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Abstract Statistical machine learning is widely used in image classification.
However, most techniques 1) require many images to achieve high accuracy and
2) do not provide support for reasoning below the level of classification, and
so are unable to support secondary reasoning, such as the existence and posi-
tion of light sources and other objects outside the image. This paper describes
an Inductive Logic Programming approach called Logical Vision which over-
comes some of these limitations. LV uses Meta-Interpretive Learning (MIL)
combined with low-level extraction of high-contrast points sampled from the
image to learn recursive logic programs describing the image. In published
work LV was demonstrated capable of high-accuracy prediction of classes such
as regular polygon from small numbers of images where Support Vector Ma-
chines and Convolutional Neural Networks gave near random predictions in
some cases. LV has so far only been applied to noise-free, artificially generated
images. This paper extends LV by a) addressing classification noise using a
new noise-telerant version of the MIL system Metagol, b) addressing atrribute
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noise using primitive-level statistical estimators to identify sub-objects in real
images, c) using a wider class of background models representing classical 2D
shapes such as circles and ellipses, d) providing richer learnable background
knowledge in the form of a simple but generic recursive theory of light re-
flection. In our experiments we consider noisy images in both natural science
settings and in a RoboCup competition setting. The natural science settings
involve identification of the position of the light source in telescopic and micro-
scopic images, while the RoboCup setting involves identification of the position
of the ball. Our results indicate that with real images the new noise-robust
version of LV using a single example (i.e. one-shot LV) converges to an ac-
curacy at least comparable to thirty-shot statistical machine learner on both
prediction of hidden light sources in the scientific settings and in the RoboCup
setting. Moreover, we demonstrate that a general background recursive theory
of light can itself be invented using LV and used to identify ambiguities in
the convexity/concavity of objects such as craters in the scientific setting and
partial obscuration of the ball in the RoboCup setting.

1 Introduction

Galileo’s Siderius Nuncius [15] describes the first ever telescopic observations
of the moon. Using sketches of shadow patterns Galileo conjectured the exis-
tence of mountains containing hollow areas (i.e. craters) on a celestial body
previously thought perfectly spherical. His reasoned description, derived from
a handful of observations, relies on a knowledge of i) classical geometry, ii)
straight line movement of light and iii) the Sun as an out-of-view light source.
This paper investigates the use of Inductive Logic Programming (ILP) [33] to
derive logical hypotheses, related to those of Galileo, from a small set of real-
world images. Figure 1 illustrates part of the generic background knowledge
used by ILP for interpreting object convexity in Experiment1 (Section 5.1).

Figure 1a shows an image of the crescent moon in the night sky, in which
convexity of the overall surface implies the position of the Sun as a hidden
light source beyond the lower right corner of the image. Figure 1b shows an
illusion in which assuming a light source in the lower right leads to perception
of convex circles on the leading diagonal. Conversely, a light source in the
upper left implies their being concave. Figure 1c shows how interpretation of a
convex feature, such as a mountain, comes from illumination of the right side of
a convex object. Figure 1d shows that perception of a concave feature, such as
a crater, comes from illumination of the left side. Figure 1e shows how Prolog
background knowledge encodes a simple recursive definition of the reflected
path of a photon.

This paper explores the phenomenon of knowledge-based perception using
an extension of Logical Vision (LV) [10]. In the previous work LV was shown
to accurately learn a variety of polygon classes from artificial images with
low sample requirements compared to statistical learners. LV generates logical
hypotheses concerning images using an ILP technique called Meta-Interpretive
Learning (MIL) [32,9].
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a) b)

Convex Concave

c) d)

e) light(X,X).
light(X,Y ) : −reflect(X,Z),
light(Z, Y ).

Fig. 1 Interpretation of light source direction: a) Waxing crescent moon (Credit: UC Berke-
ley), b) Concave/Convex illusion, c) Concave and d) Convex photon reflection models, e)
Prolog recursive model of photon reflection

Contributions of this paper The main contributions of this paper are:

1. We describe a generalisation of LV [10], which is tolerant to both classifi-
cation noise and attribute noise.

2. We show that even in the presence of noise in images (absent in artificial
images in [10]) effective learning can be achieved from as few as one image.

3. We demonstrate that in all cases studied the combination of a logic-based
learner with a statistical estimator requires far fewer images (sometimes
one) to achieve accuracies requiring large numbers of images using statis-
tical machine learning on its own.

4. We demonstrate that LV can use, as well as invent, generic background
knowledge about reflection of photons in providing explanations of visual
features.

5. We demonstrate that LV has potential in real application domains such as
RoboCup.
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RoboCup domain In Experiment 2 (Section 5.2) we investigate LV in the con-
text of robotics. Figure 2 shows images from the RoboCup Soccer Standard
Platform League 1. This is a competition with five Aldebaran Nao robots on
each team. They are placed on a 9m × 6m field, and operate autonomously
to play soccer. The robots use cameras to detect the ball, field lines, goals
and other robots. In Figure 2a, the ball can be seen distinctly, whereas Fig-
ures 2b and 2c the ball is partially occluded. The problem with recognising
the ball is that it consists of several patches of black and white, but there
are many other objects on the field that also contain white regions. However,
background knowledge concerning the geometry of a sphere projected on a
2D plane guarantees a ball has a circular appearance. If three edge points
can be found our approach can fit them to a circle and if that circle has
the proportions of black and white pixels, the system concludes it is a ball.

