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Abstract

A major problem for kernel-based predictors is the pro-
hibitive computational complexity, which limits their ap-
plication in large-scale datasets. Coreset, an approximation
method which tries to cover the given examples with a small
set of points, can be used to remain the prominent informa-
tion and accelerate the kernel method. In this paper, we pro-
vide perhaps the first coreset-based kernel-accelerating op-
timization method that has a linear convergence rate, which
is much faster than existing approaches. Our method can be
used to train kernel SVM-style problems and obtain sparse
solutions efficiently. Specifically, the method uses SVRG as
the framework, and utilizes the core points to approximate the
gradients, so it can significantly reduce the complexity of the
kernel method. Furthermore, we apply the method to train
ODM, a kernel machine enjoying better statistical property
than SVM, so that we can reduce the risk of compromising
the performance while encouraging the sparsity. We conduct
extensive experiments on several large-scale datasets and the
results verify that our method outperforms the state-of-the-art
coreset approximation method in both efficiency and general-
ization, while simultaneously achieving significant speed-up
compared to non-approximation baselines.

Introduction
The kernel method provides a powerful and unified frame-
work for applying linear methods to general learning prob-
lems. The key idea is to map data to a higher dimensional
kernel feature space, where linear relationships correspond
to nonlinear relationships in the original data. In the past
decades, quite a lot of kernel methods have been developed,
among which the representatives are kernel SVMs (Cortes
and Vapnik 1995), kernel regression (Smola and Schölkopf
2004), kernel PCA (Schölkopf, Smola, and Müller 1998),
Gaussian process (Rasmussen 2004), and so on.

Given m data points x1, . . . ,xm, the m ×m kernel ma-
trix K is formed where Kij is the inner product between
φ(xi) and φ(xj) in the high-dimensional space, computed
by the kernel function k(·, ·). Then all inner product required
by linear methods are performed by the kernel matrix K.
Unfortunately, the kernel method brings huge cost. Specifi-
cally, just generating the entries of K requires Θ(m2) com-
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putation time and memory storage, which is prohibitive for
large-scale datasets.

Alleviating this issue has motivated a variety of prac-
tical approaches, including random Fourier feature meth-
ods (Rahimi and Recht 2008; 2009; Le, Sarlós, and Smola
2013), the Nyström methods (Williams and Seeger 2001;
Drineas and Mahoney 2005; Zhang, Tsang, and Kwok 2008;
Gittens and Mahoney 2016), and coreset approximation
methods (Tsang, Kwok, and Cheung 2005; Tsang, Kwok,
and Zurada 2006; Loosli and Canu 2007; Asharaf, Murty,
and Shevade 2007; Le et al. 2017), etc. RFF aims to approx-
imate the shift-invariant kernel function through orthogonal
trigonometric function family. However, this devised kernel
mapping is data-independent, which leads to poorer gener-
alization performance than the Nyström method (Yang et al.
2012). On the other hand, the Nyström method focuses on
constructing a low-rank approximation kernel matrix using a
subset of examples. In the classic variants, since these points
are randomly selected without considering their position or
importance, it may destroy the spectral structure of the ker-
nel matrix and result in unstable performance.

Coreset approximation is a method originated in compu-
tational geometry. The basic idea is to use core points to
approximate the shape of all samples. It could significantly
reduce the size of kernel matrix in kernel method, especially
in kernel SVM. Notable works include the Core Vector Ma-
chine (CVM) (Tsang, Kwok, and Cheung 2005), the Ball
Vector Machine (BVM) (Tsang, Kocsor, and Kwok 2007)
and the Approximation Vector Machine (AVM) (Le et al.
2017). The main idea of CVM is to reformulate SVM as a
minimum enclosing ball (MEB) problem and obtain the ap-
proximation solution of the MEB using the coreset-based
algorithm in computational geometry (Bădoiu and Clarkson
2008). However, the state-of-the-art coreset-based kernel
machine, AVM (Le et al. 2017), solves the primal problem
directly and utilizes an online way to construct coreset with
overlapping hyperballs. Moreover, the AVM uses core points
to approximate all gradients required in SGD and easily ob-
tains a sparse model in the form of ŵ =

∑r
i=1 σiφ(ci),

where r is the coreset size and satisfies r � m. Despite
using approximated sparse gradients, Le et al. (2017) prove
that the AVM has a convergence rate of O(1/T ), and the
gap between the approximated and optimal solutions can be
controlled by the diameter of hyperballs. However, the SGD
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suffers the suboptimal convergence due to the inherent vari-
ance (Johnson and Zhang 2013), which limits the efficiency
of the method.
Our contributions In this work, we aim to further im-
prove the efficiency of coreset-based kernel machine for
large-scale datasets and simultaneously keep competitive
generalization performance.

Theoretically, inspired by introducing full gradient to con-
trol variance explicitly in SVRG (Johnson and Zhang 2013),
we propose an optimization method called CSVRG (Coreset
Stochastic Variance-Reduced Gradient), which can be used
to optimize the kernel SVM-style problems efficiently. The
main result is that we prove the linear convergence of
CSVRG despite only a coreset-estimated full gradient is
available. Thus it’s much faster than the AVM.

Empirically, we apply CSVRG to train ODM (Optimal
Margin Distribution Machine) (Zhang and Zhou 2016; 2017;
2018), a kernel machine which aims to optimize the margin
distribution for better statistical property than SVM (Gao
and Zhou 2013; Zhang and Zhou 2014; Zhou and Zhou
2016), so that we can achieve the “best of both worlds”, i.e.,
the best efficiency as well as the best generalization. We con-
duct extensive experiments on several large-scale datasets
and the results verify that our method outperforms the state-
of-the-art coreset approximation method in both efficiency
and generalization, while simultaneously achieving signifi-
cant speed-up compared to non-approximation baselines.
Paper outline Our optimization method is built on the
coreset approximation, so we first introduce some defini-
tions and how to construct coreset in preliminaries. Then we
present a unified formulation to represent SVMs and ODM
and give our optimization algorithm for SVMs and ODM.

After that, we theoretically prove the linear convergence
rate of CSVRG for optimizing SVMs and ODM. Finally, we
introduce the empirical study by applying CSVRG to train
ODM on several large-scale datasets and conclude the paper.

