
DeepReview: Automatic Code Review using
Deep Multi-Instance Learning

Heng-Yi Li1, Shu-Ting Shi1, Ferdian Thung2, Xuan Huo1, Bowen Xu2,
Ming Li1, and David Lo2

1 National Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China
{lihy,shist,huox,lim}@lamda.nju.edu.cn

2 School of Information Systems, Singapore Management University,
Singapore, Singapore

{ferdiant.2013,bowenxu.2017}@phdis.smu.edu.sg,davidlo@smu.edu.sg

Abstract Code review, an inspection of code changes in order to iden-
tify and fix defects before integration, is essential in Software Quality
Assurance (SQA). Code review is a time-consuming task since the re-
viewers need to understand, analysis and provide comments manually.
To alleviate the burden of reviewers, automatic code review is needed.
However, this task has not been well studied before.

To bridge this research gap, in this paper, we formalize automatic code
review as a multi-instance learning task that each change consisting of
multiple hunks is regarded as a bag, and each hunk is described as an
instance. We propose a novel deep learning model named DeepReview
based on Convolutional Neural Network (CNN), which is an end-to-end
model that learns feature representation to predict whether one change
is approved or rejected. Experimental results on open source projects
show that DeepReview is effective in automatic code review tasks. In
terms of F1 score, DeepReview outperform the performance of traditional
single-instance based model TFIDF-SVM and state-of-the-art deep fea-
ture based model Deeper by 32.4% and 30.0%, respectively.

Keywords: Software Mining ·Machine Learning ·Multi-Instance Learn-
ing · Automatic Code Review.

1 Introduction

Software Quality Assurance (SQA) is essential in software development. Soft-
ware code review [19] is an important inspection of code changes written by
an independent third-party developer in order to identify and fix defects before
integration. Effective code review can largely improve the software quality.

However, code review is a very time-consuming task that the reviewer needs
to spend much time to understand, analysis and provide comments for the code
review request. Additionally, with the rapid growth of software engineering, the
scale of software projects, the number of submissions and review requests are



2 Li et al.

(Rejected) changed hunk

(Approved) changed hunk

Figure 1: An example of rejected change JdbcRepository.java of review request 26657
from Apache. This change contains four hunks and only one hunk is rejected.

growing larger, which lead to a heavier burden on code reviewers. Therefore,
automatic code review is important to alleviate the burden of reviewers.

Recently, some studies have been proposed to improve the effectiveness of
code review [2, 19]. Thongtanunam et al. [19] revealed that 4%-30% of reviews
have code-reviewer assignment problems. They proposed a code reviewer rec-
ommendation approach named REVFINDER to solve it by leveraging the file
location information. Ebert et al. [2] proposed to identify the factors that confuse
reviewers and understand how confusion impacts the efficiency of code reviewers.
However, the task of automatic code review has not been well studied previously.

Considering the above issues, an automated approach is needed, which is
able to help reviewers to review the code submitted by developers. Usually, a
review request submitted by developers contains some changes of source code
in the form of diff files and textual descriptions indicating the function of the
change. Noticing that each change may contain multiple change hunks and each
hunk refers to continuous lines of code. For example, Figure 1 shows the change
in the file JdbcRepository.java of review request 26657 from Apache project.
It is clear that this change contains four hunks. One of the most common ways
to deal with this situation is to combine all hunks together and generate a uni-
fied feature for the change. However, this method may lead to two problems.
First, the hunks appearing in each change may be discontinuous and not be re-
lated between each other. Directly combining the hunks together may generate
misleading feature representations, leading to a poor prediction performance.
Second, when the change is rejected, not every hunk in the change is rejected.
Some hunks have no issues and can be approved by reviewers. So the approved
hunks and the rejected hunks should not be processed together for feature ex-
traction. Therefore, separately generating features from each individual hunk in
automatic code review is needed. If the label (referring to approved or rejected) of
each hunk is available, we can directly build classification models on hunk data.
However, in code review tasks, the label of each hunk is hard to be obtained
while the label of each change can be extracted. A question arises here, can we



DeepReview: Automatic Code Review using Deep Multi-Instance Learning 3

build a model to generate hunk-level feature representations for automatic code
review based on change-level labels?

