39 86.05 62.46 79.32 73.40 94.82 31.44 95.72 23.16 91.93 36.09
+ Mahalanobis 99.92 0.37 93.09 38.88 91.12 42.84 96.48 14.27 99.64 1.34 99.57 1.82 96.64 16.59
+ Residual 99.92 0.28 84.78 53.96 80.83 70.84 97.42 13.56 99.75 0.76 99.61 1.35 93.72 23.46
+ Vim 99.72 1.40 96.26 22.38 86.39 60.61 81.39 67.38 95.97 24.05 96.55 18.72 92.72 32.42
+ NECO 99.70 1.37 96.04 24.00 89.82 43.79 86.69 43.97 95.27 24.19 97.75 16.80 94.05 25.69
+ X-Maha (ours) 100.0 0.02 95.65 25.96 88.82 50.14 99.72 1.36 99.98 0.00 99.97 0.04 97.36 12.92

VPT-deep
+ MSP 96.78 14.73 92.13 38.71 90.87 42.17 83.57 53.66 81.08 72.16 87.71 52.15 88.69 45.60
+ MLS 99.78 0.87 97.63 11.72 90.42 44.26 87.38 45.51 96.43 22.13 97.87 12.18 94.92 22.78
+ Energy 99.86 0.55 97.75 10.55 88.92 54.12 87.04 49.12 97.25 16.66 98.35 9.25 94.86 23.37
+ Mahalanobis 99.88 0.39 98.22 10.49 92.63 40.93 95.85 16.72 98.81 6.74 98.94 5.10 97.39 13.39
+ Residual 99.90 0.30 95.61 23.77 82.05 73.28 96.25 18.13 99.23 3.43 99.11 3.77 95.36 20.45
+ Vim 99.89 0.50 98.00 9.27 89.13 53.34 88.05 45.00 97.68 14.16 98.58 7.80 95.22 21.68
+ NECO 99.82 0.78 97.78 11.74 91.39 39.08 89.00 35.93 96.60 18.40 98.14 10.10 95.45 19.34
+ X-Maha (ours) 99.99 0.00 99.32 2.97 91.05 46.61 99.56 2.10 99.94 0.00 99.92 0.07 98.30 8.62

LoRA
+ MSP 96.77 15.05 94.10 32.79 91.25 41.07 84.06 51.62 81.70 71.24 88.80 49.24 89.45 43.50
+ MLS 99.78 0.85 96.95 16.78 93.06 32.74 87.54 43.19 97.66 14.45 98.75 6.61 95.62 19.10
+ Energy 99.84 0.44 96.51 20.22 92.28 39.13 87.19 47.63 98.31 9.71 99.09 4.23 95.54 20.23
+ Mahalanobis 99.97 0.09 99.59 1.12 94.16 30.32 97.26 10.76 99.47 2.15 99.59 1.55 98.34 7.66
+ Residual 99.98 0.07 98.04 11.86 84.77 66.35 98.08 8.99 99.74 0.77 99.72 0.70 96.72 14.79
+ Vim 99.89 0.39 97.00 16.42 92.41 38.74 88.48 42.91 98.63 7.75 99.25 3.28 95.95 18.25
+ NECO 99.84 0.69 97.89 11.25 93.25 31.42 89.67 33.65 97.47 15.13 98.84 6.11 96.16 16.38
+ X-Maha (ours) 100.0 0.00 99.96 0.01 92.62 38.01 99.87 0.59 100.0 0.00 100.0 0.00 98.74 6.43

Adapter
+ MSP 97.34 12.54 95.56 23.93 91.73 38.80 85.30 48.04 84.70 62.47 90.66 42.81 90.88 38.10
+ MLS 99.90 0.32 98.31 8.01 94.26 29.06 92.18 29.58 99.10 3.69 99.50 1.51 97.21 12.03
+ Energy 99.93 0.18 98.28 7.56 93.67 34.00 92.43 28.42 99.48 1.43 99.71 0.61 97.25 12.03
+ Mahalanobis 99.97 0.12 99.44 1.82 95.04 26.43 97.58 9.60 99.55 1.76 99.63 1.36 98.53 6.85
+ Residual 99.98 0.02 97.78 14.80 86.21 64.68 98.51 6.91 99.85 0.47 99.84 0.36 97.03 14.54
+ Vim 99.95 0.16 98.48 6.36 93.77 33.18 93.09 26.10 99.57 0.98 99.75 0.45 97.44 11.20
+ NECO 99.90 0.30 98.60 6.92 94.41 27.76 92.31 26.44 98.91 6.70 99.45 2.68 97.26 11.82
+ X-Maha (ours) 100.0 0.00 99.92 0.09 94.12 30.70 99.80 0.92 100.0 0.00 100.0 0.00 98.97 5.28