Preliminaries
Notations
We denote X as the instance space and Y = {+1,−1}
as the label set. Let D be an unknown (underly-
ing) distribution over X × Y . A training set S =
{(x1, y1), (x2, y2), . . . , (xm, ym)} ∈ (X × Y)m is drawn
identically and independently (i.i.d.) according to D. We
assume that a positive semi-definite and isotropic kernel is
used, i.e., K(xi,xj) = k(‖xi − xj‖2), where k : R 7→ R
is a monotonically decreasing function. Let φ : X 7→ H be
a feature mapping where H is a Reproducing Kernel Hilbert
Space (RKHS) associated to the kernelK, i.e.,K(xi,xj) =
φ(xi)

>φ(xj). Besides, we denote r as the size of the core-
set, and denote δ as the diameter of the coverage.

Constructing Coreset
A coreset is a subset of input points such that we can get a
good approximation to the origin input. Given an input space
X , we introduce the concept of δ-coverage and coreset as
follows.

Definition 1 (δ-coverage). The collection of sets P =
(Pi)i∈I is said to be a δ-coverage of the set S iff S ⊂ ∪i∈IPi
and D(Pi) ≤ δ, ∀i ∈ I , where I is the index set and
D(Pi) = supx,x′∈Pi ‖x− x

′‖, which is the maximal pair-
wise distance between any two points in Pi. Each element
Pi ∈ P is further referred to as a cell.
Definition 2 (coreset, core point). Given an δ-coverageP =
(Pi)i∈I over a given input spaceX , for each i ∈ I , we select
an arbitrary point ci from the set Pi, then the collection of
all ci is called the coreset C of the δ-coverage P . Each point
ci ∈ C is further referred to as a core point.
Remark 1. There are two representative ways to construct
a δ-coverage, i.e., a coreset. The CVM (Tsang, Kwok, and
Cheung 2005) adds the points lying furthest from the current
core points to the coreset each time. Differently, the AVM
(Le et al. 2017) adopts the online constructing method and
the key idea is that only if the arrived point falls outside the
existing cells, we will add it to the coreset and create a new
cell. The shape of cells is a hyperball when the Euclidean
distance is used, and corresponds to a hyperrectangle when
Chebyshev distance is used. Considering the low computa-
tional complexity of the online constructing method in the
AVM and the better performance of Euclidean distance (Le
et al. 2017), we use these to construct the δ-coverage in this
paper.

Formulation
SVM aims to learn a large margin separator, i.e., maximiz-
ing the smallest distance from the instances to the classfi-
cation boundary in a RKHS. A more robust strategy is to
consider the whole data, i.e., optimizing the margin distri-
bution. Moreover, a recent study (Gao and Zhou 2013) on
margin theory proved that maximizing the margin mean and
minimizing the margin variance simultaneously can yeild
a tighter generalization bound. By fixing the margin mean
and optimizing the margin distribution, we obtain the for-
mulation of Optimal Margin Distribution Machine (ODM)
(Zhang and Zhou 2016),

min
w,ξi,εi

1

2
‖w‖2 +

λ

m

m∑
i=1

ξ2i + µε2

(1− θ)2
(1)

s.t. yiw>φ(xi) ≥ 1− θ − ξi, i = 1, . . . ,m

yiw
>φ(xi) ≤ 1 + θ + εi, i = 1, . . . ,m

where λ > 0 is the trade-off parameter, θ ∈ [0, 1) is a pa-
rameter of the zero loss band, which can control the sparsity
of the solution. µ ∈ (0, 1] is a parameter to trade off two
different kinds of deviation.
Remark 2. To make the subsequent optimization algorithm
and theoretical analysis concise, we represent SVMs and
ODM in a unified formulation as follows

min
w

f(w) =
1

m

m∑
i=1

ψi(w) (2)

=
1

2
‖w‖2H +

λ

m

m∑
i=1

l(w;xi, yi), (3)
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where ψi(w) = ‖w‖2H/2 + λl(w;xi, yi) and l(w;x, y)
is a convex loss function. When l is set as max(0, 1 −
yw>φ(x)) or max(0, 1 − yw>φ(x))2, we can obtain
the hinge loss SVM and squared hinge loss SVM,
respectively, while ODM can be derived by using
l(w;x, y) = 1

m(1−θ)2 (max{0, 1 − θ − yw>φ(x)}2 +

µmax{0, yw>φ(x)− 1− θ}2).

The Proposed Optimization Method
In this section, we commence with the unified formulation
of the gradient of different loss functions, followed by the
coreset approximation for gradients. Next, the theoretically
guided projection operations are introduced. Finally we give
the detailed optimization algorithm.

Unified Form of Gradient
Our method focuses on the optimization problems with the
above formulation (3). For hinge loss SVM and squared
hinge loss SVM, the derivative of the loss functions are as
follows

l′h (w;x, y) = −I{yw>φ(x)≤1}yφ(x)

l′h2 (w;x, y) = −I{yw>φ(x)≤1}2y
(
1− yw>φ (x)

)
φ(x)

where IS is the indicator function, which equals to 1 if the
logical statement S is true and 0 otherwise. For ODM, we
have

l′ (w;x, y) =
2

(1− θ)2
{(yw>φ(x) + θ − 1)yI(x ∈ I1)

+ µ(yw>φ(x)− θ − 1)yI(x ∈ I2)}φ(x)

where I1 ≡ {x|yw>φ(x) < 1− θ}, I2 ≡ {x|yw>φ(x) >
1 + θ}.
Remark 3. For ODM and SVMs, we can reformulate the
gradient (or sub-gradient) of loss function for randomly
sampled (xt, yt) as

l′(wt;xt, yt) = αtφ(xt) (4)

where αt is a scalar. This form greatly facilitates the subse-
quent theoretical analysis.

Coreset Approximation
Since our optimization algorithm is based on SVRG (John-
son and Zhang 2013), we need the approximation of gradi-
ent of∇ψ(w) and∇f(w). For sample (xt, yt), the gradient
of ψt(w), which satisfies E[∇ψt(w)|w] = ∇f(w), has the
form

∇ψt(w) = w + λαtφ(xt). (5)

Considering that the representer theorem indicates that the
optimal solution of the above formulation (3) has the form
w =

∑m
i=1 αiφ(xi), we can improve the model sparsity

with the following coreset approximation.
We denote ∇ψct (w) as the coreset approximation of

ψt(w), then we can obtain

∇ψct (w) = w + λαtφ(ct), (6)

where ct is the center of the hypersphere to which the sam-
ple xt belongs. In addition, the approximation of full gradi-
ent can also be obtained in the same way

∇f c(w) = w +
λ

m

m∑
i=1

αiφ(ci). (7)

Projection
In this part, we show that for ODM and squared hinge loss
SVM, the optimal solution ‖w∗‖ is bounded, so we can
safely add projection operations when updating models.
Theorem 1. If w∗odm is the optimal solution of ODM, then
there exists a positive constant H such that ‖w∗odm‖ ≤ H ,

where H =

√
λ(1−θ)2+λµ(1+θ)2

1−θ . Moreover, for squared
hinge loss SVM, the optimal solution w∗h2 satisfies w∗h2 ≤ λ.