To solve this problem, we formulate the automatic code review as a binary
classification task in the multi-instance learning setting. Instead of regarding
each change as an individual instance in traditional machine learning methods,
multi-instance learning method regards each change as a bag of instances while
each hunk of the change is described as an instance. The basic assumption in
multi-instance learning is that if one instance is positive then the bag is also
positive, which is consistent with code review task that if one hunk is rejected
then the change is also rejected. In our paper, we propose a deep learning model
named DeepReview based on Convolutional Neural Network (CNN) via multi-
instance learning to automatically learn semantic features from each hunk and
predict if one change is approved or rejected. Additionally, in order to obtain the
features that capture the difference of code changes, DeepReview firstly recovers
the code snippets before changed (named as old source code) and after changed
(named as new source code) according to the diff markers and then uses them
as inputs for deep model to generate feature representation and predict the label
of each change. We conduct experiments on large datasets collected from open
source project Apache for evaluation. The results in terms of widely-used met-
rics AUC and F1 score indicate that DeepReview is effective in automatic code
review and outperforms previous state-of-the-art feature representation methods
in software engineering.

The contributions of our work are in several folds:

– We are the first to study automatic code review tasks. We formalize it as
a multi-instance learning task. One change always includes multiple hunks,
where each hunk is described as an instance and the change can be repre-
sented by a set of instances. Experiment results on five large datasets show
that the proposed multi-instance model is effective in automatic code review
tasks.

– We propose a novel deep learning model named DeepReview based on Con-
volutional Neural Network (CNN), which learns semantic feature represen-
tation from source code change and change descriptions, to predict if one
change is approved or rejected.

– We employ a novel technique to leverage information from source code
changes, meaning that DeepReview takes both old source code (before changed)
and new source code (after changed) as inputs for code review prediction.
The comparison experiments show that this technique outperforms previous
state-of-the-art change processing methods.

2 The DeepReview Approach

In this section, we introduce the details of applying DeepReview for automatic
code review. The goal of this task is to predict if one code change of review
request submitted by developers is approved or rejected. The general process of
automatic code review based on machine learning model is illustrated in Figure 2.



4 Li et al.

Prediction: 
Rejected or Approved

Code review archives Different changes Instances Classifier

(1) Collecting and
processing data.

(2) Extracting
features to generate 
training instances

(3) Building a
prediction model

(4) Predicting new change

New change submission

+
-
-

Figure 2: The general automatic code review process based on machine learning model.

The automatic code review prediction process mainly contains several parts:

– Collecting data from code review systems and processing data.
– Generating feature representations of the input data.
– Training a classifier based on the generated features and labels.
– Predicting if a new change is approved or rejected.

In the following, we first introduce the general framework of DeepReview in
subsection 2.1, and the data processing will be reported in subsection 2.2. The
core parts of DeepReview will be carefully introduced in subsection 2.3 and 2.4.

2.1 The Framework of DeepReview

We introduce some notations of our framework. Let Co = {co1, co2, . . . , coN} and
Cn = {cn1 , cn2 , . . . , cnN} denotes the collection of old code and new code. Let D =
{d1, d2, . . . , dN} denotes the collection of change descriptions, where N is the
number of changes. In this paper, we formalize the code review as a learning task,
which attempts to learn a prediction function f : X 7→ Y. xi ∈ X = (coi , c

n
i , di)

denotes each change, where coi and cni denotes the i-th old code (before changed)
and new code (after changed) respectively. Here coi = {hoi1, hoi2, . . . , hoim} and
coi = {hni1, hni2, . . . , hnim} contains multiple hunks and m is the number of hunks.
di denotes the text description of i-th change. yi ∈ Y = {1, 0} indicates whether
the change is approved or rejected.

We instantiate the code review prediction model by constructing a multi-
instance learning based deep neural network named DeepReview. The general
framework of DeepReview is illustrated in Figure 3. The DeepReview model con-
tains three parts: input layers, instance feature generation layers, multi-instance
based prediction layers.