(a) (b) (c)

Fig. 2 Robot’s view of: a) another robot and
ball clearly separated, b) the ball partially
occluded by a robot, c) the ball within the
bounds of a robot

The paper is organised as fol-
lows. Section 2 describes related
work. The theoretical framework
for LV is provided in Section 3.
Section 4 describes the implemen-
tation of LV, including the recur-
sive background knowledge for de-
scribing radiation and reflection of
light. In Section 5 we describe ex-
periments on 1) learning abstract
definitions of polygons from artifi-
cial images, 2) predicting the light
source direction and identification
of ambigiuties in images of the
moon and microscopic images of il-
luminated micro-organisms and 3) identifying the ball in the RoboCup domain.
Finally, we conclude and discuss further work in Section 6.

2 Related work

Statistical machine learning based on low-level feature extraction has been
increasingly successful in image classification [37]. However, high-level vision,
involving interpretation of objects and their relations in the external world, is
still relatively poorly understood [7]. Since the 1990s perception-by-induction
[17] has been the dominant model within computer vision, where human per-
ception is viewed as inductive inference of hypotheses from sensory data. The
idea originated in the work of the 19th century physiologist Hermann von
Helmholtz [44]. The approach described in this paper is in line with perception-
by-induction in using ILP for generating high-level perceptual hypotheses by
combining sensory data with a strong bias in the form of explicitly encoded

1 http://www.tzi.de/spl/bin/view/Website/WebHome
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background knowledge. Whilst Gregory [16] was one of the earliest to demon-
strate the power of the Helmholtz’s perception model for explaining human
visual illusion, recent experiments [18] show Deep Neural Networks fail to
reproduce human-like perception of illusion. This contrasts with results in
Section 5.2, in which LV achieves analogous outcomes to human vision.

Early work in Computer Vision investigated the interaction between vi-
sual analysis, linguistic descriptions and geometric models [45,22]. In some
such approaches visual illusions were identified by testing logical models of
images for contradictions [2]. However, these techniques were based on prefor-
mulated models, and did not use machine learning augmented by background
knowledge in the fashion described in this paper. Preformulated models are
also used in more recent work to capture, for instance, the movement of a
human being walking [19] or a hyperbolic curve involved in analysing images
of penetrating radar [35]. However, these techniques lack the flexibility of our
Logical Vision approach to combine a set of primitive models in a modular
fashion to form a set of composite structured and re-useable models from an
image.

Shape-from-shading [20,47] is a key computer vision technology for esti-
mating low-level surface orientation in images. Unlike our approach for identi-
fying concavities and convexities, shape-from-shading generally requires obser-
vation of the same object under multiple lighting conditions. By using back-
ground knowledge as a bias we reduce the number of images for accurate
perception of high-level shape properties such as the identification of convex
and concave image areas.

ILP has previously been used for learning concepts from images. For in-
stance, in [6] object recognition is carried out using existing low-level computer
vision approaches, with ILP being used for learning general relational concepts
from this already symbolised starting point. Farid [13,14] adopted a similar
approach, extracting planar surfaces from a 3D image of objects encountered
by urban search and rescue robots and household objects, then using ILP to
learn relational descriptions of those objects. By contrast, LV [10] uses ILP
to provide a bridge from very low-level features, such as high contrast points,
to high-level interpretation of objects. The present paper extends the earlier
work on LV by implementing a noise-proofing technique, applicable to real
images, and extending the use of generic background knowledge to allow the
identification of objects, such as light sources, not directly identifiable within
the image itself.

Various statistics-based techniques, making use of high-level vision, have
been proposed for one- or even zero-shot learning [36,43]. They usually start
from an existing model pre-trained on a large corpus of instances, and then
adapt the model to data with unseen concepts. Approaches can be separated
into two categories. The first exploits a mapping from images to a set of seman-
tic attributes, then high-level models are learned based on these attributes [25,
29,36]. The second approach uses statistics-based methods, pre-trained on a
large corpus, to find localized attributes belonging to objects but not the en-
tire image, and then exploits the semantic or spatial relationships between the
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Name Metarule
PropObj1 P (obj1)←
PropObj2 P (obj2)←
PropLight P (light)←
Conjunct3 P (x, y, z)← Q(x, y, z), R(x, y, z)
Chain3 P (u, x, y)← Q(u, x, z), R(u, z, y)
Chain32 P (u, x, y)← Q(u, x, z), R(z, y)
PrePost3 P (x, y, z)← Q(x, y), R(x), S(z)
Pre2 P (x)← Q(x), R(x, y)
Post2 P (x, y)← Q(x, y), R(y)

Fig. 3 Metarules used in this paper. Uppercase letters P,Q,R, S denote existentially quan-
tified variables. Lowercase letters u, x, y, and z are universally quantified.

attributes for scene understanding [21,26,12]. Unlike these approaches, we fo-
cus on one-shot from scratch, i.e. high-level vision based on just very low-level
features such as high contrast points.

