
Beimingwu: A Learnware Dock System
Zhi-Hao Tan†
Nanjing University
Nanjing, China

Jian-Dong Liu†
Nanjing University
Nanjing, China

Xiao-Dong Bi
Nanjing University
Nanjing, China

Peng Tan
Nanjing University
Nanjing, China

Qin-Cheng Zheng
Nanjing University
Nanjing, China

Hai-Tian Liu
Nanjing University
Nanjing, China

Yi Xie
Nanjing University
Nanjing, China

Xiao-Chuan Zou
Nanjing University
Nanjing, China

Yang Yu
Nanjing University
Nanjing, China

Zhi-Hua Zhou∗
Nanjing University
Nanjing, China

ABSTRACT
The learnware paradigm proposed by Zhou [40] aims to enable
users to leverage numerous existing high-performing models in-
stead of building machine learning models from scratch. This par-
adigm envisions that: Any developer worldwide can submit their
well-trained models spontaneously into a learnware dock system
(formerly known as learnware market). The system uniformly gen-
erates a specification for each model to form a learnware and accom-
modates it. As the key component, a specification should represent
the capabilities of the model while preserving developer’s original
data. Based on the specifications, the learnware dock system can
identify and assemble existing learnwares for users to solve new
machine learning tasks. Recently, based on reduced kernel mean
embedding (RKME) specification, a series of studies have shown
the effectiveness of the learnware paradigm theoretically and em-
pirically. However, the realization of a learnware dock system is
still missing and remains a big challenge.

This paper proposes Beimingwu, the first open-source learnware
dock system, providing foundational support for future research.
The system provides implementations and extensibility for the
entire process of learnware paradigm, including the submitting, us-
ability testing, organization, identification, deployment, and reuse
of learnwares. Utilizing Beimingwu, the model development for new
user tasks can be significantly streamlined, thanks to integrated
architecture and engine design, specifying unified learnware struc-
ture and scalable APIs, and the integration of various algorithms for
learnware identification and reuse. Notably, this is possible even for
users with limited data and minimal expertise in machine learning,
without compromising the raw data’s security. The system facil-
itates the future research implementations in learnware-related
algorithms and systems, and lays the ground for hosting a vast
array of learnwares and establishing a learnware ecosystem. The
system is fully open-source and we expect the research community

∗Corresponding author (email: zhouzh@lamda.nju.edu.cn). All authors are affiliated
with National Key Laboratory for Novel Software Technology and School of Artificial
Intelligence in Nanjing University. This work was supported by NSFC (62250069).
†Equal contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0490-1/24/08
https://doi.org/10.1145/3637528.3671617

to benefit from the system. The system and research toolkit have
been released on GitLink 1 and GitHub 2.

CCS CONCEPTS
•Computingmethodologies→Machine learning; • Informa-
tion systems → Information systems applications.

KEYWORDS
Machine Learning, Learnware, Learnware Dock System, Learnware
Specification

ACM Reference Format:
Zhi-Hao Tan, Jian-Dong Liu, Xiao-Dong Bi, Peng Tan, Qin-Cheng Zheng,
Hai-Tian Liu, Yi Xie, Xiao-Chuan Zou, Yang Yu, and Zhi-Hua Zhou. 2024.
Beimingwu: A Learnware Dock System. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’24),
August 25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3637528.3671617

1 INTRODUCTION
Numerous applications that rely on machine learning models have
been integrated into many facets of modern life. However, in classic
machine learning paradigm, to train a high-performing model from
scratch for a new task still requires an abundance of high-quality
data, expert experience, and computational resources, which is dif-
ficult and expensive. There are also lots of concerns when reusing
existing efforts, such as the difficulty of adapting a specific trained
model to different environments, and the embarrassment of cata-
strophic forgetting when refining a trained model incrementally.
Besides, privacy and proprietary issues hinder the data sharing
among developers, and restrict the capabilities of big models in
many data-sensitive scenarios. Indeed, most efforts have been fo-
cusing on one of these concerned issues separately, paying less
attention to the fact that most issues are entangled in practice.

To tackle the above issues simultaneously and leverage exist-
ing efforts in a systematic and unified way, learnware [40, 41] was
proposed, based on which machine learning tasks can be solved
in a novel paradigm. The core design is envisioned as follows: For
well-trained models of any structure from various tasks, a learn-
ware consists of the model itself and a specification which captures
the model’s specialty in a certain representation, like its statistical
properties. Developers worldwide can submit their trained mod-
els into a learnware dock system spontaneously, and the system
helps generate specifications for each model to form learnwares.

1https://www.gitlink.org.cn/beimingwu
2https://github.com/Learnware-LAMDA

5773

https://doi.org/10.1145/3637528.3671617
https://doi.org/10.1145/3637528.3671617
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3637528.3671617&domain=pdf&date_stamp=2024-08-24

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhi-Hao Tan et al.

By accommodating all learnwares, when facing a new user task,
the learnware dock system can identify and assemble useful learn-
ware(s) based on specifications. Instead of starting from scratch,
the user can apply these learnware(s) directly or adapt by her own
data for better usage. Note that the learnware dock system should
be able to preserve the raw data of model developers and users.

As the foundation of learnware paradigm, a learnware dock sys-
tem should uniformly accommodate numerous submitted models,
and leverage the capabilities of them to solve new tasks in a unified
way. The key problem is that, considering a learnware dock system
which has accommodated thousands even millions of models, how
to identify and select the most helpful learnware(s) for a new user
task? Apparently, direct submitting user data to the system for trials
would be unaffordable and leak user’s raw data. The core design of
learnware paradigm lies in the specification. Recently, the reduced
kernel mean embedding (RKME) specification [41] was proposed,
which captures the distribution information via a synthetic reduced
set. Based on the RKME specification, multiple learnware search and
reuse algorithms are proposed and the effectiveness of specification-
based model selection and combination is verified empirically and
theoretically [14, 25, 26, 30, 32, 35]. However, the realization of an
initial learnware dock system is still missing and remains a big
challenge, which needs a novel specification-based architecture
design to support various research algorithm implementation.