The proof of this theorem is similar to that of Theorem 1
in Shalev-Shwartz et al. (2011). Due to space limitations, the
detailed proof is presented in the supplementary material.
Remark 4. According to Theorem 1, to ensure that ‖wt‖
is bounded for all t ≥ 1 in situations of square hinge loss
SVM and ODM, we project wt onto the hypersphere with
the centre origin, radius λ and H , i.e., B(0, λ) and B(0, H)
respectively after each round of model update. This opera-
tion could guarantee the safety of model updates and possi-
bly result in a faster convergence.

Optimization Algorithm
Based on the coreset approximation and projection, we
propose the method CSVRG(Coreset Stochastic Variance-
Reduced Gradient) for optimizing kernel SVM-style prob-
lems. The detailed procedure is showed in Algorithm 1.

At each time, we keep a snapshot of w̃ after T iterations
like SVRG. However, we only maintain the coreset approxi-
mation ∇f c(w) of full gradient, which significantly reduce
the model complexity. In addition, the gradient items in up-
date rule are all approximated with the coreset. For the con-
venience of convergence analysis, we denote

ht = ∇ψct (wt−1)−∇ψct (w̃) +∇f c(w̃) (8)

= wt−1 + (αt − α̃t)φ(ct) +
1

m

m∑
i=1

α̃iφ(ci) (9)

such that the update rule is wt = wt−1 − ηtht. In this way,
we explicitly reduce the variance of SGD, and the learning
rate η does not decay.
Remark 5. The computation still requires one pass over
all data using w̃, but the most expensive calculations
wtφ(xt) =

∑m
i=1 σiK(xi,xt) become simple and effi-

cient. This is caused by two reasons. First, the current model
after coreset approximation wt =

∑r
i=1 σiφ(ci) is very

sparse, where r is the coreset size and r � m, so we need
only O(r) operations. Second, since the model is fixed as a
linear combination of {φ(c1), . . . , φ(cr)}, the required ker-
nel matrix is reduced fromm2 tom×r, which greatly elim-
inates the cost of generating the entries of kernel matrix.
Moreover, referring to Cucker and Smale (2002), it is known

that the model size r cannot exceed
(

4D(X )
δ

)d
.
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Algorithm 1 Coreset Stochastic Variance-Reduced Gradient
Require: λ, µ, θ

1: Initialize w̃0 = 0
2: for s = 1, 2, . . . do
3: w̃ = w̃s−1
4: ∇f c(w̃) = w̃ + 1

m

∑m
i=1 α̃iφ(ci)

5: w̃0 = w̃
6: for t = 1, 2, . . . , T do
7: Randomly sample (xt, yt)
8: Find the core point ct closest to xt
9: ∇ψct (wt−1) = wt−1 + αtφ(ct)

10: ∇ψct (w̃) = w̃ + α̃tφ(ct)
11: ht = ∇ψct (wt−1)−∇ψct (w̃) +∇f c(w̃)
12: if ODM is used then
13: wt =

∏
B(0,H)(wt−1 − ηht)

14: else if square hinge loss SVM is used then
15: wt =

∏
B(0,λ)(wt−1 − ηht)

16: else
17: wt = wt−1 − ηht
18: end if
19: end for
20: option I: set w̃s = wT

21: option II: set w̃s = wt for randomly chosen t ∈
{0, . . . , T − 1}

22: end for

Convergence Analysis
In this section, we provide the convergence analysis of
CSVRG. The theoretical results are suitable for both SVMs
and ODM. In the following, we will first show an upper
bound of the coreset approximation error, and then present
the detailed convergence analysis.

Due to the space limitations, only the proof of theorem is
provided, the details of lemma’s proof are presented in the
supplementary material.

Bounded Approximation Error
The origin update item without approximation is

vt = ∇ψt(wt−1)−∇ψt(w̃) +∇f(w̃)

= wt−1 + (αt − α̃t)φ(xt) +
1

m

m∑
i=1

α̃iφ(xi).

By reformulating the coreset-approximated update item ht
as ht = vt + ∆t, we can obtain

∆t =
1

m

m∑
i=1

α̃i[φ(ci)− φ(xi)]

+ (αt − α̃t)[φ(ct)− φ(xt)].

(10)

The ∆t represents the approximation error caused by updat-
ing model with the approximated gradients.
Lemma 2. For ODM problem, the αt satisfies α2

t ≤ A2 for
all t, where A = 2(H+1+θ)

(1−θ)2 .

Lemma 3. For hinge loss SVM and square hinge loss SVM,
the αt satisfies α2

t ≤ A2 = λ2B2 for all t, where B = 1
and B = 2λ+ 2 respectively.

Remark 6. Without loss of generality, lemma 2, 3 are both
based on the assumption that ‖φ (x)‖ = K (x,x)

1/2
= 1.

To make the subsequent theorems concise, we denote all up-
per bounds of α2

t as A. This does not affect the correctness
of the theorems, although the value of A is not the same un-
der different loss functions.
Theorem 4. Assume that the p.s.d. and isotropic kernel
K(xi,xj) = k(‖xi − xj‖2) is used, where k(.) is a mono-
tonically continuous decreasing function with k(0) = 1, and
let δ be the diameter of hyperballs. For the approximation
error ∆t as indicated in (10), we have ‖∆t‖ ≤ 3

2Aδφ, where
δφ = 2

√
2(1− k(δ2/4)).

Proof. First, since the core points {ci}ri=1 are the cen-
ters of the hyperspheres, we have ‖ci − xi‖ ≤ δ/2, ∀i.
Then according to Theorem 4 in Le et al. (2017), let δφ =

2
√

2(1− k(δ2/4)), we can obtain

‖φ(ci)− φ(xi)‖2 = K(ci, ci) +K(xi,xi)− 2K(ci,xi)

= 2(1− k(‖ci − xi‖2))

≤ 2(1− k(δ2/4)) = δ2φ/4

Second, Lemma 2, 3, illustrate that for ODM and SVMs,
there exists a positive constant A such that α2

t ≤ A2. Based
on this, we have

‖∆t‖ = ‖(αt − α̃t)[φ(ct)− φ(xt)]

+
1

m

m∑
i=1

α̃i[φ(ci)− φ(xi)]‖

≤ ||αt|+ |α̃t|+
1

m

m∑
i=1

|α̃i|| · ‖φ(ci)− φ(xi)‖

≤ 1

2
δφ||αt|+ |α̃t|+

1

m

m∑
i=1

|α̃i|| ≤
3

2
Aδφ

Hence, we gain the conclusion ‖∆t‖ ≤ 3
2Aδφ, where δφ =

2
√

2(1− κ(δ2/4)).