Machine learning is used extensively in robotics, mainly to learn percep-
tual and motor skills. Current approaches for learning perceptual tasks include
Deep Learning and Convolutional Neural Networks [23,38]. The different ap-
proaches to vision in RoboCup can be seen in the SPQR team’s use of convo-
lutional neural networks [41] and the ad hoc, but effective method used by the
2016 SPL champions, B-Human [39]. This approach clearly depends on domain
knowledge that has been acquired by the human designers. However, the ap-
proach described in this paper promises the possibility that similar knowledge
could be acquired through machine learning.

3 Framework

The framework for LV is a special case of MIL.

Meta-Interpretive Learning Given background knowledge B and examples E
the aim of a MIL system is to learn a hypothesis H such that B,H |= E, where
B = Bp ∪M , Bp is a set of Prolog definitions and M is a set of metarules
(see Figure 3). MIL [31,32,8,30,9] is a form of ILP based on an adapted
Prolog meta-interpreter. A standard Prolog meta-interpreter proves goals by
repeatedly fetching first-order clauses whose heads unify with the goals. By
contrast, a MIL learner proves the set of all examples by fetching higher-order
metarules (Figure 3) whose heads unify with the goals. The resulting meta-
substitutions are saved, allowing them to be used to generate a hypothesised
program which proves all the examples by substituting the meta-substitutions
into corresponding metarules. Use of metarules and background knowledge
helps minimise the number of clauses n of the minimal consistent hypothesis
H and consequently the number of examples m required to achieve error below
ε bound. [9] shows n dominates the upper bound for m2.

2 p predicates and M metarules m ≥ n ln|M|+p ln(3n)+ln 1
δ

ε
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Logical Vision In LV [10], the background knowledge B, in addition to Prolog
definitions, contains a set of one or more named images I. The examples
describe properties associated with I.

4 Implementation

4.1 Noise tolerant Meta-Interpretive Learning

The MIL framework described in the previous section has been implemented
in a system called Metagol [31,32,8,30,9]. In this section we describe a noise
tolerant version of Metagol called MetagolNT

3. The standard Metagol im-
plementation uses a modified Prolog meta-interpreter to backtrack through
the space of hypotheses which prove all training examples. This strategy is
consistent with an assumption of noise-free examples. Because of backtrack-
ing, standard methods for handling noise, such as accepting a user-defined
maximum number of negative examples (used in the ILP systems Progol and
Aleph), are inefficient for Metagol 4. For this reason, a more efficient noise-
handling method is required.

The noise tolerant version of Metagol (i.e. MetagolNT ) used in this pa-
per, finds hypotheses consistent with randomly selected subsets of the training
examples and evaluates each resulting hypothesis on the remaining training
set, returning the hypothesis with the highest score. The size of the training
samples and the number of iterations (i.e. number of random samples) are user
defined parameters. As shown in Algorithm 1, MetagolNT is implemented as
a wrapper around Metagol and returns the highest score hypothesis Hmax

learned from randomly sampled examples from E after n iterations. The sam-
ple size is controlled by ν = (k+, k−), where k+ and k− are the number of
sampled positive and negative examples respectively, reflecting the noise level
in the dataset.

4.2 Logical Vision

Our implementation of Logical Vision, called LogV is, is shown in Algorithm 2.
The input consists of a set of images I, background knowledge B including
both Prolog primitives Bp and metarules M , a set of training examples E of
the target concept, MetagolNT ’s parameters ν and n.

The procedure of LogV is is divided into two stages. The first stage is
to extract symbolic background knowledge from images, which is done by the
visualAbduce function. By including abductive theories inBp ∈ B, visualAbduce
can abduce points, lines, ellipses and even complex mid-level visual representa-
tions such as super-pixels (see Section 5.3). In our implementation, visualAbduce
can take logic rules, statistical models and functions from a computer vision
toolbox as background knowledge, which provide visual primitives. This makes

3 Available from https://github.com/metagol/Metagol NT
4 For example, a naive approach which ignores the label of the examples up to k times,

has a time complexity of O(
(
m
k

)
), where m is the total number of examples.
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Algorithm 1: MetagolNT (B,E, ν, n)

Input : Background knowledge B; Set of (noisy) examples E; Parameter about
noise level ν and number of iterations n

Output: Hypothesis Hmax
1 max score = 0;
2 max = 1;
3 for each i ∈ [1, n] do

/* Randomly select examples from E w.r.t. noise level ν */

4 Tri = randSample(E, ν);
/* Leave the rest of examples for validation */

5 Tsi = E - Tri;
/* Call Metagol and save the learned hypothesis in Hi */

6 Hi = learn(B, Tri);
/* Evaluate the learned hypothesis Hi on validating set */

7 Ei = evaluate(B, Hi, Tsi);
8 if max score < Ei then
9 Hmax = Hi;

10 max score = Ei;

11 end

12 end
13 Return Hmax;

Algorithm 2: LogV is(I,B,E, ν, n)

Input : Training images I; Background knowledge B; Set of (noisy) examples E;
Parameter about noise level ν and number of iterations n.

Output: Hypothesised logic program H.
/* Initialise the knowledge base of visual primitives */

1 Bv = Φ;
2 for each image i ∈ I do

/* Do visual abduction to get facts of visual primitives P */

3 Pi = visualAbduce(i, B);
4 Bv = Bv ∪ Pi;
5 end

/* Call MetagolNT to learn a model */

6 Model = MetagolNT (B ∪Bv , E, ν, n);
7 Return Model;

LogV is flexible in learning many kinds of concepts. More details about visual
abduction are introduced in Section 7.