To establish the foundation for the future research of learnware
paradigm,we built Beimingwu, the first open-source learnware dock
system. Benefiting from scalable system and engine architecture
design, specifying unified learnware structure and scalable APIs,
integration of baseline algorithms for the entire process, and con-
struction of convenient algorithm evaluation scenarios, the system
not only facilitates future research in learnware-related algorithms,
but also lays the groundwork for hosting a vast array of learn-
wares and establishing a learnware ecosystem. In this paper, our
contributions can be summarized as follows:

• Based on the first systematic implementation of learnware dock
system, as envisioned in the learnware paradigm, Beimingwu can
significantly streamline the process of building machine learning
models for new tasks, even with limited data and minimal expert
knowledge, while ensuring data privacy.

• In Beimingwu, we specify a unified learnware structure, and de-
sign an integrated architecture for system engine, which can
support the entire process including the submitting, usability
testing, organization, identification, deployment, and reuse of
learnwares. The architecture is scalable to various models, and
possesses unified and scalable interfaces for future research in
learnware-related algorithms.

• Based on the engine architecture and RKME specification, we
implement and refine a set of baseline algorithms for specification
generation, learnware organization, identification, and reuse. The
engine is released as learnware package, which supports the
computational and algorithmic aspects of the system, and also
serves as a research platform of learnware paradigm.

• To realize a learnware dock system that operates stably online,
based on the engine, we further design, develop, and deploy the
system backend and user interface including web frontend and
command-line client. All the source code of the system frontend,

backend, and engine is open-source for collaborative community
contributions and convenience of learnware research.

• Benefiting from the RKME statistical specification, we introduce
a baseline method for organizing, identifying, and reusing learn-
wares from different feature spaces.

• We build various types of experimental scenarios and conduct
corresponding empirical studies for evaluation, which are all
public for future research.

2 A BRIEF REVIEW OF LEARNWARE
PARADIGM

The learnware paradigmwas proposed in [40], andmany progresses
have been summarized in [41]. "Learnware =Model + Specification",
where the model is any well-trained machine learning model, and
the specification offers a certain kind of characterization for the
model and enables the model to be adequately identified to reuse
according to future users’ requirement.

The developer or owner of a well-performing machine learning
model, of any type and structure, can spontaneously submit her
trained model into a learnware dock system (previously called learn-
ware market). If the model passes the quality detection, the learn-
ware dock system will help generate a specification to the model
and accommodate it in the system in a unified way. The learnware
dock system should be scalable to accommodate thousands of or
millions of well-performed models submitted by different devel-
opers, on different tasks, using different data, optimizing different
objectives, etc.

Based on the learnware dock system, when a user is going to
solve a new machine learning task, she can submit her requirement
to the learnware dock system, and then the system will identify and
assemble some helpful learnware(s) from numerous learnwares to
return to the user by considering the learnware specification. She
can apply the learnware(s) directly, or adapt them by her own data,
or exploit in other ways to help improve the model built from her
own data. No matter which learnware reuse mechanism is adopted,
the whole process can be much less expensive and more efficient
than building a model from scratch by herself. Importantly, it has
been proved that the learnware paradigm has privacy-preserving
ability, which enables developers to share their models that can be
adequately identified and reused by future users without disclosing
developer’s original training data.

The learnware paradigm proposes to build a learnware dock sys-
tem to accommodate, organize and leverage existingwell-performing
models uniformly, which provides a unified way to leverage exist-
ing efforts from all the community to solve new user tasks, and
offers the possibility of addressing significant concerned issues
simultaneously [41]: lack of training data, lack of training skills,
catastrophic forgetting, hard to achieve continual learning, data
privacy/proprietary, unplanned new tasks from open world, and
carbon emissions caused by wasteful repetitive training.

The key challenge is that, considering a learnware dock system
which has accommodated millions of models, how to identify and
assemble the most helpful learnware(s) for a new user task? Appar-
ently, direct submitting user data to the system for trials would be
unaffordable and leak user’s raw data. The core design of learnware
paradigm lies in the specification. Recent progresses are mainly

5774

Beimingwu: A Learnware Dock System KDD ’24, August 25–29, 2024, Barcelona, Spain

based on the RKME specification [41]. For example, Wu et al. [30]
proposed to identify helpful learnware(s) by matching original data
distributions of learnwares with user data distributions based on
RKMEs, which is further extended by Zhang et al. [35] under the
existence of unseen parts in user tasks. By learning a unified speci-
fication space for various learnwares from heterogeneous feature
spaces, Tan et al. [25, 26] proposed learnware search and reuse
algorithms to utilize the learnware from heterogeneous feature
spaces. To support efficient and accurate identification from a large
number of learnwares, Xie et al. [32] proposed the anchor-based
mechanism, which organizes learnwares structurally and identifies
helpful learnwares by only accessing a small number of anchor
learnwares instead of examining all learnwares. Liu et al. [14] fur-
ther proposed an efficient learnware identification method called
evolvable learnware specification with index (ELSI), resulting in
increasingly accurate characterization of model abilities beyond
original training tasks with the ever-increasing number of learn-
wares. Besides, Guo et al. [6] attempted to leverage learnwares from
heterogeneous label spaces.

Although existing study has shown the effectiveness of the
learnware paradigm, the realization of a learnware dock system
is still missing and remains a big challenge, which needs a novel
specification-based architecture design to handle the diversity of
real-world tasks and models, and to leverage numerous learnwares
in a unified way according to the user task requirement. In this
paper, we built Beimingwu, the first learnware dock system, which
can support the entire process including the submitting, usability
testing, organization, management, identification, deployment, and
reuse of learnwares. Based on Beimingwu, we lay the groundwork
for future research and ecosystem, and show the effectiveness of
learnware paradigm in addressing concerned issues in Section 1
simultaneously.

3 SOLVING LEARNING TASKS VIA BEIMINGWU
Benefiting from uniform learnware structure, integrated architec-
ture design, and unified interfaces, all learnwares in Beimingwu can
be uniformly identified and reused. Based on the first systematic
implementation of learnware dock system, as envisioned in the
learnware paradigm, Beimingwu can significantly streamline the
process of building machine learning models for new tasks: Excit-
ingly, given a new user task, if Beimingwu possesses learnwares
with capabilities to tackle the task, with just a few lines of code, the
user can easily obtain and deploy a high-quality model based on
Beimingwu, without the need for extensive data, expert knowledge,
or revealing her raw data.

Users can also interact with the system via a web frontend 3, to
view information of each learnware and obtain helpful learnwares
by choosing semantic specification, like data type, task type, and
scenarios, or by uploading statistical RKME specification for precise
identification. Note that the core engine of Beimingwu, supporting
the computational and algorithmic aspects, is extracted and released
as learnware package that can be easily used locally.