Theorem 4 explains that the error caused by coreset ap-
proximation is always bounded in each iteration. This is be-
cause when using coreset approximation, the information of
the instances is largely preserved by the core points. More-
over, the theorem also illustrates that the diameter of hyper-
sphere δ can be used to efficiently control the trade-off be-
tween sparsity and approximation error.

Linear Convergence Rate
For convergence analysis, in addition to the above approx-
imation error bound, we still need some results about the
diameter of the solution domain in expectation.
Lemma 5. When using CSVRG to train ODM, we have
E
[
‖wt −w∗‖2

]
≤W 2 for all t, where W = 2H .

Lemma 6. When using CSVRG to train hinge loss SVM or
square hinge loss SVM, there exists a positive constant P
such that E

[
‖wt‖2

]
≤ P 2 for all t, where P = 2A+ 3

2Aδφ.
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Lemma 7. Assume that f(w) is ν-strongly convex, when
using CSVRG to train hinge loss SVM or square hinge loss
SVM, we have E

[
‖wt −w∗‖2

]
≤W 2 for all t, whereW =

3Aδφ+
√

9A2δ2φ+16(1−ην)P 2

2ν .

We denote the expectation upper bound of the diameter
of the model domain as W for three different loss functions.
Like Lemma 2, 3, the value of W is different in different
situations.

Theorem 8. Considering CSVRG in Algorithm 1 with op-
tion II and using it to solve SVMs and ODM, assume that all
ψi(w) are convex and L-smooth, f(w) is ν-strongly convex.
Let w∗ = argminwf(w). Assume that T is sufficiently large
so that

ρ =
1

νη(1− 4Lη)T
+

4Lη

1− 4Lη
< 1

then we have linear convergence in expectation for CSVRG:

E[f(w̃s)− f(w∗)] ≤ ρsE[f(w̃0)− f(w∗)] +
1− ρs

1− ρ
Ω

where Ω is a constant gap caused by coreset approximation,
and Ω→ 0 when the diameter of hyperballs approaches 0.

Proof. First, according to Theorem 1 in Johnson and Zhang
(2013), conditioned on wt−1, we have

E‖vt‖2 ≤ 4L[f(wt−1)− f(w∗) + f(w̃)− f(w∗)] (11)

Then we use Theorem 4 and substitute (10) and (11) to ob-
tain

E‖ht‖2 = E‖vt + ∆t‖2

≤2E‖vt‖2 + 2E‖∆t‖2

≤8L[f(wt−1)− f(w∗) + f(w̃)− f(w∗)] +
9

2
A2δ2φ

, where the first and third inequality uses ‖a+b‖2 ≤ 2‖a‖2+
2‖b‖2. Second, conditioned on wt−1, we have

E‖wt −w∗‖2 = E‖
∏
B

(wt−1 − ηht)−w∗‖2

≤E‖wt−1 − ηht −w∗‖2

=‖wt−1 −w∗‖2 + η2E[‖ht‖2]− 2ηE[〈wt−1 −w∗,vt〉]
− 2ηE[〈wt−1 −w∗,∆t〉]

≤‖wt−1 −w∗‖2 + η2E[‖ht‖2]− 2η(wt−1 −w∗)>E[vt]

+ 2ηE[‖wt−1 −w∗‖2‖∆t‖2]1/2

, where the second inequality is got by using Cauchy-
Schwarz inequality. Then we use Lemma 5, 7, and Theo-
rem 4. Noticing that conditioned on wt−1, we have E[vt] =

∇f(wt−1). And these lead to

E‖wt −w∗‖2

≤‖wt−1 −w∗‖2 + η2E[‖ht‖2]− 2η(wt−1 −w∗)>E[vt]

+ 3ηAWδφ

≤‖wt−1 −w∗‖2 + η2E[‖ht‖2] + 3ηAWδφ

− 2η(wt−1 −w∗)>∇f(wt−1)

≤‖wt−1 −w∗‖2 − 2η(1− 4Lη)[f(wt−1)− f(w∗)]

+ 8Lη2[f(w̃)− f(w∗)] +
9

2
η2A2δ2φ + 3ηAWδφ

, where the third inequality is got by using the previously
obtained inequality for E‖ht‖2 and the convexity of f(w),
which implies that −(wt−1 − w∗)∇f(wt−1) ≤ f(w∗) −
f(wt−1).

Then we consider a fixed stage s so that w̃ = w̃s−1 and
w̃s is selected after all updates have completed. By sum-
ming the previous inequalities over t = 1, . . . , T and taking
expectation, we obtain

E‖wT −w∗‖2 + 2η(1− 4Lη)TE[f(w̃s)− f(w∗)]

≤E‖w0 −w∗‖2 + 8Lη2TE[f(w̃)− f(w∗)]

+
3

2
ηTAδφ(3ηAδφ + 2W ) (12)

Utilizing the strong convexity property of f(w) leads to

E‖w0 −w∗‖2 = E‖w̃ −w∗‖2 ≤ 2

ν
E[f(w̃)− f(w∗)]

Substituting this into (12), we have

E‖wT −w∗‖2 + 2η(1− 4Lη)TE[f(w̃s)− f(w∗)]

≤2

ν
E[f(w̃)− f(w∗)] + 8Lη2TE[f(w̃)− f(w∗)]

+
3

2
ηTAδφ(3ηAδφ + 2W )

=2(ν−1 + 4Lη2T )E[f(w̃)− f(w∗)]

+
3

2
ηTAδφ(3ηAδφ + 2W )

Finally, we thus obtain

E[f(w̃s)− f(w∗)]

≤[
1

νη(1− 4Lη)T
+

4Lη

1− 4Lη
]E[f(w̃s−1)− f(w∗)]

+
3Aδφ(3ηAδφ + 2W )

4(1− 4Lη)

This implies

E[f(w̃s)− f(w∗)] ≤ ρsE[f(w̃0)− f(w∗)] +
1− ρs

1− ρ
Ω,

where Ω =
3Aδφ(3ηAδφ+2W )

4(1−4Lη) . This indicates that the algo-
rithm converges linearly.
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The bound we obtained in Theorem 8 is much better than
those obtained in AVM, which converges in O(1/T ). For
simplicity, considering the case where the condition number
L/ν = m, we can take η = 0.05/L and T = O(m) to ob-
tain a convergence rate of ρ = 1/2 and 1−ρs

1−ρ < 2. Thus our
method could obtain an approximated solution much faster.
Theorem 8 further shows the gap between the optimal solu-
tion and the approximate solution. Moreover, this gap Ω can
be controlled by the diameter δ of the hyperballs. When δ
decreases to 0, the gap Ω also decreases to 0.