The second stage of LogV is simply calls the noise-tolerant MIL system
MetagolNT to induce a hypothesis for the target concept, as both abduced
visual primitives Bv and training examples E from an image dataset can be
noisy.

Visual abduction The target of visual abduction is to obtain symbolic interpre-
tation of images for further learning. The abduced logical facts are groundings
of primitives defined in the background knowledge Bp. For example, in order
to learn the concept of a polygon one at least needs to extract points and
edges from an image. When the data is noise-free, this can be done by sam-
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pling high-contrast pixels from the image, such as the background knowledge
about edge point applied in [10].

However, for real images that contain a degree of noise, we can a include sta-
tistical model in visualAbduce and use it to implement a noise-robust version
of edge point. For example, in the Protist and Moon experiments of section 5,
the edge point/1 calls a pre-trained statistical image background model which
can categorise pixels into foreground or background points using Gaussian
models or image segmentation.

a) b) c)

Fig. 4 Object detection: a) Sampled
lines with edge points; b) Fitting of initial
ellipse centred atO. Hypothesis tested us-
ing new edge points halfway between ex-
isting adjacent points. c) Revised hypoth-
esis tested until hypothesis passes test.

Furthermore, we can use an ab-
ductive theory about shapes to ab-
duce objects. For example, in real im-
ages many objects of interest are com-
posed of curves and can be approxi-
mated by ellipses or circles. Therefore
we can include background knowledge
about them in visualAbduce to per-
form ellipse and circle abduction, as
shown in Figure 4. The abduced ob-
jects will take the form elps(Centre,
Parameter) or circle(Centre, Radius)
where Centre = [X,Y ] is the shape’s
centre, Parameter = [A,B, T ilt] are the axis lengths and tilting angle and
Radius is the circle radius. The computational complexity of the abduction
procedure is O(rkn), where n is the number of edge points, and k is the
number of iteration of the ellipse fitting algorithm. r is the time required for
resampling when the fitted object is not accurate enough, hence it is a constant
that reflects the noise level of the input image.

In LogV is, background knowledge about visual primitives is implemented
as logical predicates in a library, including basic geometrical concepts and ex-
tractors for low-level computer vision features such as the colour histogram
and super-pixels. Users can implement their own background knowledge for vi-
sual abduction based on these primitives to address different kinds of problems
flexibly.

5 Experiments

5.1 Experiment 1

In the first experiment (detailed report in [10]) we compared a noise-free vari-
ant of the LogV is algorithm (refered to as LVPoly) with statistics-based ap-
proaches on the task of learning simple geometrical concepts (see example
images in Figure 5).
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Fig. 5 Experiment 1 - examples of the concept regular polygon used in Experiment 1. The
first two rows are positive examples and the second two rows negative.

Materials & methods We used Inkscape5 to randomly generate 3 labelled im-
age datasets for 3 polygon shape learning tasks respectively. Training sets
contain 40 examples. For simplicity, the images are binary-coloured, each im-
age contains one polygon. Target concepts are: 1) triangle/1, quadrangle/1,
pentagon/1 and hexagon/1; 2) regular poly/1 (regular polygon); 3) right tri/1

(right triangle). All the datasets were partitioned into 5-folds respectively,
4 of them were used for training and the remaining one is for testing, thus
each experiment was conducted 5 times6.

Results & discussion Table 1 compares the predictive accuracies of an im-
plementation of LVPoly versus several statistics-based computer vision algo-
rithms. We used a popular statistics-based computer vision toolbox VLFeat [42]
to implement the statistical learning algorithms. The experiments are carried
with different kinds of features. Because the sizes of datasets are small, we
used a support vector machine (libSVM [5]) as classifier. The parameters are
selected by 5-fold cross-validation. The features we have used in the experi-
ments are as follows: HOG, Histogram of Oriented Gradients [11], Dense-
SIFT, Scale Invariant Feature Transform [28], LBP, Local Binary Pattern
[34], CNN, Convolutional Neural Network (CNN) [40]. We also compare with
a combinations of above feature sets (i.e. C+d+L). According to Table 1,
given 40 training examples the prediction accuracies for LVPoly are signifi-
cantly better than other approaches.

5.2 Experiment 2

This subsection describes experiments comparing one-shot LV with multi-shot
statistics-based learning7. In this experiments, we investigate the following null
hypothesis:

Null hypothesis One-shot LV cannot learn models with accuracy comparable
to thirty-shot statistics-based learning.

5 http://inkscape.org
6 Code at https://github.com/haldai/Logic-Vision
7 Data and code at https://github.com/haldai/LogicalVision2
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Table 1 Predictive accuracy of learning simple geometrical shapes from single object train-
ing sets of size 40.