The entire workflow of using Beimingwu is shown in Figure 1.
Based on engineering implementations and unified interface design,
each step can be achieved with one key line of code. Note that the

3https://bmwu.cloud/

Ⅰ Generate statistical specification

rkme = generate_stat_spec(type="table", X=data)

Ⅱ Beimingwu identifies helpful learnwares

Ⅲ A unified way to load learnwares

Ⅳ Reuse learnwares on own data

Reuser = ReuserName(learnware_list).fit(data)
y_predict = Reuser.predict(X)

No leakage of raw data

New user task
requirement

Submit the requirement to Beimingwu

Task semantic specification:
- Data type: ‘table’ - Task type: ‘regression’ - Scenario: ‘Bussiness’
Utilize Beimingwu to Generate statistical specification by API:

Helpful combination of learnwares
Helpful single learnware

learnware_ids = client.search_learnware(user_info)["multiple"]["learnware_ids"]
Another way: Identify helpful learnwares from numerous learnwares by learnware package client API:

Return helpful learnwares

learnware_list = client.load_learnware(learnware_id=learnware_ids,
runnable_option="docker")

Utilize Beimingwu to load learnwares locally by learnware package client API:

Model Specification

Statistical
specification

- Multiple model reuse – Heterogeneous reuse
- Data-free and data-dependent -

Unified reuse interface

- single and multiple learnwares - various data type - homogeneous and heterogeneous feature spaces

Returned learnwares
Reuse loaded learnwares on own data

Figure 1: The entire workflow of using Beimingwu to solve
new learning tasks includes statistical specification genera-
tion and learnware identification, loading, and reuse.

statistical specification is realized via reduced kernel mean embed-
ding (RKME) specification [41] which captures the data distribution
while not disclosing the raw data. Detailed learnware identification
algorithms based on statistical specifications and learnware reuse
algorithms will be presented in Section 5.1.

Based on Beimingwu system, we show that the learnware par-
adigm offers a promising solution to the issues mentioned in Sec-
tion 1. Specifically, the model development process for tasks based
on Beimingwu possesses the following significant advantages:
• Noneed for extensive data and training resources. If helpful
learnwares exist, Beimingwu identifies and assembles helpful
learnware(s) for user tasks from numerous learnwares in the
system, then users can directly utilize them or refine them with
a small amount of data, instead of training a new model with
extensive data and resources from scratch.

• Minimal machine learning expertise. With just a few lines
of code, users can easily obtain suitable learnware(s) identified
by the system for their specific tasks. This streamlined process
makes numerous high-quality and potentially helpful models
adequately utilized by users across all levels of expertise. It elim-
inates the need for expert knowledge in designing priors, or
manually selecting algorithms and models.

• Simple and secure local deployment of diverse models.
Ideally, the system accommodates diverse and high-quality learn-
wares from global developers, applicable to various specialized
and customized scenarios. Based on engineering implementa-
tions and architecture optimizations, and specifying a unified
learnware structure, Beimingwu allows for effortless and safe
deployment and reuse of arbitrary learnwares in a unified way
based on containerized isolation, with fewer concerns about en-
vironment compatibility and safety.

• Privacy-preserving: no leakage of original data. To identify
the most suitable learnwares, a user generates and submits the

5775

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhi-Hao Tan et al.

Le
ar

nw
ar

e
St

or
ag

e

B
ei

m
in

gw
u

B
ac

ke
nd

B
ei

m
in

gw
u

En
gi

ne

User Interface

Model Files Specification Files

Yaml Config Env Dependencies

Learnware Zip File

Learnware Database

Semantic Statistical

Specification

Model

Learnware

Semantic Statistical

Searcher

Easy Hetero

Organizer

Semantic

Statistical

Checker

Conda

Learnware Market

Acquire learnwares

learnware
existence

Check

Conda Docker

Learnware Container
Reuser

Make learnware executable

APIs Engine Instance

Backend API Node

Validator Engine Instance

Learnware Validator Node

Backend DatabaseBackend Radis Server Data Backup Node

Engine sync

Load learnwaresInstantiate engine

User

Frontend

Admin

Online

Client

Offline

Call APIs

Beimingwu: A Learnware Dock System

Call backend APIs

Learnware

Model Specification

Reuse with user's data

New Learnware

Model Files Spec Files

Submit

requirements

User Task

Return

learnware(s)

Submit

Return

check status

Figure 2: The architecture of Beimingwu consists of four layers: learnware storage, system engine, backend, and user interface.

RKME statistical specification to the system using API, which
captures the data distribution while not disclosing the raw data.
Based on the RKME, Beimingwu identifies the learnware(s) that
are most beneficial for user task. More importantly, the privacy-
preserving ability enables developers to share their models that
can be adequately identified and reused by future users without
disclosing developers’ original training data.
Presently, at the initial stage, Beimingwu houses only about 1200

learnwares mostly built from open-source datasets, offering lim-
ited capabilities for numerous specific and unforeseen scenarios.
However, relying on the foundational implementations and scalable
architecture, the constantly submitted learnwares and algorithmic
advancement will expand the knowledge base of the system and
enhance its ability to reuse existing models to solve user tasks
even beyond their original purposes, and this continuous evolution
of the system enables it to handle increasing user tasks without
catastrophic forgetting, naturally realizing lifelong learning.

4 DESIGN AND ARCHITECTURE
In this section, we will first provide an overview of the Beimingwu
architecture. As briefly depicted in Figure 2, the entire system com-
prises four layers: learnware storage, system engine, system back-
end, and user interface. Then we will present our specification-
based architecture design of the core engine of the system.

4.1 Overview of Beimingwu Architecture
Learnware storage layer. In Beimingwu, learnwares are stored
as zip packages based on the architecture outlined in Section 4.2,
containing model, specification, environment dependencies, and
configuration files. To manage these zip packages, the learnware
database stores crucial learnware-related information and provides
a unified interface for the core engine of Beimingwu to access. Be-
sides, the database can be constructed using either SQLite (suitable
for easy setup in development and experimental environments) or
PostgreSQL (recommended for stable deployment in production
environments), both utilizing the same management interface.