Full fine-tuning
+ MSP 96.93 14.29 93.98 32.33 90.46 46.33 83.91 53.60 85.16 66.75 90.43 46.44 90.14 43.29
+ MLS 99.86 0.50 94.01 33.58 93.96 28.83 88.43 37.80 99.16 1.93 99.41 1.80 95.81 17.41
+ Energy 99.91 0.34 92.59 47.61 93.84 29.66 88.46 37.68 99.53 0.71 99.64 0.97 95.66 19.49
+ Mahalanobis 99.95 0.27 97.08 16.06 95.14 23.82 97.04 13.62 99.18 5.22 99.52 2.62 97.99 10.27
+ Residual 99.99 0.02 97.71 13.20 90.08 49.81 98.89 5.16 99.86 0.35 99.91 0.26 97.74 11.47
+ Vim 99.94 0.25 93.63 40.38 93.98 29.20 90.18 32.65 99.65 0.41 99.73 0.65 96.18 17.26
+ NECO 99.87 0.57 94.73 29.96 94.34 25.66 90.05 31.81 98.75 8.39 99.27 3.89 96.17 16.71
+ X-Maha (ours) 99.99 0.02 97.86 10.72 95.20 23.66 98.50 38.37 99.81 80.77 99.87 0.58 98.54 7.35
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Table 21: OOD detection performance in terms of AUROC (↑) and FPR95 (↓) for different PEFT
methods, and full fine-tuning on ImageNet-LT dataset.

Method Texture Places SUN iNaturalist ImageNet-O Average
AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95

Bias-tuning
+ MSP 83.92 58.30 80.95 67.86 81.16 66.33 94.31 26.99 75.83 77.60 83.23 59.42
+ MLS 88.71 49.75 84.46 61.47 85.84 58.57 96.93 16.31 82.68 71.40 87.72 51.50
+ Energy 89.93 43.48 85.15 57.30 86.97 52.85 97.84 10.11 84.22 66.95 88.82 46.14
+ Mahalanobis 87.55 59.63 82.72 61.63 86.38 51.55 97.89 10.89 85.03 62.65 87.92 49.27
+ Residual 73.74 81.88 68.43 82.87 75.65 73.07 88.27 48.56 72.40 80.00 75.70 73.28
+ Vim 90.06 42.68 85.22 57.05 87.16 52.08 97.92 9.83 84.39 66.60 88.95 45.65
+ NECO 88.38 50.51 84.00 60.84 86.25 57.23 97.65 12.16 83.85 67.40 88.03 49.63
+ X-Maha (ours) 90.95 41.45 81.67 63.98 85.48 54.88 97.75 11.44 86.58 56.70 88.48 45.69

VPT-shallow
+ MSP 85.58 49.11 85.44 55.99 86.38 52.79 97.53 10.26 83.79 57.95 87.74 45.22
+ MLS 89.30 41.47 88.52 49.37 90.05 45.47 98.64 5.90 88.74 48.50 91.05 38.14
+ Energy 90.00 37.94 89.01 46.13 90.73 41.65 98.95 4.31 89.69 44.20 91.68 34.85
+ Mahalanobis 92.07 29.52 86.20 58.31 88.98 49.94 99.19 3.10 91.51 38.95 91.59 35.96
+ Residual 88.37 49.73 73.68 80.55 79.27 72.40 96.66 16.66 84.03 60.05 84.40 55.88
+ Vim 90.32 36.33 89.04 46.03 90.82 41.24 99.02 4.11 89.93 42.75 91.83 34.09
+ NECO 91.15 33.32 87.20 49.53 89.67 44.33 99.01 3.86 89.98 43.80 91.40 34.97
+ X-Maha (ours) 95.93 14.54 85.98 57.66 89.03 47.59 99.18 3.17 93.34 32.30 92.69 31.05