In the DeepReview model, each hunk of source code change is regarded as
an instance. In the input layers, the source code and text description of each
instance is encoded as feature vectors and then are fed into the neural network
for processing. The details of data processing in the input layers will be dis-
cussed in subsection 2.2. Then the encoded data of each instance is fed into
instance feature generation layers. In these layers, DeepReview utilizes different
convolutional neural networks (CNN) for feature extraction for source code in-
put and text description input, respectively. The convolutional neural networks
for programming language processing (called PCNN) is carefully designed re-
specting to the characteristics of source code, which is similar to the network



DeepReview: Automatic Code Review using Deep Multi-Instance Learning 5

code
changes

CNN for program-
ming language

Fully-connected layers for feature fusion

…

…
.
.. .

..

old source code

text description…

…
.
.. .

..

new source code

encoding

CNN for program-
ming language

CNN for natural 
language

encoding encoding

Input layer

Instance feature 

generation layer

Multi-instance based 

prediction layer

Fully-connected layers for prediction

Output

Figure 3: The general framework of DeepReview for automatic code review prediction.
The DeepReview model contains three parts: Input layer, Instance feature generation
layer, Multi-instance based prediction layer.

structure in [5]. The convolutional neural networks for textual description pro-
cessing (called NCNN) is a standard way in [7]. Then the generated middle-level
features of old code, new code and textual descriptions of each instance are fused
to learn a unified feature representation via fully-connected networks mapping.
Finally, after generating unified feature representations, the DeepReview model
a prediction for each change via the multi-instance learning way in the in multi-
instance based prediction layers layers.

2.2 Data Processing

The datasets used for automatic code review is the changed source code sub-
mitted by developers, which always appears in form of diffs and contains both
source code and diff markers (e.g., + stands for adding a line, - stands for
deleting a line). The main features in code changes are the difference between
the code before changed and after changed. So in data preprocessing shown in
the left part of Figure 4, we extract both old code (before changed) and new
code (after changed) from diffs as input. We also use the change descriptions
since they contain the goal of this change and are helpful to prediction.



6 Li et al.

.
NCNN

.
PCNN 

.
PCNN

.
PCNN

.
PCNN

Instance Feature Generation Layer

Weight 

Sharing

Weight

Sharing

Multi-Instance based 

Prediction Layer

Weight 

Sharing

Classifier

ClassifierFusion layers

Fusion layers

Input Layer

Code 

before change

Code 

after change

Description

hunk1

hunk2

hunk1

hunk2

instance1

instance2

Change prediction

M
a
x
 p

o
o
lin

g
 la

y
ers

Figure 4: Automatic code review by DeepReview. When a change is processed for pre-
diction, three parts of the change (old code, new code and text descriptions) are firstly
encoded as feature vectors to feed into deep model. Then three parts of convolutional
neural networks are followed to extracte semantic features for source code and text
description separately. After that a fully-connected network is used to get fusion fea-
ture for hunks. Finally, another fully-connected network and a max-pooling layer is
connected to generate a prediction indicating approved or rejected of the change.

After splitting diff files into old code, new code and text description, a
pre-trained word2vec [12] technique is used to encode every token as vector rep-
resentations (e.g., a 300 dimension vector), which has been shown effective in
processing textual data and widely used in text processing tasks [7,12]. In a simi-
lar way, we split descriptions as words and encode them as vector representations
too. All these vector representations are sent into the deep neural network to
learn the semantic features.

2.3 Instance Feature Generation Layer

DeepReview takes old source code (before change) and new source code (after
change) along with the text descriptions as inputs. Noticing that the source
code and text descriptions are with different structures. Therefore we use PCNN
network for code and NCNN network for text to extract feature, respectively.

As aforementioned, each change will contain multiple hunks and different
hunks are individual instance, therefore the instance features should be extracted
separately by the same neural network. In other words, the weight of PCNN is
shared for all code hunks. In this way, we can get unbiased feature representations
for each hunk with both old code and new code.