Core engine layer. To maintain the simplicity and structure of
Beimingwu, we have separated the core components and algorithms
from the extensive engineering details. These extracted elements are
now available as learnware package, which serves as the core en-
gine of Beimingwu. As the system kernel, the engine encompasses
all processes within learnware paradigm, including the submit-
ting, usability testing, organization, identification, deployment, and
reuse of learnwares. It operates independently of the backend and
frontend, offering rich algorithmic interfaces for learnware-related
tasks and research experiments. Moreover, specification serves as
the central component in the engine, characterizing the associated
model from both semantic and statistical perspectives, and connect-
ing various essential learnware-related components. More details
about the core engine are presented in Section 4.2.

In contrast to existing model management platforms, which
passively collect and store models, Beimingwu actively manages
learnwares through its engine. The system organizes learnwares via
specifications, identifies relevant learnwares for users, and provides
corresponding methods for learnware reuse and deployment.

System backend layer. To enable industrial-level deployment
of Beimingwu, we have developed the system backend, building
upon the core engine. Through the design of multiple modules and
extensive engineering development, Beimingwu is now capable of
online and stable deployment, providing comprehensive backend
APIs to both the frontend and clients. Besides, to ensure efficient and
stable system operation, we have implemented several engineering
optimizations in the system backend layer, for example:

• Asynchronous learnware validation. Synchronous validation
responses to concurrent learnware uploads can severely impact
system efficiency. To address this challenge and efficiently vali-
date submitted learnwares, we have designed an asynchronous
validator node, which processes learnwares with a “waiting” sta-
tus in a queue, significantly reducing system stress.

• High concurrency across multiple backend nodes: The API
and validator nodes in the backend run concurrently, with their
engine instances synchronized via a Redis server. When one

5776

Beimingwu: A Learnware Dock System KDD ’24, August 25–29, 2024, Barcelona, Spain

instance completes a learnware-relatedwrite operation, it notifies
the others to reload the specific learnware using Redis, ensuring
synchronization across all nodes.

• Interface-level permission management: For effective sys-
tem management and convenient usage, we have designed three
levels of permissions for backend APIs: no login needed, login
required, and administrator permissions.

• Backenddatabase read-write separation: Beimingwu employs
a master-slave database architecture, separating read and write
operations to different database instances, enhancing database
and system efficiency.
User interface layer. For user convenience, we have devel-

oped a user interface layer, including a web-based frontend and a
command-line client. The web-based frontend serves both user and
administrative requirements and supports multi-node deployment,
while the command-line client is seamlessly integrated into the
learnware package, enabling users to access online APIs as well
as learnware-related modules and algorithms.

4.2 Engine Architecture Design
In this section, we introduce the Beimingwu engine’s architecture
design. We will start with design principles and then delve into the
engine architecture, covering modules and processes.

4.2.1 Design Principles. We design the Beimingwu engine based
on the following guidelines that include decoupling, autonomy,
reusability, and scalability.

Decoupling. As shown in Section 4.1, the Beimingwu engine is
decoupled from the backend, focusing solely on learnware-related
algorithms and components, while the backend is responsible for
business logic and engineering optimization. This separation stream-
lines the system, enhancing clarity and maintainability by isolating
academic modules from business and engineering components.

Autonomy. As an autonomous entity, the engine serves both as
the system kernel and as a standalone research platform, covering
all learnware-related processes and offering interactive interfaces.
This allows for direct testing of new algorithms, avoiding the sys-
tem’s complex engineering and deployment hurdles.

Reusability. The engine incorporates various learnware com-
ponents, covering submission, organization, identification, deploy-
ment, and reuse, designed with modularity to ensure each com-
ponent handles specific tasks while promoting code reusability.
This architecture principle allows for flexible module combinations,
streamlining the creation of diverse learnware processes.

Scalability. As learnware research advances, the engine will
integrate more algorithms, necessitating a highly scalable architec-
ture. Modules should provide extension interfaces to accommodate
future advanced algorithms for organization, identification, and
reuse. This will also enable users to seamlessly incorporate and test
their novel algorithms on this academic experimental platform.

4.2.2 Design of Core Modules. Following the design principles, we
have created learnware, market, specification, model, reuse, and
interface modules for the engine, as depicted in Figure 3.

Learnware. The learnware module, consisting of an identifier,
specification, and user model modules, is created by parsing files
that follow the learnware standard, including configuration, model,

statistical and semantic specification, and environment files, as
depicted in Figure 3. Specifically, the configuration file assists in
module parsing and instantiation; the model file details the user
model, offering a unified interface for training, prediction, and fine-
tuning; the statistical and semantic specification files store statistics
(e.g., training data distribution) and semantic information (e.g., task,
data and scenario types) related to the model; the environment file
specifies the user model’s runtime dependencies.

Market. The market module, featuring an organizer, searcher,
and multiple checkers, enables learnware organization, identifi-
cation, and usability testing. (a) The organizer module focuses
on learnware organization, facilitating operations like learnware
reloading, insertions, deletions, updates, and evolving. (b) The
searcher module identifies learnware(s) using statistical and seman-
tic specifications, filtering and matching based on the similarity be-
tween multifaceted user requirements and learnware specifications.
(c) The checker module assesses learnware usability and quality,
verifying specifications and creating a runtime environment for
testing user models.

Specification. The specification module, characterizing models
from both semantic and statistical perspectives, serves as the en-
gine’s core component, facilitating learnware organization, identifi-
cation, and reuse. The key lies in the statistical submodule, compris-
ing user and system statistical specifications. (a) User specifications
are generated locally by users via the engine, which currently sup-
ports reduced kernel mean embedding (RKME) specification [41]
generation for tabular, image, and text data. The same type of RKME
specifications can be compared for similarity using maximummean
discrepancy (MMD) calculations. During learnware search, the sys-
tem identifies learnware(s) based on the similarity of statistical
specifications. (b) System specifications are automatically gener-
ated by the system. For newly inserted learnwares, the organizer
leverages existing user specifications to generate system specifica-
tions, enhancing learnware management and further characterizing
their capabilities. Currently, the system employs heterogeneous
mapping specifications in its system statistical module. When in-
serting learnwares from heterogeneous tabular data, the organizer
module maps the user-generated RKME specifications to the same
embedding space with heterogeneous mapping to support search
operations on heterogeneous tabular models. For specific details
about heterogeneous search, please refer to Section 5.2.