ACC tri pen hex reg r tri

HOG 0.83± 0.04 0.73± 0.03 0.75± 0.07 0.63± 0.08 0.74± 0.04
DSIFT 0.82± 0.05 0.64± 0.04 0.71± 0.03 0.71± 0.05 0.77± 0.07

LBP 0.87± 0.05 0.67± 0.03 0.73± 0.03 0.65± 0.05 0.75± 0.05
CNN 0.91± 0.01 0.75± 0.00 0.84± 0.02 0.59± 0.06 0.85± 0.04

C+d+L 0.82± 0.01 0.76± 0.01 0.76± 0.01 0.64± 0.05 0.80± 0.04
LVPoly 1.00± 0.00 1.00± 0.00 0.99± 0.01 1.00± 0.00 1.00± 0.00

12

6

9 3

210

11 1

8

7

4

5

EastWest

North

South
a) b)

Fig. 6 Illustrations of Moons and Protists data: a) Examples of the datasets, b) Four classes
for twelve light source positions

Materials We collected two real image datasets for the experiments: 1) Pro-
tists drawn from a microscope video of a Protists micro-organism, and 2)
Moons a collection of images of the moon drawn from Google images. The
instances in Protists are coloured images, while the images in Moons come
from various sources and some of are grey-scale. For the purpose of classifi-
cation, we generated the two datasets by rotating images through 12 clock
angles 8. Datasets consist of 30 images for each angle, providing a total of 360
images. Each image contains one of four labels as follows: North = {11, 12, 1}
clocks, East = {2, 3, 4} clocks, South = {5, 6, 7} clocks, and West = {8, 9, 10}
clocks. Examples of data and the labelling are shown in Fig 6. As we can see
from the figure, there is high variance in the image sizes and colours.

Methods The aim is to learn a model to predict the correct category of light
source angle from real images. For each dataset, we randomly divided the 360
images into training and test sets, with 128 and 232 examples respectively.
To evaluate the performance, the models were trained by randomly sampling
1, 2, 4, 8, 16, 32, 64 and 128 images from the training set. The sequences of
training and test instances are shared by all compared methods. The random
partition of data and learning are repeated 5 times.

Logical Vision In the experiments, we used the grey intensity of both image
datasets for LV. The hyper-parameter T in Algorithm 2 is set at 11 by val-

8 Clock face angle between 12 and each hour position in {1..12}.
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idating one-shot learned models on the rest of the training data. To handle
image noise, we use a background model as the statistics-based estimator for
predicate edge point/1. When edge point([X,Y]) is called, a vector of colour dis-
tribution (which is represented by histogram of grey-scale value) of the 10×10
region centered at (X,Y) is calculated, then the background model is applied
to determine whether this vector represents an edge point. The parameter of
neighborhood region size 10 is chosen as a compromise between accuracy and
efficiency after having tested it ranging from 5 to 20. The background model
is trained from 5 randomly sampled images in the training set by providing
the bounding box of the objects.

Statistics-based Classification The experiments with statistics-based classifica-
tion were conducted in different colour spaces combined with various features.
Firstly, we performed feature extraction to transform images into fixed length
vectors. Next SVMs (libSVM [5]) with RBF kernel were applied to learn a
multiclass-classifier model. Parameters of the SVM are chosen by cross vali-
dation on the training set. Like LV, we used grey intensity from both image
datasets for the experiments. For the coloured Protists dataset, we transformed
the images to HSV and Lab colour spaces to improve the performance. Since
the image sizes in the dataset are irregular, during the object detection stage
of LV, we used background models and computer graphics techniques (e.g.
curve fitting) to extract the main objects and unified them into same sized
patches for feature extraction. The sizes of object patches were 80 × 80 and
401× 401 in Protists and Moons respectively. For the feature extraction pro-
cess, we avoided descriptors which are insensitive to scale and rotation, instead
we selected the luminance-sensitive features HOG and LBP. The Histogram
of Oriented Gradient (HOG) [11] is known for its ability to describe the lo-
cal gradient orientation in an image, and widely used in computer vision and
image processing for the purpose of object detection. Local binary pattern
(LBP) [34] is a powerful feature for texture classification by converting the
local texture of an image into a binary number.

In the Moons task, LV and the compared statistics-based approach both
used geometrical background knowledge for fitting circles (though in different
forms) during object extraction. However, in the Protists task, the noise in
images always caused poor performance in automatic object extraction for
the statistics-based method. Therefore, we provided additional supervision to
the statistics-based method consisting of bounding boxes labelling the position
of the main objects in both training and test images during feature extraction.
By comparison LV discovers the objects from raw images without any label
information.

Results Figure 7a shows the results for Moons. Note that performance of the
statistics-based approach only surpasses one-shot LV after 100 training exam-
ples. In this task, background knowledge involving circle fitting exploited by
LV and statistics-based approaches are similar, though low-level features used
by the statistics-based approach are first-order information (grey-scale gradi-
ents), which is stronger than the zeroth-order information (grey-scale value)
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Fig. 7 Classification accuracy on the two datasets.

clock angle(A,B,C):-
clock angle1(A,B,D),
light source angle(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),
clock angle2(A),clock angle3(C).

clock angle2(obj1).
clock angle3(light).