Suppose one change contains m modified hunks. Let (zoi1, z
o
i2, . . . , z

o
im) de-

notes the middle-level vectors of old source code coi , (zni1, z
n
i2, . . . , z

n
im) denotes

the middle-level vectors of new source code cni and zti denotes the middle-level
vectors of text description di. In the instance feature generation layers, DeepRe-
view first concatenates this three part for each instance as following:

zhij = zoij � znij � zti (1)



DeepReview: Automatic Code Review using Deep Multi-Instance Learning 7

where � is the concatenating operation and the generated zhij represents the
features of the j-th hunk of the i-th change (referring to one instance).

To capture the difference between new code and old code as well as the
relation between code change and change description, this concatenated features
are then fed into fully-connected networks for feature fusion.

2.4 Multi-Instance based Prediction Layer

In the prediction layers, we first make a prediction for each hunk (also called
instance) using fully-connected networks following a sigmoid layer based on the
generated hunk representations. Similarly, all the fully-connected networks are
shared weights to each hunk so that the generated prediction does not have bias.
The output prediction of each hunk pi = (pi1, pi2, . . . , pim) is generated.

In the multi-instance setting, if any instance is positive (rejected), the bag is
also positive (rejected). So the maximum value of predictions for hunks is used
for predicting the label of each change. Then, a max-pooling layer is employed
to get the final prediction for the change, that is p̂i = max{p}.

Specifically, the parameters of the convolutional neural networks layers can
be denoted as Θ = {θ1, θ2, . . . , θl} and the parameters of the fully-connected
networks layers can be denoted as W = {w1,w2, . . . ,w3}. Therefore, the loss
function implied in DeepReview is:

L(Θ,W ) =−
N∑
i=1

(cayi log p̂i + cr(1− yi) log(1− p̂i)) + λΩ(f) (2)

where L is a cross-entropy loss, Ω(f) is the regularization term which imposes
regularization (e.g., L2 regularization) on the weights of model, and λ is the
trade-off parameter balancing these two terms. ca denotes the cost of incorrectly
predicting a rejected change as approved and cr denote the cost of incorrectly
predicting a approved change as rejected. This objective function can be effec-
tively optimized by SGD (Stochastic gradient descent) algorithm [9].

3 Experiments

To evaluate the effectiveness of DeepReview , we conduct experiments on thou-
sands of code reviews from open source software projects and compare with
several state-of-the-art code review methods and our variants.

3.1 Experiment Settings

The datasets used in our experiment are from Apache 3, which are widely used
code review source [15–17]. We downloaded all reviews on October 2017 and
selected only code reviews in which the reviewers highlighted the line numbers

3 Apache Code Review Board, https://reviews.apache.org/r/



8 Li et al.

that they have issues with, totally 1011 code reviews. We further extracted five
repositories with the largest number of involved files in the collected code reviews
as different datasets and the statistics are shown in Table 1. For each repository,
we have more than 1,000 involved files and at least 3,500 hunks.

Table 1: Statistics of our data sets.

Datasets #changes #hunks #rejected

cloudstack-git 1,682 6,171 128
aurora 1,161 6,762 168
drill-git 1,015 3,575 43
accumulo 1,011 5,798 152
hbase-git 1,009 6,702 140

As indicated by Table 1, the number of rejected hunks is only a small part of
all hunks and the datasets are very imbalanced. Therefore, we use F1 to evaluate
the performance, which have been widely used in imbalanced learning problem.
Additionally, we record the AUC, which is a non-parametric method to evaluate
model performance and is unaffected by class imbalance. The evaluation metrics
in our experiments have been used widely in various software engineering tasks
[5, 6, 11,14,20].

We compare the proposed model DeepReview with following baseline meth-
ods and some variants:

– TFIDF-LR [1,3], which uses TFIDF feature to represent source code changes
and Logistic Regression (LR) for classification.

– TFIDF-SVM, which uses TFIDF features to represent source code changes
and Support Vector Machine (SVM) for classification.

– Deeper [23], one of the state-of-the-art deep learning models on software
engineering, which extracts deep features from changes with DBN models
and then apply Logistic Regression (LR) for classification.