Model. The model module comprises the base model template
and the model container. (a) The base model template standardizes
training, prediction, and fine-tuning interfaces for user models. User
models inherit from this template, enabling a unified interface for
model operations. (b) The model container, also inherited from the
base model template, automatically establishes an isolated runtime
environment based on the environment file to execute models.

Reuse. The reuse module comprises the data-free reuser, data-
dependent reuser, and aligner. Currently, the data-free reuser de-
rives the final prediction directly, employing methods such as en-
semble multiple learnwares. The data-dependent reuser, utilizing
additional labeled data provided by users, obtains final prediction
results through methods such as fine-tuning a meta-model. Both
methods require input learnwares to have the same feature and
prediction dimensions. The aligner ensures that features and predic-
tion spaces of heterogeneous learnwares are mapped to a common

5777

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhi-Hao Tan et al.

Learnware Standard

Zip Package

Semantic
Specification

Yaml Config

Model File

Env Dependencies

Learnware

Model

Classfication

Feature Extraction

Regression

Specification

Semantic

Others

Statistical

create

Market

Checker
Searcher

Semantic

Statistical

Conda

Semantic

Statictical

Database

Organizer

Easy Hetero

submit

Su
bm

itt
in

g
W

or
kf

lo
w

D
ep

lo
yi

ng
 W

or
kf

lo
w

UserInfo

Semantic
Spec

Statistical
Info

SearchResult

Scores

Learnwares

searchreturn

Executable
Learnwares

ModelContainer

DockerConda

Reuser

Model

Specification

ContainerManager

Executable
Learnwares

Data-Free Reuser

Averaging JobSelector

Data-Dependent Reuser

Ensemble
Purning

Feature
Argument

Aligner

Feature
Aligner

Label
Aligner Specification

Data Set
Table Image Text

RKME

RKME Reduced Set
Weights

Reduced Points

RKME Reduced Set

HeteroMapping

Hetero Reduced Set
Weights

Homo Embeddings

HeteroMapSpecification

RKMEStatSpecification

Organizer

Searcher

EasyOrganizer

Hetero
OrganizerDatabase

SqlLite

PostgresSql
HeteroMapping

HeteroMap
Specification

save load

save

load

Homo
StatSearcher

HeteroMap
Specification

RKMEStat
Specification

Hetero
StatSearcher

match match

Conda Checker

Semantic Checker

Executable
Learnwares

ModelContainer

Statistical Checker

check

Checker

Specification

Semantic Searcher

Fuzzy
Searcher

Workflow

Exact
Searcher

update

Market Specification

generate

Figure 3: Architecture design of Beimingwu engine, encompassing both workflows and modules.

space. To handle learnwares with different dimensions, by lever-
aging the RKME specifications of obtained learnwares, the dock
system passes them through the aligner to obtain feature-aligned
learnwares, which can then be used by either the data-free reuser
or data-dependent reuser. For specific details regarding the imple-
mentation of the aligner, please refer to Section 5.

4.2.3 Submitting and Deploying Stages. To provide a better un-
derstanding of the engine architecture’s data flow and operations,
we will focus on the processes in the submitting and deployment
stages, as illustrated in Figure 3.

Submitting stage. In the submitting stage, learnware develop-
ers submit their learnware zip packages in the standard format to
the system. The system then parses these packages into learnware
instances, checks their usability and quality via the checker module,
and stores the approved learnwares by the organizer module.

Deploying stage. In the deployment stage, users locally gener-
ate statistical and semantic specifications for their tasks and sub-
mit them to the system. The system then identifies learnware(s)
that match the user requirements. Finally, based on the provided
learnware package, users deploy these identified learnware(s) with
isolated containers, and reuse them with various methods.

5 ALGORITHMS AND METHODOLOGIES
In this section, based on the integrated and scalable engine architec-
ture and RKME specification, we then implement and refine a set of
baseline algorithms for learnware specification generation, organi-
zation, identification, and reuse. Additionally, we propose a baseline
method for the organization, identification, and reuse of learnwares
from different feature spaces. The engine is released as learnware
package4, supporting the computational and algorithmic aspects of
the system, and facilitates research implementation.

5.1 Implemented Algorithms of Beimingwu
Specifications. Specifications implemented by the system are all
derived from the RKME specification [41], which uses techniques

4https://learnware.readthedocs.io/

based on the reduced set of kernel mean embedding (KME) [2, 23].
Suppose a developer submits a model trained from the dataset
{(xi ,yi)}mi=1, then the reduced set representation {(βj , zj)}nj=1 is
generated by minimizing the distance between the KMEs of the
reduced set and the original data measured by the RKHS norm:

minβ≥0,Z
 1
m

∑m
i=1 k (xi , ·) −

∑n
j=1 βjk

(
zj , ·

)2
H
. The RKME spec-

ification Φ(·) =
∑n
j=1 βjk(zj , ·) ∈ H offers a concise representation

of the original data distribution P while preserving data privacy.
The Beimingwu system provides a unified interface generat

e_stat_spec for model developers and users to easily generate
specifications for specific data types. This generation process runs
locally and does not involve any data sharingwith the online system,
thus ensuring data privacy and ownership. The system supports
specifications for various data types:

• Tabular specification: For tabular tasks, the system generates
two distinct types of specifications. The first, RKMETableSpecif
ication, implements the RKME specification, which is the basis
of tabular learnwares. It facilitates learnware recommendation
and reuse for homogeneous tasks with identical input and output
domains. The second, HeteroMapTableSpecification, enables
learnware to support tasks with various input and output do-
mains. This specification is derived from RKMETableSpecifica
tion and is produced using the system’s heterogeneous engine.
This engine, a tabular network, is trained on feature semantics
and statistics of all tabular learnwares in the system.

• Image specification: The specification for image data RKMEIma
geSpecification introduces a new kernel function that trans-
forms images implicitly before RKME calculation. It employs the
neural tangent kernel (NTK) [7, 18, 27, 28], a theoretical tool that
characterizes the training dynamics of deep neural networks in
the infinite width limit, to enhance the measurement of image
similarity in high-dimensional spaces.

• Text specification: Text inputs of varying lengths are processed
into sentence embeddings using multilingual embedding models.
Subsequently, the RKME specification RKMETextSpecification
is calculated based on these embeddings.