VPT-deep
+ MSP 85.28 49.27 84.75 57.12 85.92 53.82 97.13 11.51 83.13 58.20 87.24 45.98
+ MLS 89.57 40.30 88.37 49.82 89.97 45.76 98.42 6.61 88.35 49.70 90.93 38.44
+ Energy 90.32 37.02 88.92 46.67 90.65 42.09 98.72 5.21 89.23 45.60 91.57 35.32
+ Mahalanobis 92.06 29.38 89.41 46.03 91.53 39.21 99.20 3.07 90.76 41.65 92.59 31.87
+ Residual 89.31 43.60 82.48 65.82 86.52 56.29 97.04 14.73 82.29 62.05 87.53 48.50
+ Vim 90.62 35.25 89.11 45.87 90.88 41.07 98.81 4.86 89.42 44.15 91.77 34.24
+ NECO 90.47 35.04 88.46 46.25 90.73 39.93 98.82 4.56 88.81 45.15 91.46 34.19
+ X-Maha (ours) 95.52 16.03 89.27 46.36 91.57 38.40 99.25 3.07 92.55 35.25 93.63 27.82

LoRA
+ MSP 85.99 47.75 85.29 56.70 86.36 53.65 97.14 11.87 83.59 58.30 87.67 45.65
+ MLS 90.06 39.08 88.56 50.13 90.17 45.98 98.41 6.79 88.82 48.35 91.20 38.07
+ Energy 90.81 35.80 89.03 47.35 90.81 42.37 98.70 5.17 89.78 43.35 91.93 34.81
+ Mahalanobis 93.12 25.78 88.31 50.24 90.92 41.66 99.28 2.84 91.57 39.00 92.64 31.90
+ Residual 91.25 37.61 78.95 71.78 84.13 61.05 97.08 14.96 83.92 59.10 87.07 48.90
+ Vim 91.18 33.92 89.16 46.63 91.01 41.06 98.81 4.81 90.01 42.30 92.03 33.74
+ NECO 91.80 30.76 88.35 47.11 90.79 40.31 98.93 4.07 89.71 43.80 91.92 33.21
+ X-Maha (ours) 96.85 11.28 88.36 49.55 91.06 40.36 99.26 2.84 93.58 30.70 93.82 26.95

Adapter
+ MSP 85.48 49.04 84.97 56.62 86.28 53.16 96.97 12.59 83.56 57.50 87.45 45.78
+ MLS 89.75 40.18 88.51 49.51 90.28 44.91 98.34 6.89 88.88 48.10 91.15 37.92
+ Energy 90.47 37.02 89.01 46.88 90.93 41.73 98.65 5.59 89.79 42.90 91.77 34.82
+ Mahalanobis 92.61 28.32 89.17 47.15 91.47 39.20 99.24 3.00 91.35 39.95 92.77 31.52
+ Residual 91.32 37.02 82.47 65.59 86.63 55.03 97.42 12.88 83.67 60.25 88.30 46.15
+ Vim 90.83 35.55 89.20 45.93 91.15 40.46 98.76 5.14 90.00 42.05 91.99 33.83
+ NECO 91.13 33.10 88.91 44.55 91.23 37.50 98.84 4.33 89.49 43.10 91.92 32.52
+ X-Maha (ours) 96.71 12.48 89.35 46.41 91.87 37.28 99.28 2.77 93.41 31.90 94.12 26.17

Full fine-tuning
+ MSP 82.21 56.24 81.12 65.98 81.83 62.82 93.92 24.60 78.67 64.85 83.55 54.90
+ MLS 87.34 48.72 84.31 60.57 85.87 57.24 96.04 18.77 86.30 56.00 87.97 48.26
+ Energy 87.32 49.65 84.07 61.19 85.70 58.51 95.57 22.25 86.55 55.45 87.84 49.41
+ Mahalanobis 89.84 37.94 85.82 56.61 87.51 53.62 98.21 7.27 87.21 52.45 89.72 41.28
+ Residual 81.65 65.37 71.82 83.97 75.22 78.32 92.41 38.93 70.36 79.90 78.29 69.30
+ Vim 87.56 48.42 84.12 60.91 85.80 58.11 95.81 20.61 86.53 55.70 87.97 48.75
+ NECO 87.56 43.74 83.30 57.95 85.99 53.72 97.11 11.76 85.76 52.20 87.95 43.87
+ X-Maha (ours) 93.28 25.05 86.17 55.15 87.90 51.41 98.54 5.99 88.87 46.35 90.95 36.79
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