– Deeper-SVM, a slight variant of Deeper, which uses DBN model for feature
extraction and then apply Support Vector Machine for classification.

– DeepReview-SingleInstance, one variant of DeepReview, which does not con-
sider the multi-instance setting and concatenate the all hunks together as
one instance for input.

– DeepReview-diff, one variant of DeepReview, which does not separate the
code change and taking diff marks and diff code as input.

The experimental settings are introduced here. In the convolution layers, we
use activation function σ(x) = max(x, 0). Also we set the size of convolution
windows is 2 and 3 with 100 feature maps each.

3.2 Experiment Results

For each dataset, 10-fold cross validation is repeated 5 times and we report the
average value of all compared methods in order to reduce the evaluation bias. We



DeepReview: Automatic Code Review using Deep Multi-Instance Learning 9

Table 2: The performance comparison in terms of F1 and AUC between DeepRe-
view and state-of-the-art models. The highest results of each repository is highlighted
in bold. The compared methods that are significantly inferior than our approach will
be marked with “◦” and significantly better than our approach be marked with “•”.

F1 score AUC

Datasets Deeper Deeper
-SVM

TFIDF
-LR

TFIDF
-SVM

Deep
Review

Deeper Deeper
-SVM

TFIDF
-LR

TFIDF
-SVM

Deep
Review

accumulo 0.208◦ 0.108◦ 0.307◦ 0.111◦ 0.444 0.697◦ 0.712◦ 0.635◦ 0.598◦ 0.746
aurora 0.251◦ 0.101◦ 0.268◦ 0.112◦ 0.436 0.687◦ 0.714◦ 0.577◦ 0.578◦ 0.758

cloudstack-git 0.197◦ 0.089◦ 0.470◦ 0.194◦ 0.497 0.825◦ 0.823◦ 0.755◦ 0.771◦ 0.870
drill-git 0.107◦ 0.000◦ 0.267◦ 0.212◦ 0.414 0.636◦ 0.502◦ 0.636◦ 0.768◦ 0.761
hbase-git 0.114◦ 0.034◦ 0.355◦ 0.200◦ 0.463 0.597◦ 0.579◦ 0.685◦ 0.750◦ 0.758

avg. 0.175◦ 0.066◦ 0.333◦ 0.166◦ 0.451 0.688◦ 0.666◦ 0.658◦ 0.693◦ 0.779

also apply the statistic test to evaluate the significance of DeepReview. Pairwise
t-test at 95% confidence level is conducted.

We firstly compare our proposed model DeepReview with several traditional
non-multi instance models. One of the most common methods is to employ
Vector Space Model (VSM) to represent the changes. In addition, we compare
DeepReview with latest deep learning based models Deeper [23] on software
engineering, which applies Deep Believe Network for semantic feature extraction.
The results are shown in Table 2.

As indicated in Table 2, DeepReview achieves the best performance on all
datasets in terms of F1 score. On average, DeepReview can lead to AUC value
0.779, which is significant better than the value achieves by TFIDF-LR (0.658),
TFIDF-SVM (0.693). Table 2 also shows the experimental results of DeepRe-
view compared with Deeper and its variant Deeper-SVM. It can be easily find
that DeepReview achieves the best F1 score and AUC value. On average, the su-
periority of DeepReview to other deep feature based methods is statistically sig-
nificant. In conclusion, the proposed DeepReview is effective in automatic code
review prediction, which indicates that DeepReview can learn better features
than traditional hand-crafted features or previous deep learning based features.

To evaluate the effectiveness of applying multi-instance learning strategy
for code review, we compare our model to traditional single-instance learning
model, named DeepReview-SingleInstance. Figure 5a and Figure 5b show the
performance comparison of DeepReview and a variant DR-nMI, which does
not consider the multi-instance structure of code changes. It can be observed
that DeepReview achieves higher AUC value and F1 score than DeepReview-
SingleInstance on all datasets, indicating that multi-instance learning approach
is effective in code review task.