5778

Beimingwu: A Learnware Dock System KDD ’24, August 25–29, 2024, Barcelona, Spain

Identification algorithms. When a user submits her task re-
quirement, the system identifies useful learnware(s) by leveraging
learnware specifications and the user’s requirement. The task re-
quirement typically includes semantic aspects based on tags and
descriptions and statistical requirements based on RKME. Initially,
the system executes a semantic filter across all learnwares, followed
by a basic statistical search, which supports both single andmultiple
learnware searches.
• Single learnware identification: The system recommends learn-
ware with data distribution similar to the user task. In details,
given the learnware RKME specification sl = {(βl i , zl i)}

nl
i=1 and

user’s RKME requirement su = {(βui , zui)}
nu
i=1, the system cal-

culates the maximum mean discrepancy (MMD) distance be-

tween them:
∑nl

i=1 βl ik (zl i , ·) −
∑nu
j=1 βujk

(
zuj , ·

)2
H
. The sys-

tem transforms distances to scores and recommends learnwares
with the score surpassing a preset threshold to the user.

• Multiple learnware identification: When a single learnware
inadequately addresses the user’s task, the system attempts to
assemble a combination of learnwares for user’s task. This in-
volves using a weighted combination of data distributions from
the learnwares to approximate the user’s task data distribution.
The system calculates the mixture weights for filtered learnwares
and return learnwares with high weights.
Reuse algorithms. Upon identifying and providing users with

pertinent learnwares, the system offers various basic methods for
learnware reuse. These methods enable users to effectively apply
learnwares to their tasks, thereby eliminating the need to develop
models from scratch. There are two main categories:
• Data-free reusers: reuse learnwares directly. The average
ensemble [39] used by AveragingReuser uniformly averages
learnwares prediction, and the job selector [30] used by the Jo
bSelectorReuser trains a multi-class classifier to identify the
appropriate learnware for each user data.

• Data-dependent reusers: reuse learnwares with minor la-
beled data: The ensemble pruning [31] used by the EnsembleP
runingReuser selects a subset from a given learnware list using
multi-objective evolutionary algorithm and uses average ensem-
ble. The feature augmentation used by the FeatureAugmentRe
user enhances user task features by incorporating predictions
from learnwares and subsequently training a simple model.

5.2 Handling Tabular Learnwares with
Heterogeneous Feature Spaces

The specification, representing the model’s specialty and utility,
is a crucial component of the learnware. Each specification island
encompasses all models that share the same functional space F :
X 7→ Y w.r.t. obj., whereX represents the input domain,Y the out-
put domain, and obj the objective. Collectively, these specification
islands constitute the specification world [41]. When a user submits
her task requirement, the system finds a matched specification is-
land based on the user’s input and output domains, followed by a
more precise model identification based on specifications. However,
for tabular tasks, a matched specification island may often not exist
due to highly structured yet flexible data and complicated feature
semantics, resulting in models from heterogeneous feature spaces.

To address these tabular task challenges, the system needs to
merge different specification islands without having additional co-
occurrence data across feature spaces. Inspired by Tan et al. [25]
and Wang and Sun [29], our solution involves creating relation-
ships between these islands based on RKME specifications and
feature semantics through semantic embeddings. A heterogeneous
tabular network is employed to establish this unified semantic
embedding space, generating new specifications for each tabular
learnware. These new specifications retain coefficients and trans-
formed samples. This approach allows identifying learnwares from
heterogeneous feature spaces.

Recommend heterogeneous tabular learnwares. To recom-
mend potentially useful tabular learnware(s) from the entire col-
lection, the system must integrate different tabular specification
islands by establishing relationships between them. Notably, each
specification island corresponds to a unique feature space X, char-
acterized by specific feature descriptions. The key strategy for merg-
ing these islands involves leveraging their relationships through
feature semantics to create a unified specification world, based
on semantic embeddings. In particular, the system employs a het-
erogeneous tabular network [29] to develop this unified semantic
embedding space. This network serves as the system’s heteroge-
neous engine, generating new specifications for each tabular learn-
ware. For a given tabular learnware with specifications {(βi , zi)}ni=1,
the new specification retains the coefficient βi and transforms the
samples zi using the system engine F (·), resulting in the new speci-
fication {(βi , F (zi))}ni=1. Once all tabular specification islands are
merged into this unified world, all specifications reside in the same
space, enabling the tabular learnware recommendation to encom-
pass all tabular learnwares, rather than just those with matching
input and output domains.

Reuse heterogeneous tabular learnwares. Upon receiving
the heterogeneous learnware recommended by the system, users
are still unable to apply it directly to their tasks due to discrepancies
in input domain X and output domain Y. Nevertheless, the system
facilitates the reuse of heterogeneous learnware through a three-
step process: 1) aligning the input domain, 2) predicting with the
learnware, and 3) aligning the output domain.

In the first step, input alignment, only the RKME specification
of the recommended learnware and the RKME requirement are
utilized, ensuring the user’s original data remains confidential. This
step involves transforming the feature space based on a reduced set
of learnware specifications, denoted as sl = {(βl i , zl i)}

nl
i=1, and a

corresponding set of user requirements, su = {(βui , zui)}
nu
i=1. The

transformation, represented by ϕ, minimizes the distance between
two distributions: the learnware specification sl = {(βl i , zl i)}

nl
i=1

and the projected user requirement sproju = {(βui ,ϕ(zui))}
nu
i=1. Uti-

lizing the maximummean discrepancy (MMD) distance,ϕ is derived
from the following optimization problem, which is solved using gra-

dient descent: minϕ
∑nu

i=1 βuik (ϕ(zui), ·) −
∑nl
j=1 βl jk(zl j , ·)

2
H
.

With ϕ generated, the user’s data is transformed to align with
the learnware’s input domain, enabling prediction. However, since
the output domain of the user’s task might differ from that of
the learnware, output alignment is required. This process involves
using a small amount of labeled data and is conducted by augment-
ing features, i.e., incorporating learnware predictions as additional

5779

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhi-Hao Tan et al.

features to train a simple model, such as logistic regression for
classification tasks and ridge regression for regression tasks.

6 EXPERIMENTAL EVALUATION
In this section, we first build a benchmark experimental scenario
of tabular data, which contains hundreds of sales forecasting learn-
wares from various real-world stores in the system, and hundreds
of new stores data as user tasks for evaluation, from heteroge-
neous feature spaces. Then we present empirical evaluations of the
implemented baseline algorithms in Section 5 across various exper-
imental scenarios. Finally, since our system has been open online,
we will introduce the system operation situation and applications.