Empirical Study
We apply CSVRG to train ODM and conduct comprehen-
sive experiments to evaluate the capacity and efficiency of
CSVRG on binary classfication. In the following, we first
introduce the experimental setting, then give the analysis of
experiemental results. Moreover, we conduct additional em-
pirical study to compare the model size of different methods.

Experimental Setting
We use nine large-scale datasets from UCI and LIBSVM in
the experiments. Table 1 summerizes the statistics of these
datasets. All features are normalized into the interval [0, 1].

Table 1: Characteristics of 9 large-scale datasets
Dataset #instance #feature
magic04 19020 10
adult-a 32561 123
a9a 48842 123
w8a 49749 300
cod-rna 59535 8
mini-boo-ne 130064 50
ijcnn1 141691 22
webspam 350000 254
covtype 581012 54

Compared Methods For the non-approximation kernel
method, we compared against LIBSVM (Chang and Lin
2011), one of the most widely-used and state-of-the-art im-
plementations for batch kernel SVM solver, and ODM, also
a state-of-the-art kernel machine with better statistical prop-
erty by optimizing margin distribution (Zhang and Zhou
2014; 2016). On the other hand, we also compared with
AVM (Le et al. 2017), the state-of-the-art coreset-based ker-
nel machine.
Hyperparameter Throughout the experiments, we utilize
RBF kernel for all methods including ours, and the RBF
width γ is selected from

{
2−4, 2−2, 20, 22, 24

}
. The regu-

larization parameter C in LIBSVM and λ in ODM are se-
lected from

{
21, . . . , 211

}
. For ODM, the µ and θ are both

selected from {0.2, 0.4, 0.6, 0.8}. For λ in AVM, it is se-
lected from

{
2−11, 2−9, . . . , 2−1

}
, which is corresponding

to the λ in ODM. The hyperparameters range of our method
CSVRG+ODM is the same as ODM. All the hyperparam-
eters are specified using 5-fold cross-validation on training
sets. All experiments are repeated for 10 times.

The Effect of Diameter In CSVRG, we have one extra
hyperparameter, i.e., the diameter of δ-coverage, which con-
trols the degree of approximation. We study its effect us-
ing the method in Le et al. (2017). Intuitively, the larger the
radius, the smaller the number of cores and the higher the
degree of approximation. Specifically, Figure 1 shows the
effect of the diameter on the classfication error and model
size. We could learn that the diameter of δ-coverage is a
trade-off parameter between performance and model size,
which let us adjust freely as needed. Furthermore, the con-
trollable trade-off parameter gives us some guidance when
the method is used in practical. For hyperparameter selec-
tion, we can first set a large diameter of hyperballs to per-
form cross-validation efficiently. Then we can use obtained
parameters to train the model of the required complexity.
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Figure 1: The effect of δ-coverage radius on the classifica-
tion error and model size

Results Analysis
In the experiments, we manually choose the appropriate di-
ameter so that the number of core points is between 100 and
1000. The average accuracies (with standard deviations),
average training time and average prediction time are re-
ported in Table 2. Overall, the non-estimated kernel algo-
rithms achieve the highest classfication accuracies. How-
ever, our method has a substantial speed-up while maintain-
ing a competitive accuracy. Specifically, for each dataset, the
training and prediction time costs of CSVRG are the small-
est with orders of magnitude lower than SVMs and ODM,
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Table 2: Classfication performance of our CSVRG and the comparison methods in batch mode. The notation [S|D] next to the
dataset name denotes the number of core points in CSVRG and AVM respectively. The accuracy is presented as a percentage
(%). The training time and testing time are in second. The best performance and the least time cost are in bold. Running out of
memory or running for more than two hours will terminate the program.

Dataset [S|D] magic04 [359|1000] adult-a [259|269] a9a [128|338]

Algorithm Train Test Accuracy Train Test Accuracy Train Test Accuracy
LIBSVM 50.88 1.11 87.00±0.28 13.12 24.92 84.50±0.28 108.61 13.11 84.79±0.00

ODM 5.52 0.25 86.55±0.27 32.88 0.68 84.61±0.24 105.75 1.69 85.29±0.03
AVM 1.12 0.64 82.05±0.13 2.47 1.39 83.21±0.32 5.88 1.71 81.46±0.35

CSVRG+ODM 1.32 0.09 84.43±0.40 1.68 0.33 84.08±0.22 1.70 0.18 84.26±0.20

Dataset [S|D] w8a [213|498] cod-rna [275|876] mini-boo-ne [229|526]

Algorithm Train Test Accuracy Train Test Accuracy Train Test Accuracy
LIBSVM 14.50 29.22 98.67±0.05 37.96 3.78 95.52±0.10 243.03 84.36 92.22±0.07

ODM 111.34 1.93 98.57±0.08 50.79 2.79 95.57±0.09 - - -
AVM 19.79 29.15 97.09±0.08 2.94 1.61 91.32±1.39 9.03 5.52 83.50±0.25

CSVRG+ODM 2.44 0.81 97.14±0.07 1.78 0.15 94.22±0.14 8.40 1.47 85.21±0.53

Dataset [S|D] ijcnn1 [296|502] webspam [643|560] covtype [132|132]

Algorithm Train Test Accuracy Train Test Accuracy Train Test Accuracy
LIBSVM 80.00 16.32 99.31±0.03 - - - - - -

ODM - - - - - - - - -
AVM 7.03 3.70 90.45±0.01 157.40 196.11 78.30±1.05 22.79 9.57 70.25±0.28

CSVRG+ODM 9.32 0.95 91.33±0.07 31.32 24.17 83.90±0.21 14.44 1.68 73.22±0.17

and at the same time, it ensures that the generalization per-
formance is very close to SVMs and ODM. On the other
hand, the LIBSVM and ODM with RBF kernel could not
be trained within acceptable amount of time and memory on
large-scale datasets.