Fig. 8 Abductive program learned by LV: clock angle/3 denotes the clock angle from B
(highlight) to A (object). high light/2 is a built-in predicate meaning B is the highlight
part of A. light source angle/3 is an abducible predicate and the learning target. With
background knowledge about lighting and compare this program with Figure 9, we can
interprete the invented predicate clock angle2 as convex, clock angle3 as light source name.

used by LV. Results on Protists are shown in Figure 7b. After 30+ training
examples only one statistics-based approach outperforms one-shot LV. Since
the statistics-based approaches have additional supervision (bounding box of
main object) in the experiments, improved performance is unsurprising. The
results of LV in Figures 7a and 7b are represented by horizontal lines. When
the number of training examples exceeds one, LV performs multiple one-shot
learning and selects the most frequent output (see Algorithm 2), which we
found is always in the same equivalent class in LV’s hypothesis space. This
suggests LV learns the optimal model in its hypothesis space from a single
example. The learned program is shown in Figure 8.

The results in Figure 7 demonstrate that Logical Vision can learn an accu-
rate model using a single training example. By comparison, the statistics-based
approaches require 40 or even 100 more training examples to reach similar ac-
curacy, which refutes the null hypothesis. However, the performance of LV
heavily relies on the accuracy of the statistical estimator of edge point/1, be-
cause the mistakes of edge points detection will harm the shape fitting and
consequently the accuracy of main object extraction. Unless we train a bet-
ter edge point/1 classifier, the best performance of LV is limited as Figure 7
shows.
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clock angle(A,B,C):-
clock angle1(A,B,D),clock angle4(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),clock angle2(A),clock angle3(C).

clock angle4(A,B,C):-
light source angle(A,B,D),opposite angle(D,C).

Fig. 9 Program learned by LV when concave objects are given as training examples.

a) Crater b) Flipped crater

Fig. 10 An image of a crater on Mars and the 180◦ rotated version. Credit:
NASA/JPL/University of Arizona.

LV is implemented in SWI-Prolog [46] with multi-thread processing. Ex-
periments were executed on a laptop with Intel i5-3210M CPU (2.50GHz), the
time costs of object discovery are 9.5 seconds and 6.4 seconds per image on
Protists and Moons dataset respectively; the average running time Metagol
procedure is 0.001 second on both datasets.

Protists and Moons contain only convex objects. If instead we provide im-
ages with concave objects (such as Figure 10), LV learns a program such as
Figure 9. Here the invented predicate clock angle2/1 can be interpreted as
concave because its interpretation can be related to the appearance of oppo-
site angle/2.

Discussion: Learning ambiguity Figure 10 shows two images of a crater on
Mars, where Figure 10b is a 180◦ rotated image of Figure 10a. Human per-
ception often confuses the convexity of the crater in such images9. This phe-
nomenon, called the crater/mountain illusion, occurs because human vision
usually interprets pictures under the default assumption that the light is from
the top of the image.

LV can use MIL to perform abductive learning. We show below that incor-
poration of generic recursive background knowledge concerning light enables
LV to generate multiple mutually inconsistent perceptual hypotheses from real

9 http://www.universetoday.com/118616/do-you-see-a-mountain-or-a-crater-in-this-
picture/
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clock angle(O,H,A):-
highlight(O,H),convex(O),light source(L),
light source angle(O,L,A).

clock angle(O,H,A):-
highlight(O,H),concave(O),light source(L),
light source angle(O,L,A1),opposite(A1,A).

Fig. 11 Interpreted BK learned by LV.

Abducibles
prim(convex/1). prim(concave/1).
prim(light source/1). prim(light source angle/3).

Compiled BK
% “obj1” is an object abduced from image, “obj2” is
% the brighter part of “obj1”; “observer” is the camera
contains(obj1,obj2). brighter(obj2,obj1).
observer(observer). reflector(obj2).
light path(X,X).
light path(X,Y):-unobstructed(X,Z), light path(Z,Y).

Interpreted BK
highlight(X,Y):-

contains(X,Y),brighter(Y,X),light source(L),
light path(L,R),reflector(R),light path(R,O),
observer(O).

Fig. 12 Background knowledge for learning ambiguity from images.

images. To the authors’ knowledge, such ambiguous prediction has not been
demonstrated previously with machine learning.

Recall the learned programs from Figure 8 and Figure 9 from the previous
experiments. If we rename the invented predicates we get the general theory
about lighting and convexity shown in Figure 11.

Now we can use the program as a part of interpreted background knowledge
for LV to do abductive learning, where the abducible predicates and the rest
of background knowledge are shown in Figure 12.

If we input Figure 10a to LV, it will output four different abductive hy-
potheses for the image, as shown in Figure 1310. From the first two results we
see that, by considering different possibilities of light source direction, LV can
predict that the main object (which is the crater) is either convex or concave,
which shows the power of learning ambiguity. The last two results are even
more interesting: they suggest that obj2 (the highlighted part of the crater)
might be the light source as well, which indeed is possible, though seems un-
likely.11

10 Code also at https://github.com/haldai/LogicalVision2
11 The result can be reproduced and visualized by the example in Logical Vision 2 reposi-

tory.
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Depiction Hypothesis

a)

Obj1
Convex

light source(light).
light source angle(obj1,light,south).
convex(obj1).

b)

Obj1

Concave

light source(light).
light source angle(obj1,light,north).
concave(obj1).

c)

Obj1

Obj2

Convex

light source(obj2).
light source angle(obj1,obj2,south).
convex(obj1).

d)

Obj1

Concave

Obj2
light source(obj2).
light source angle(obj1,obj2,north).
concave(obj1).