For simplicity, all experimental results (Figures 4–7) follow a
consistent display format: The left table shows the results without
labeled data, while the right figure depicts outcomes with varying
amounts of labeled data, all derived frommultiple experiments with
the mean and standard deviation of average losses across all users.

6.1 Experiments on Tabular Data
Settings. The experimental scenario is built from three representa-
tive sales forecasting datasets: Predict Future Sales (PFS) [10], M5
Forecasting (M5) [16], and Corporacion [9], all experiments are
public. Various feature engineering methods are used. LightGBM
models are trained on the Corporacion and PFS training sets, with
test sets and M5 datasets used as user tasks. The experimental sce-
nario, containing 265 learnwares across five feature spaces and two
label spaces, are all uploaded to Beimingwu.

Method Loss

Mean in System 0.897

Best in System 0.756

Top-1 0.830

JobSelector 0.848

AverageEnsemble 0.816 100 200 500 1000 2000 4000 6000 8000 10000
Amount of Labeled User Data

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Lo
ss

 (R
M

SE
)

User Model
FeatureAugment (Single)
EnsemblePruning (Multiple)

Figure 4: Results of homogeneous tabular experiments.

6.1.1 Homogeneous Cases. In the homogeneous cases, the 53 stores
in the PFS dataset act as individual users, using their test data as
user data and applying the same feature engineering approach used
in the system. These users then search for homogeneous learnwares
in the system with matching feature spaces. We compare various
baseline algorithms under conditions of no or limited labeled data.
Top-1 reuser employs the best single learnware identified by the
searcher, while other reuse methods are detailed in Section 5.1.
Fig. 4 displays the results: the left table shows that data-free reusers
outperform random selecting a learnware from the system, while
the right figure indicates that identifying and reusing single or
multiple learnwares yields better results than self-trained models
with limited training data.

6.1.2 Heterogeneous Cases. Based on the similarity between tasks
handled by learnwares in the system and user tasks, heterogeneous
cases can be further categorized into two types.

Method Loss

Mean in System 1.149

Best in System 1.038

Top-1 1.075

AverageEnsemble 1.064
10 30 50 75 100 200 500 1000 2000

Amount of Labeled User Data

2.25

2.50

2.75

3.00

3.25

3.50

3.75

Lo
ss

 (R
M

SE
)

User Model
FeatureAugment (Single)
AverageEnsemble (Multiple)
EnsemblePruning (Multiple)

Figure 5: Results of heterogeneous tabular experiments.

Method Loss

Mean in System 0.655

Best in System 0.304

Top-1 0.406

JobSelector 0.406

AverageEnsemble 0.310 100 200 500 1000 2000 4000
Amout of Labeled User Data

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

Lo
ss

 (1
 -

Ac
c)

User Model
EnsemblePruning (Multiple)

Figure 6: Results of image experiments.

Different feature engineering scenarios. We treat the 41
stores within the PFS dataset as users, creating the user data with
a distinct feature engineering approach not found in the system’s
learnwares. While some system learnwares target the PFS dataset,
their feature spaces don’t match user tasks perfectly. In this sce-
nario, we assess various data-free reusers, and the results on the left
side of Fig. 5 show that the system performs well even when users
lack labeled data, especially with the AverageEnsemble method.

Different task scenarios. We use three different feature en-
gineering methods for ten stores in the M5 dataset, creating 30
users. While there are learnwares in the system designed for sales
forecasting task, none of them are specifically designed to meet the
M5 requirements. On the right side of Fig. 5, we show loss curves
for the user’s self-trained model and various learnware reuse meth-
ods, where heterogeneous learnwares prove effective with limited
labeled data for better alignment with the user’s specific task.

6.2 Experiments on Image and Text Data
Currently, our solutions are generally designed for any type of
data and models, thus for unstructured data like image and text
scenarios, we only assess our system on classic benchmark data.
Images of varying sizes can be standardized by resizing, and text
data was represented through a sentence embedding extractor.

Image experiments. Based on the image classification dataset
CIFAR-10 [11], we upload 50 learnwares, each containing a convo-
lutional neural network trained on an unbalanced subset of 12,000
samples from four categories, with a sampling ratio of 0.4 : 0.4 :
0.1 : 0.1. In this scenario, we evaluate 100 user tasks, each consisting
of 3,000 CIFAR-10 samples across six categories, with a sampling
ratio of 0.3 : 0.3 : 0.1 : 0.1 : 0.1 : 0.1. The performance is assessed
using 1 - Accuracy as the loss metric. Fig. 6 shows that when users
face a scarcity of labeled data or possess only a limited amount of
it (less than 2,000 instances), leveraging existing learnwares can
yield good performances.

5780

Beimingwu: A Learnware Dock System KDD ’24, August 25–29, 2024, Barcelona, Spain

Method Loss

Mean in System 0.493

Best in System 0.141

Top-1 0.154

JobSelector 0.155

AverageEnsemble 0.138 100 200 500 1000 2000 4000
Amout of Labeled User Data

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Lo
ss

 (1
 -

Ac
c)

User Model
EnsemblePruning (Multiple)

Figure 7: Results of text experiments.

Text Experiments.We use the 20-newsgroup text classification
dataset [8], containing roughly 20,000 documents distributed among
20 newsgroups. Similar to the image experiments, 50 text learnwares
are uploaded into Beimingwu, with each learnware’s model trained
on a subset comprising half the samples from three superclasses,
utilizing a tf-idf feature extractor combined with a naive Bayes
classifier. We define 10 user tasks, and each of them encompasses
two superclasses. Figure 7 shows that even without any labeled data,
learnware search and reuse can achieve performance comparable
to the best learnware in the system. Furthermore, utilizing the
learnware dock system results in a reduction of approximately
2,000 samples compared to training models from scratch.

6.3 Real-World Applications
After internal testing, as a research platform for learnware studies,
Beimingwu has been open to the academic community, and has been
registered by over 500 researchers from more than 150 universities.