In the comparison between CSVRG and AVM, we find
that CSVRG is more efficient than AVM while ensuring bet-
ter performance. According to Table 2, for a9a, cod-rna,
mini-boo-ne, etc., to achieve similar accuracy, CSVRG need
less number of core points, which verifies that margin distri-
bution is more crucial than minimum margin for generaliza-
tion. For adult-a, webspam and covtype datasets, CSVRG is
more efficient while the number of core points of two algo-
rithms is close, which indicates that CSVRG has faster con-
vergence than SGD. In a nutshell, the experimental results
show that we can achieve the “best of both worlds”, i.e., the
best efficiency as well as the best generalization.

Comparison of Model Size
Figure 2 shows the logarithmic comparison of model size
in above experiments. For LIBSVM, the model size cor-
responds to the number of support vectors. For AVM and
CSVRG, the model size corresponds to the size of coreset.

The figure indicates that the model complexity of our
method and AVM is serveral orders of magnitude lower
than LIBSVM, and our method achieves the best sparsity.
Furthermore, we find that CSVRG+ODM can use only half
the core points to achieve better generalization performance
than AVM, which implies that our method can do better with
even smaller coreset. This result verifies the better statistical
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Figure 2: Comparison of the model size

property of ODM than SVM.

Conclusion
In this paper, we propose a novel large-scale kernel-
accelerating method CSVRG (Coreset Stochastic Variance-
Reduced Gradient) by applying coreset approximation to
SVRG. Then we theoretically prove that our method con-
verges linearly. By applying CSVRG to ODM, the experi-
mental results show the superiority of our method in both
efficiency and generalization compared to the state-of-the-
art methods. The theoretical analysis show that there is a gap
between the optimal solution and the approximated solution,
how to reduce this gap will be an interesting future work.
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In the supplementary material, we will give the detailed
proofs of lemma and theorems in main paper. Without loss
of generality, we assume that ‖φ (x)‖ = K (x, x)

1/2
=

1, ∀x ∈ D. And we only consider the binary classification,
so the label y is either −1 or 1 which implies |y| = y2 = 1.

Bounded Approximation Error
In this section, we will present the detailed proofs of Theo-
rem 1, Lemma 2 and Lemma 3, i.e., the intermediate results
when we give the upper bound of approximation error.

Theorem 1. If w∗odm is the optimal solution of ODM, then
there exists a positive constant H such that ‖w∗odm‖ ≤ H ,

where H =

√
λ(1−θ)2+λµ(1+θ)2

1−θ . Moreover, for squared
hinge loss SVM, the optimal solutionw∗h2 satisfiesw∗h2 ≤ λ.

Proof. 1 For ODM
The optimization problem of ODM can be reformulated as
follows:

min
w,ξ,ε

1

2
w>w +

λ

m (1− θ)2
ξ>ξ +

λµ

m (1− θ)2
ε>ε

s.t. Y x>w ≥ (1− θ) e− ξ,
Y x>w ≤ (1 + θ) e+ ε.

(1)

where x is the matrix whose i-th column is φ (xi), i.e., x =
[φ (x1) , . . . , φ (xm)], Y is a m × m diagonal matrix with
y1, . . . , ym as the diagonal elements and e stands for the all-
one vector.

Introduce the Lagrange multipliers ζ ≥ 0 and β ≥ 0 for
the two constraints respectively, the Largrangian of (1) leads
to

L (w, ξ, ε,α,β)

=
1

2
w>w +

λ

m (1− θ)2
ξ>ξ +

λµ

m (1− θ)2
ε>ε

− ζ>
(
Y X>w − (1− θ) e+ ξ

)
+ β>

(
Y X>w − (1 + θ) e− ε

)
.

(2)

Copyright c© 2019, Association for the Advancement of Artificial
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By setting the partial derivative of w, ξ, ε to zero, we have
∂L
∂w

= w −XY ζ +XY β = 0 =⇒ w = XY (ζ − β)

∂L
∂ξ

=
2λ

m (1− θ)2
ξ − ζ = 0 =⇒ ξ =

m (1− θ)2

2λ
ζ

∂L
∂ε

=
2λµ

m (1− θ)2
ε− β = 0 =⇒ ε =

m (1− θ)2

2λµ
β

Substituting the above to (2), we gain the dual form

G (α) =− 1

2
w>w − m (1− θ)2

4λ
ζ>ζ − m (1− θ)2

4λµ
β>β

+ (1− θ) ζ>e− (1 + θ)β>e (3)

Let us denote (w∗, ξ∗, ε∗) and (ζ∗,β∗) be the primal and
dual solutions of (1) and (3), respectively. Since the strong
duality holds, we have

1

2
‖w∗‖2 +

λ

m (1− θ)2
m∑
i=1

(
ξ∗i

2 + µε∗i
2
)

= −1

2
‖w∗‖2 − m (1− θ)2

4λ

m∑
i=1

ζ∗i
2 − m (1− θ)2

4λµ

m∑
i=1

β∗i
2

+ (1− θ)
m∑
i=1

ζ∗i − (1 + θ)

m∑
i=1

β∗i

Since the loss of ODM is non-negative, we have

‖w∗‖2 ≤− m (1− θ)2

4λ

m∑
i=1

ζ∗i
2 − m (1− θ)2

4λµ

m∑
i=1

β∗i
2

+ (1− θ)
m∑
i=1

ζ∗i − (1 + θ)

m∑
i=1

β∗i

=

m∑
i=1

(
(1− θ) ζ∗i −

m (1− θ)2

4λ
ζ∗i

2

)

+

m∑
i=1

(
(1 + θ)β∗i −

m (1− θ)2

4λµ
β∗i

2

)

≤
m∑
i=1

λ

m
+

m∑
i=1

λµ (1 + θ)
2

m (1− θ)2



=
λ (1− θ)2 + λµ (1 + θ)

2

(1− θ)2
= H2

We note that the second inequality uses that the maxi-
mum of the quadratic concave function is obtained when
ζ∗i = 2λ

m(1−θ) and β∗i = 2λµ(1+θ)

m(1−θ)2 . Therefore, for ODM,

‖w∗odm‖ ≤ H , where H =

√
λ(1−θ)2+λµ(1+θ)2

1−θ .