Fig. 13 Depiction of abduced hypotheses from Figure 10a.

5.3 Experiment 3

In this subsection we describe the experiments conducted on real images in-
volving RoboCup 12 soccer where the task is to locate the football. We address
this task in two stages: first we try to approximately locate the football in the
image and then we use the model-driven technique of Logical Vision to abduce
its location and shape. By doing this, one can estimate the size of the football,
recognise occluded footballs and deduce depth information from the images.

12 www.robocup.org
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a b c

Fig. 14 Examples of football images: a) The football is clearly separated from other objects,
b) part of the football is located outside of the image, c) the football is occluded by the
robot.

Dataset and task The dataset contains 377 colour images sampled from a video
of the robot’s camera view of the football field. As figure 14 shows, the scene
of this dataset contains the green field, a robot, and a football. The original
size of the images are 480×720. In this experiment they have been scaled into
240× 360 to reduce the running time.

This task is more difficult than those in the previous experiments. The
objects in the images are more complex and contain more noise. Therefore it
is difficult to learn a hypothesis using simple primitives such as “edge point”.
For example, the robot and football contain many edges so the original line
sampling based abduction used by Logical Vision will become a large-scale
combinatorial optimisation problem. Moreover, in 41 of the images the football
is either occluded by or connected to other objects, and in 40 images there is
no football at all.

To address the challenges, we consider a two-staged learning procedure.
The first sub-task is to quickly find candidate locations of the footballs, which
can reduce the search space of the fine grained football discovery. The second
sub-task is to use Logical Vision to abduce the location and shape of the
football from the candidate positions.

For the first sub-task, we use a super-pixel algorithm [1] to segment the
images into small regions, which can serve as primitives for estimating the lo-
cation of football. Super-pixel algorithms are able to group pixels into atomic
regions that capture image redundancy, greatly reducing the complexity of sub-
sequent image processing tasks. The super-pixel algorithm implementations we
used are OpenCV contrib13 [3]. The tuned parameter is the size of each super-
pixel, which ranges from 10 to 30 with step size 5. During data transformation,
we use the football bounding boxes shipped with original images to label the
super-pixels: those which have 95% area inside of bounding box of footballs
(which is the label information in original data) are labelled as positive ex-

13 https://github.com/opencv/opencv contrib
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a b c

Fig. 15 Super-pixel segmented data of the images in Figure 14, where the blue boxes are
the original bounding boxes of the images, the super-pixels filled with red colour are the
positive super-pixels according to the bounding boxes. Note that in b) and c), although the
footballs have been split into multiple super-pixels, they are all labelled as positive examples.

amples with predicate “ball sp”. The rest are labelled as negatives. Examples
from the dataset are shown in Figure 15. The second sub-task, model-driven
football abduction, directly takes “ball sp” and an abductive theory as input
and outputs the circle parameters (centre and radius), where “ball sp” should
be the result produced by the classification model learned in the first stage.

Experiment: Football super-pixel classification This experiment is related to
the first sub-task described above, i.e. locating the football from super-pixel
segmented images. In this experiment we compare the performance ofMetagolNT

versus a statistical learner (we choose the CART algorithm [4]14) and investi-
gate the same null hypothesis used in Section 5.2.

Materials and methods In this experiment we use the super-pixel dataset as
described above. Each super-pixel is regarded as a symbolic object in the back-
ground knowledge. We extract some basic properties, such as size, location and
colour distribution as features. The colour distribution is represented by the
proportion of white, grey, black and green pixels inside a super-pixel, which is
identified by Lab values of the pixels. Moreover, we exploit the neighbourhood
relationship between super-pixels, which is represented by the “next to/2”
predicate15.

In this experiment we randomly sample 128 images for the training and the
remaining 249 images for testing. Similar to the Protists and Moons experi-
ments in Section 5.2, we randomly sample 1, 2, 4, 8, 16, 32, 64, 128 images from
the training set for learning the classification model. Random data partitioning
is performed 5 times. The positive training examples (both for the statistical

14 CART was chosen since it is efficient and provides human-comprehensible output com-
parable to logic programs and execution of decision trees within the Robocup environment
is sufficiently efficient (under 1/30th of a second) for localisation and decision making
15 Dataset located at https://github.com/haldai/LogicalVision2/tree/master-2.1/data
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learner and the relational learner) are football super-pixels from each of 1, 2,
4, 8, 16, 32, 64, 128 images and the same number of negative examples (i.e.
non-football super-pixels) are randomly sampled from the same set of train-
ing images. Similarly, for the test data the negative examples are randomly
sampled from non-football super-pixels in the test images. For relational learn-
ing (i.e. MetagolNT ), background predicates mostly white/1, partly white/1,
mostly black/1, partly black/1, etc were defined based on the colour distribu-
tion of super-pixels. For example the following background definitions describe
a super-pixel which is mostly white or partly white:

mostly_white(S):- white(S, P), P > 0.6.

partly_white(S):- white(S, P), P > 0.4, P =< 0.6.

The background knowledge for the relational learner also includes the neigh-
bourhood relationship between super-pixels, i.e. “next to/2” predicates.