To evaluate the effectiveness of applying both source code before and after
changes to model the difference features of change, we compare another variant
of DeepReview, named DeepReview-diff. We use the same network structure to
extract the features of code in diffs and fuse it with the features of correspond-
ing change description as the final representations. Figure 6a and Figure 6b



10 Li et al.

0.300

0.320

0.340

0.360

0.380

0.400

0.420

0.440

0.460

0.480

0.500

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-SingleInstance DeepReview

(a) F1.

0.600

0.650

0.700

0.750

0.800

0.850

0.900

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-SingleInstance DeepReview

(b) AUC
Figure 5: F1 and AUC of the compared methods on five datasets.

0.300

0.350

0.400

0.450

0.500

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-diff DeepReview

(a) F1.

0.600

0.650

0.700

0.750

0.800

0.850

0.900

accumulo aurora cloudstack-git drill-git hbase-git

DeepReview-diff DeepReview

(b) AUC.
Figure 6: F1 and AUC of the compared methods on five datasets.

show the performance comparison of DeepReview and its variant DeepReview-
diff. Compared to DeepReview-diff, it is clear that DeepReview outperforms it
by improving 4.2% in terms of F1 score and 4.7% in terms of AUC on average.

4 Related Work

Many empirical studies aim to help researchers and practitioners to understand
code review practice from different perspectives [8, 15, 18]. To characterize and
understand the differences between a diverse set of software projects, Rigby et
al. [15] found that many characteristics of code review have independently con-
verged to similar values which indicates general principles of code review, e.g.,
reviewers prefer discussion and fixing code over reporting defects, the number
of involved developers can vary. Kononenko et al. [8] investigated a set of fac-
tors that might affect the quality of code review based on a large open-source
project Mozilla, and focused on the relationship between human factors (e.g.,
personal characteristics of developers, team participation and involvement) and
code review quality. They found that developer participation in discussions sur-
rounding bug fixes and developer-related characteristics (e.g., review experience
and review loads) are promising predictors of code review quality for all studied
systems. Tao et al. [18] investigated the reasons behind 300 rejected Eclipse and
Mozilla patches by surveying 246 developers. They concluded that the poor qual-
ity of the solution, the large size of the involvement of unnecessary changes, the
ambiguous documentation of a patch and inefficient communication. Moreover,
Thongtanunam et al. [19] revealed that 4%-30% of reviews have code-reviewer
assignment problem. Thus, they proposed a code-reviewer recommendation ap-
proach REVFINDER to solve the problem by leveraging the file location infor-



DeepReview: Automatic Code Review using Deep Multi-Instance Learning 11

mation. The intuition is that files that are located in similar file paths would
be managed and reviewed by experienced code-reviewers. Zanjani et al. [24] also
studied on code reviewer recommendation problem and they proposed an ap-
proach cHRev by leveraging the specific information in previously completed
reviews (i.e., quantification of review comments and their recency).

Recently, deep learning has been applied in software engineering. For exam-
ple, Yang et al. applied Deep Belief Network (DBN) to learn higher-level features
from a set of basic features extracted from commits (e.g., lines of code added,
lines of code deleted, etc.) to predict buggy commits [23]. Xu et al. applied word
embedding and convolutional neural network (CNN) to predict semantic links
between knowledge units in Stack Overflow (i.e., questions and answers) to help
developers better navigate and search the popular knowledge base [22]. Lee et al.
applied word embedding and CNN to identify developers that should be assigned
to fix a bug report [10]. Mou et al. [13] applied tree based CNN on abstract syntax
tree to detect code snippets of certain patterns. Huo et al. [4,5] applied learned
unified semantic feature based on bug reports in natural language and source
code in programming language for bug localization tasks. Wei et al. [21] proposed
deep feature learning framework AST-based LSTM network for functional clone
detection, which exploits the lexical and syntactical information.

5 Conclusion

In this paper, we are the first to formulate code review as a multi-instance learn-
ing task. we propose a novel deep learning model named DeepReview for auto-
matic code review, which takes raw data of the changed code containing multiple
hunks along with the textual descriptions as inputs and predicts if one change
is approved or rejected. Experimental results on five open source datasets show
that DeepReview is effective in automatic code review tasks and outperforms
the state-of-the-art single-instance and deep feature based models on software
engineering.