2 For Square Hinge Loss SVM
The optimization of square hinge loss SVM is as follows:

min
w,ξ

1

2
‖w‖2 +

λ

m

m∑
i=1

ξ2i

s.t. yiw>φ(xi) ≥ 1− ξi, i = 1, . . . ,m

(4)

where ξ = [ξi]
m
i=1. The Lagrange function is of the follow-

ing form

L(w, ξ,α) =
1

2
‖w‖2 +

λ

m

m∑
i=1

ξ2i

+

m∑
i=1

αi
(
1− ξi − yiw>φ(xi)

) (5)

By setting the partial derivative of w, ξ to zero, we have

∂L
∂w

= w −
m∑
i=1

αiyiφ(xi) = 0 =⇒ w =

m∑
i=1

αiyiφ(xi)

∂L
∂ξi

=
2λ

m
ξi − αi = 0 =⇒ ξi =

m

2λ
αi

Substituting the above to (5), we gain the dual form

W(α) = −1

2
‖w‖2 − m

4λ

m∑
i=1

α2
i +

m∑
i=1

αi (6)

Let us denote (w∗, ξ∗) and α∗ be the primal and dual
solutions of (4) and (5) respectively. Since the strong duality
holds, we have

1

2
‖w∗‖2 +

λ

m

m∑
i=1

ξ∗2i = −1

2
‖w∗‖2 − m

4λ

m∑
i=1

α∗2i +

m∑
i=1

α∗i

Since the loss of square hinge loss SVM is non-negative, we
have

‖w∗‖2 = −m
4λ

m∑
i=1

α∗2i +

m∑
i=1

α∗i −
λ

m

m∑
i=1

ξ∗2i

≤
m∑
i=1

(
−m

4λ
α∗2i + α∗i

)
≤ λ

Therefore, for square hinge loss SVM, we have w∗h2 ≤ λ.
In summary, we gain the conclusion. The proof of Theorem
1 is similar to that of Theorem 1 in (Shalev-Shwartz et al.
2011).

Lemma 2. For ODM problem, the αt satisfies α2
t ≤ A2 for

all t, where A = 2(H+1+θ)
(1−θ)2 .

Proof. We first remind the representation of αt

αt =
2λ

(1− θ)2
{
(
ytw

>φ (xt) + θ − 1
)
ytI (t ∈ I1)

+ µ
(
ytw

>φ (xt)− θ − 1
)
ytI (t ∈ I2)}

where I1 ≡
{
i | ytw>φ (xt) < 1− θ

}
and I2 ≡{

i | ytw>φ (xt) > 1 + θ
}

. Then we can obtain

‖αt‖ ≤
2λ

(1− θ)2
(∥∥(ytw>t φ (xt) + θ − 1

)∥∥ I(t ∈ I2)

+µ
∥∥(ytw>t φ (xt)− θ − 1

)∥∥ I(t ∈ I3)
)

≤ 2λ

(1− θ)2
((∥∥w>t φ (xt)

∥∥+ ‖θ − 1‖
)
I(t ∈ I2)

+µ
(∥∥w>t φ (xt)

∥∥+ ‖θ + 1‖
)
I(t ∈ I3)

)
≤ 2λ

(1− θ)2
((‖wt‖ ‖φ (xt)‖+ 1− θ) I(t ∈ I2)

+µ (‖wt‖ ‖φ (xt)‖+ 1 + θ) I(t ∈ I3))

=
2λ

(1− θ)2
((‖wt‖+ 1− θ) I(t ∈ I2)

+µ (‖wt‖+ 1 + θ) I(t ∈ I3))

≤ 2λ

(1− θ)2
(‖wt‖+ 1 + θ)

≤2λ (H + 1 + θ)

(1− θ)2

Note that the first and second inequalities use Minkowski in-
equality, the third inequality uses Cauchy-Schwarz inequal-
ity, and the fourth inequality uses that µ ≤ 1 and 0 ≤ θ ≤ 1.
Therefore, we have α2

t ≤ A2, where A = 2(H+1+θ)

(1−θ)2 .

Lemma 3. For hinge loss SVM and square hinge loss SVM,
the αt satisfies α2

t ≤ A2 = λ2B2 for all t, where B = 1
and B = 2λ+ 2 respectively.

Proof. For hinge loss SVM, we have

l (w;x, y) = max
{

0, 1− yw>φ (x)
}

l′ (w;x, y) = −I{yw>φ(x)≤1}yφ (x)

where IS is the indicator function, which equals 1 if the logi-
cal statement S is true and 0 otherwise. Therefore, by taking
B = 1, we have

‖l′ (w;x, y)‖ ≤ ‖φ (x)‖ ≤ 1 = B

For squared hinge loss SVM, we have

l (w;x, y) = max
{

0, 1− yw>φ (x)
}2

l′ (w;x, y) = −I{yw>φ(x)≤1}2yφ (x)
(
1− yw>φ (x)

)



Then by taking B = 2λ+ 2 we can obtain

‖l′ (w;x, y)‖ ≤
∥∥2yφ (x)

(
1− yw>φ (x)

)∥∥
≤ 2

∥∥1− yw>φ (x)
∥∥ ‖φ (x)‖ |y|

≤ 2
∥∥yw>φ (x)

∥∥+ 2

≤ 2 ‖φ (x)‖ ‖w‖ |y|+ 2

= 2 ‖w‖+ 2

≤ 2λ+ 2 = B

The last inequality uses Theorem 1.
Therefore, there exists a positive constant B such that

‖l′ (w;x, y)‖ ≤ B for hinge loss SVM and square hinge
loss SVM. Based on this, we have the following proof.

Note that ‖φ (x)‖ = K (x, x) = 1, by taking A = λB,
we have
α2
t = α2

tK (xt,xt) = λ2 ‖l′ (wt;xt, yt)‖
2 ≤ λ2B2 = A2

Therefore we gain the conclusion α2
t ≤ A2.

Based on te above results, we obtain the Theorem 4,
whose proof is in the main paper.
Theorem 4. Assume that the p.s.d. and isotropic kernel
K(xi,xj) = k(‖xi − xj‖2) is used, where k(.) is a mono-
tonically continuous decreasing function with k(0) = 1.
And let δ be the diameter of coreset coverage. Then for
the approximation error ∆t as indicated in (10), we have
‖∆t‖ ≤ 3

2Aδφ, where δφ = 2
√

2(1− κ(δ2/4)).

Convergence Analysis
In this section, we will present the proof of intermediate con-
clusions when analysing the convergence of CSVRG. The
proofs of Lemma 6,7 are similar to the proof of Lemma 21,
Lemma 22 in (Le et al. 2017).
Lemma 5. When using CSVRG to train ODM, we have
E
[
‖wt −w∗‖2

]
≤W 2 for all t, where W = 2H .

Proof. According to Theorem 1, by taking W = 2H , we
have the following

E
[
‖wt −w∗‖2

]
≤ 2E

[
‖wt‖2

]
+ 2E

[
‖w∗‖2

]
≤ 4H2 = W 2

Lemma 6. When using CSVRG to train hinge loss SVM or
square hinge loss SVM, there exists a positive constant P
such that E

[
‖wt‖2

]
≤ P 2 for all t, where P = 2A+ 3

2Aδφ.