In this experiment the following parameters were used for the relational
learner, i.e. MetagolNT (B,E, ν, n) in Algorithm 1. In addition to the above
mentioned background knowledge, B includes the Pre2 and Post2 Meta-rules
from Fig 3.

E is the set of positive and negative training examples as described above.
The size of randomly selected training examples Tri ⊂ E in each iteration i
of Algorithm 1 and the number of iterations n can be set according to the
expected degree of noise. Given that the expected error rate in the training
data is not known in this problem, we choose an extreme case where Tri
contains one randomly selected positive example (and one or two randomly
selected negative examples) in different experiments. The number of iterations
n was set to the number of positive examples in E.

For the statistics-based learner we use the CART decision tree algorithm [4].
The goal is to create a model that predicts the value of a target variable based
on splitting the feature space. We choose CART as the compared method be-
cause we want to ensure the statistical model uses the same features as the
relational model. Since the number of features, i.e. the green/white/grey/black
pixel proportions, is relatively small, it is natural to choose a decision tree as
the statistical learner. The maximum number of splits, is automatically se-
lected by 5-fold cross validation on the training data.

A second reason for the choice of decision trees is efficiency of execution.
The robots in RoboCup soccer must operate in real-time, which means that all
vision, localisation, decision making, localisation and locomotion tasks must
be completed in the time it takes to capture the next camera frame, typically
1/30th of a second. Thus, the classifier in the vision system must be extremely
efficient to execute. A decision tree, with only a few comparisons leading to a
decision in the leaf node, satisfies these stringent timing requirements.

Results Figure 16 compares the predictive accuracy of the relational learner
(MetagolNT ) vs the statistics-base learner (CART). As shown in the figure,
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Fig. 16 Accuracy of MetagolNT vs CART in the task of football super-pixel classification.

MetagolNT achieves consistently higher accuracy than CART with the accu-
racy difference particularly high for small numbers of training examples. An
example of the hypotheses found by the relational learner is as follows:

ball_sp(A):- partly_white(A), ball_sp_1(A, B).

ball_sp_1(A,B):- next_to(A, B), mostly_green(B).

Model-driven football abduction After narrowing down the candidate location
of the football, Logical Vision is able to exploit geometrical background knowl-
edge to perform model-driven abduction of the football’s exact shape and posi-
tion (i.e. its centre and radius as a circle). This is important in robotic football
games since the robot can use this information to infer the distance between
itself and the football. More importantly, by modelling the football with a
circle, the robot can figure out the occlusion of the football by other robots
and choose approriate actions accordingly. We apply Logical Vision with an
abductive theory for this task, whose abducible is “football/3”. To sample
edge points, Logical Vision draws random straight lines inside a super-pixel
and its neighbourhood to return the points associated with a colour transition.
Examples of football abduction are shown in Figure 17.

6 Conclusions and further work

Human beings often learn visual concepts from single image presentations
(so-called one-shot-learning) [24]. This phenomenon is hard to explain from a
standard Machine Learning perspective, given that it is unclear how to esti-
mate any statistical parameter from a single randomly selected instance drawn
from an unknown distribution. In this paper we show that learnable generic
logical background knowledge can be used to generate high-accuracy logical
hypotheses from single examples. This compares with similar demonstrations
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a b c

Fig. 17 Ball abduction results of the images in Figure 14. The blue points are the
“edge points” sampled by Logical Vision, the red curves are the abduced circles.

concerning one-shot MIL on string transformations [27] as well as previous
concept learning in artificial images [10]. The experiments in Section 5 show
that the LV system can accurately identify the position of a light source from
a single real image, in a way analogous to scientists such as Galileo, observing
the moon for the first time through a telescope or Hook observing micro-
organisms for the first time through a microscope. In Section 5.2 we show that
logical theories learned by LV from labelled images can also be used to predict
concavity and convexity predicated on the assumed position of a light source.
Section 5.3 shows how LV can be used effectively in real-time robot vision.
Ball recognition in robot soccer is challenging because the ball is frequently
occluded by other robots and the similarity in colours of the ball, robots and
field lines makes the ball difficult to distinguish.

We have studied LV’s failure cases carefully. The main reason causing mis-
classification is the noise in images. The noise can cause misclassifications of
edge point/1 since it is implemented with statistical models. The mistakes of
edge point detection will further affect the edge detection and shape fitting.
As a result, the accuracy of the main object extraction is limited by both the
noise level in input images and the power of statistical model of edge point/1.
Therefore, LV will fail too since the wrongly extracted objects are its inputs.
However, if we train stronger models for detecting edge points, the accuracy
of LV will not increase either.

In further work we aim to investigate broader sets of visual phenomena
which can naturally be treated using background knowledge. For instance, the
effects of object obscuration; the interpretation of shadows in an image to infer
the existence of out-of-frame objects; the existence of unseen objects reflected
in a mirror found within the image. All these phenomena could possibly be
considered in a general way from the point of view of a logical theory describing
reflection and absorption of light, where each image pixel is used as evidence
of photons arriving at the image plane. In this further work we aim to compare
our approach once more against a wider variety of competing methods.
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The authors believe that LV has long-term potential as an AI technology
with the potential for unifying the disparate areas of logical based learning
with visual perception.
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