Acknowledgment. This research was supported by National Key Research
and Development Program (2017YFB1001903) and NSFC (61751306).

References

1. Christopher, D.M., Prabhakar, R., Hinrich, S.: Introduction to information re-
trieval. An Introduction To Information Retrieval 151, 177 (2008)

2. Ebert, F., Castor, F., Novielli, N., Serebrenik, A.: Confusion detection in code
reviews. In: ICSME. pp. 549–553. IEEE, Shanghai, China (2017)

3. Gay, G., Haiduc, S., Marcus, A., Menzies, T.: On the use of relevance feedback
in ir-based concept location. In: ICSM. pp. 351–360. Edmonton, Alberta, Canada
(2009)

4. Huo, X., Li, M.: Enhancing the unified features to locate buggy files by exploit-
ing the sequential nature of source code. In: IJCAI. pp. 1909–1915. Melbourne,
Australia (2017)



12 Li et al.

5. Huo, X., Li, M., Zhou, Z.H.: Learning unified features from natural and program-
ming languages for locating buggy source code. In: IJCAI. pp. 1606–1612. New
York, NY, USA (2016)

6. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: ASE. pp. 279–289.
Silicon Valley, CA, USA (2013)

7. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP.
pp. 1746–1751. Doha, Qatar (2014)

8. Kononenko, O., Baysal, O., Guerrouj, L., Cao, Y., Godfrey, M.W.: Investigating
code review quality: Do people and participation matter? In: ICSME. pp. 111–120.
IEEE, Bremen, Germany (2015)

9. L, B.: Online algorithms and stochastic approximations. Online Learning and Neu-
ral Networks (1998)

10. Lee, S., Heo, M., Lee, C., Kim, M., Jeong, G.: Applying deep learning based auto-
matic bug triager to industrial projects. In: ESEC/FSE. pp. 926–931. Paderborn,
Germany (2017)

11. Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn
defect predictors. TSE 33(1), 2–13 (2007)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS. pp. 3111–3119.
Lake Tahoe, Nevada (2013)

13. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: AAAI. Phoenix, Arizona,
USA. (2016)

14. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: ICSE. pp. 382–391. San
Francisco, CA, USA (2013)

15. Rigby, P.C., Bird, C.: Convergent contemporary software peer review practices. In:
FSE. pp. 202–212. ACM, Saint Petersburg, Russian Federation (2013)

16. Rigby, P.C., German, D.M.: A preliminary examination of code review processes
in open source projects. Tech. rep., Technical Report DCS-305-IR, University of
Victoria (2006)

17. Rigby, P.C., German, D.M., Storey, M.A.: Open source software peer review prac-
tices: a case study of the apache server. In: ICSE. pp. 541–550. ACM, Leipzig,
Germany (2008)

18. Tao, Y., Han, D., Kim, S.: Writing acceptable patches: An empirical study of open
source project patches. In: ICSME. pp. 271–280. IEEE, BC, Canada (2014)

19. Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Mat-
sumoto, K.i.: Who should review my code? a file location-based code-reviewer rec-
ommendation approach for modern code review. In: SANER. pp. 141–150. IEEE,
Montreal, QC, Canada (2015)

20. Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect
prediction. In: ICSE. pp. 297–308. Austin, USA (2016)

21. Wei, H.H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: IJCAI. pp.
3034–3040. Melbourne, Australia (2017)

22. Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., Li, S.: Predicting semantically linkable
knowledge in developer online forums via convolutional neural network. In: ASE.
pp. 51–62. Singapore, Singapore (2016)

23. Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J.: Deep learning for just-in-time defect
prediction. In: QRS. pp. 17–26. Vancouver, BC, Canada (2015)

24. Zanjani, M.B., Kagdi, H., Bird, C.: Automatically recommending peer reviewers
in modern code review. IEEE TSE 42(6), 530–543 (2016)