Proof. We prove by induction that E
[
‖wt‖2

]
≤ P 2 where

P = 2A+ 3
2Aδφ for all t. Assume that the claim is holding

for t− 1, we have the detailed proof in Figure 1.

The third inequality uses
√
E ‖a+ b‖2 ≤

√
E ‖a‖2 +√

E ‖b‖2. The fourth inequality uses Lemma 3. And the fifth

inequality uses E ‖ξ − Eξ‖2 = E ‖ξ‖2 − ‖Eξ‖2 ≤ E ‖ξ‖2
for any random vector ξ. Finally, the sixth inequality uses
Theorem 4.

Lemma 7. Assume that f(w) is ν-strongly convex, when
using CSVRG to train hinge loss SVM or square hinge loss
SVM, we have E

[
‖wt −w∗‖2

]
≤W 2 for all t, whereW =

3Aδφ+
√

9A2δ2φ+16(1−ην)P 2

2ν .

Proof. We first remind the definitions of the relevant vari-
ables

g = w + λl′ (w;xt, yt) = w + αtφ (xt)

vt = ∇ψt (wt−1)−∇ψt (w̃) + µ̃

= wt−1 + (αt − α̃t)φ (xt) +
1

m

m∑
i=1

α̃iφ (xi)

∆t = (αt − α̃t) [φ (ct)− φ (xt)]

+
1

m

m∑
i=1

α̃i [φ (ci)− φ (xi)]

ht = vt + ∆t

Let dt = ht−wt−1, according to the proof of lemma 2, we
have

(1− η)

√
E ‖wt−1‖2 + η

√
E ‖dt‖2 ≤ P

=⇒
√

E ‖dt‖2 ≤ P

Therefore, we can obtain√
E ‖ht‖2 ≤

√
E ‖wt−1‖2 +

√
E ‖dt‖2 ≤ 2P (7)

Conditioned on wt−1, we have E [vt] = ∇f (wt−1).
Then we can obtain

E
[
‖wt −w∗‖2

]
= E

∥∥∥∥∥∏
S

(wt−1 − ηht)−w∗
∥∥∥∥∥
2

≤E
[
‖wt−1 − ηht −w∗‖2

]
= ‖wt−1 −w∗‖2 + η2E

[
‖ht‖2

]
− 2ηE [〈wt−1 −w∗,vt〉]

− 2ηE [〈wt−1 −w∗,∆t〉]

= ‖wt−1 −w∗‖2 + η2E
[
‖ht‖2

]
− 2η (wt−1 −w∗)> E [vt]

+ 2ηE
[
‖wt−1 −w∗‖2 ‖∆t‖2

]1/2
≤‖wt−1 −w∗‖2 + η2E

[
‖ht‖2

]
− ην ‖wt−1 −w∗‖2

+ 2ηE
[
‖wt−1 −w∗‖2 ‖∆t‖2

]1/2
where S = B (0, λ). The last inequality uses the ν-strongly
convexity of f (w) as follows

(wt −w∗)>∇f (wt)

≥ f (wt)− f (w∗) +
λ

2
‖wt −w∗‖2

≥ λ

2
‖wt −w∗‖2



√
E
[
‖wt‖2

]
≤

√√√√√E

∥∥∥∥∥∏
S

(wt−1 − ηht)

∥∥∥∥∥
2
 ≤√E

[
‖wt−1 − ηht‖2

]

=

√
E
[
‖wt−1 − η (wt−1 + λ`′ (wt−1;xt, yt)− g̃t + µ̃+ ∆t)‖2

]
≤ (1− η)

√
E
[
‖wt−1‖2

]
+ ηλ

√
E
[
‖`′ (wt−1;xt, yt)‖2

]
+ η

√
E
[
‖µ̃− g̃t‖

2
]

+ η

√
E
[
‖∆t‖2

]
≤ (1− η)

√
E
[
‖wt−1‖2

]
+ ηA+ η

√√√√E

∥∥∥∥∥α̃tφ (xt)−
1

m

m∑
i=1

α̃iφ (xt)

∥∥∥∥∥
2

+ η

√
E
[
‖∆t‖2

]
≤ (1− η)

√
E
[
‖wt−1‖2

]
+ ηA+ η

√
E ‖α̃tφ (xt)‖2 + η

√
E
[
‖∆t‖2

]
≤ (1− η)

√
E
[
‖wt−1‖2

]
+ 2ηA+

3

2
ηAδφ

≤ (1− η)P + 2ηA+
3

2
ηAδφ = P

Figure 1: Proof of Lemma 6

The last inequality uses f (wt)− f (w∗) ≥ 0. Then by tak-
ing expectation again and substituting (4), we have

E
[
‖wt −w∗‖2

]
≤ (1− ην)E

[
‖wt−1 −w∗‖2

]
+ 4η2P 2

+ 2ηE
[
‖wt−1 −w∗‖2 ‖∆t‖2

]1/2
≤ (1− ην)E

[
‖wt−1 −w∗‖2

]
+ 4η2P 2

+ 3ηAδφE
[
‖wt−1 −w∗‖2

]1/2
We prove by induction in t. Choosing W =
3Aδφ+

√
9A2δ2φ+16(1−ην)P 2

2ν , which is the solution of
following equation

(1− ην)W 2 + 4η2P 2 + 3ηAδφW = W 2

Therefore, assuming that E
[
‖wt−1 −w∗‖2

]
≤ W 2, we

obtain

E
[
‖wt −w∗‖2

]
≤ (1− ην)W 2+4η2P 2+3ηAδφW = W 2

Therefore, we gain the conclusion E
[
‖wt −w∗‖2

]
≤ W 2

for all t.

According to the Lemma 5, 6, 7, we can obtain the con-
vergence rate as follows, the proof of which is in the main
paper.

Theorem 8. Consider CSVRG in Algorithm 1 with option II
and use it to solve SVMs and ODM. Assume that all ψi(w)
are convex and L-smooth, f(w) is ν-strongly convex. Let
w∗ = argminwf(w). Assume that T is sufficiently large so
that

ρ =
1

νη(1− 4Lη)T
+

4Lη

1− 4Lη
< 1

then we have linear convergence in expectation for CSVRG:

E[f(w̃s)− f(w∗)] ≤ ρsE[f(w̃0)− f(w∗)] +
1− ρs

1− ρ
Ω

where Ω is a constant gap caused by coreset approximation,
and Ω→ 0 when the radius of coverage approaches 0.
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