Besides, as shown in the system document 5, we demonstrate
the effectiveness of Beimingwu in an industrial scenario. A well-
trained pump frequency control model can help a pump achieve
lower energy consumption. But traditionally, training such a model
from scratch is often challenging due to the scarcity of sufficient
operational data. By collecting 10 related historical learnwares
in Beimingwu, it becomes possible to solve new tasks, whereas
identifying which model to deploy is still challenging due to the
high cost of trials and data privacy concerns. By utilizing Beimingwu
to automatically identify suitable models without leaking raw data,
the average power consumption per 1,000 tons of water was reduced
from 35.1 kWh to 31.0 kWh, resulting in an 11.7% overall decrease
while maintaining consistent pump outlet flow.

7 RELATEDWORK
Instead of building models from scratch, for the first time, the learn-
ware paradigm [40, 41] proposes to build a large model platform
consisting of numerous high-performing models, and enable users
to easily leverage existing models to solve their tasks. Recently,
utilizing the large learnware model platform to solve new learn-
ing tasks has witnessed a rapidly increasing attention, notably the
Hugging Face platform, hosting over half a million models. As git-
based remote hosting platforms, they manages learning models
like code, with semantic descriptions capturing model information.
Fundamentally differing from passive hosting, based on a novel
specification-based architecture, Beimingwu aims to automatically

5https://docs.bmwu.cloud/

identify and assemble high-performing models suitable for user
tasks, with no need for extensive data and expert knowledge, while
preserving raw data. To achieve this, with machine learning models
being functions from the input domain to the output domain, statis-
tical information is necessary to capture their implicit capabilities.
Without statistical specifications, it would be forced to examine
all potentially helpful models and their combinations on user data,
which is unacceptable in terms of computational cost and privacy.

Besides, there has been research aiming to generally reduce the
technical burden for model developers to deploy a shared model
locally, like Infaas [22] and Acumos [38], whereas they doesn’t
consider the process of model identification.

Recently, there is a series of works aiming to adopt popular
large language models (LLMs) [3] to identify helpful models based
on matching the natural language descriptions of each model in
the platform and the user’s requirements, like HuggingGPT [24],
Chameleon [15], and Gorilla [21]. However, in many cases accurate
model characterization and identification can not be realized with-
out statistical specification. Furthermore, statistical specification
can enable models to be used beyond their original purposes. There
are also studies about assessing the reusability or transferability of
pre-trained models [4, 17, 34, 36], whereas they generally make the
forward pass for all models on user data without considering data
privacy. Besides, it is unaffordable to access their combinations on
user data due to combinatorial explosion.

Domain adaptation [1] and transfer learning [20] aim to transfer
knowledge from a source domain to a target domain, and assumes
that the raw source data is available [19, 42]. To relax the require-
ments for source data, several topics focus on adapting the models
from source domain to the target domain, like source-free domain
adaptation [33], hypothesis transfer learning [12], model reuse [37],
domain adaptation with auxiliary classifiers [5, 13], etc. The learn-
ware paradigm highly differs from these fields because it aims to
identify and assemble helpful models from numerous models in a
unified and data-preserving way to solve new tasks.

8 CONCLUSION
In this paper, we present Beimingwu: the first open-source learn-
ware dock system providing foundational support for learnware
research. The system engine & research toolkit, and the system
frontend & backend have been released. The scalable architecture
and implementations enable the system to continuously expand
its knowledge base and improve its capabilities through the con-
stant submission of learnwares and advancements in algorithmic
research, and this continuous evolution of learnware dock system
equips it with lifelong learning capability to tackle more varied
user tasks. We expect the research community to benefit from
Beimingwu for learnware-related algorithm and system studies.

ACKNOWLEDGMENTS
We appreciate the support of Polixir team in various aspects like
system deployment and industrial applications. We appreciate the
help of Hao-Yu Shi and Xin-Yu Zhang in image and text scenarios,
and Lan-Zhe Guo, Zi-Xuan Chen, Zhi Zhou and Yi-Xuan Jin for
their help in the early-stage prototype. We thank LAMDAmembers
for their contributions in the system’s internal testing phase.

5781

KDD ’24, August 25–29, 2024, Barcelona, Spain Zhi-Hao Tan et al.

REFERENCES
[1] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2006. Anal-

ysis of representations for domain adaptation. In Advances in Neural Information
Processing Systems 19.

[2] Alain Berlinet and Christine Thomas-Agnan. 2011. Reproducing kernel Hilbert
spaces in probability and statistics. Springer Science & Business Media.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language models are few-shot learners. In Advances in
Neural Information Processing Systems 33. 1877–1901.

[4] Yao-Xiang Ding, Xi-Zhu Wu, Kun Zhou, and Zhi-Hua Zhou. 2022. Pre-trained
model reusability evaluation for small-data transfer learning. In Advances in
Neural Information Processing Systems 35. 37389–37400.

[5] Lixin Duan, IvorWTsang, Dong Xu, and Tat-Seng Chua. 2009. Domain adaptation
from multiple sources via auxiliary classifiers. In Proceedings of the 26th Annual
International Conference on Machine Learning. 289–296.

[6] Lan-Zhe Guo, Zhi Zhou, Yu-Feng Li, and Zhi-Hua Zhou. 2023. Identifying useful
learnwares for heterogeneous label spaces. In Proceedings of the 40th International
Conference on Machine Learning. 12122–12131.

[7] Arthur Jacot, Clément Hongler, and Franck Gabriel. 2018. Neural tangent ker-
nel: convergence and generalization in neural networks. In Advances in Neural
Information Processing Systems 31. 8580–8589.

[8] Thorsten Joachims. 1997. A probabilistic analysis of the Rocchio algorithm with
TFIDF for text categorization. In Proceedings of the 14th International Conference
on Machine Learning. 143–151.

[9] Kaggle. 2017. Corporacion favorita grocery sales forecasting. https://www.kaggle.
com/c/favorita-grocery-sales-forecasting. Accessed: 2023-06-20.

[10] Kaggle. 2018. Predict future sales. https://kaggle.com/competitions/competitive-
data-science-predict-future-sales. Accessed: 2023-05-20.

[11] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

[12] Ilja Kuzborskij and Francesco Orabona. 2013. Stability and hypothesis transfer
learning. In Proceedings of the 30th International Conference on Machine Learning.
942–950.

[13] Nan Li, Ivor W Tsang, and Zhi-Hua Zhou. 2013. Efficient optimization of perfor-
mance measures by classifier adaptation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 35, 6 (2013), 1370–1382.

[14] Jian-Dong Liu, Zhi-Hao Tan, and Zhi-Hua Zhou. 2024. Towardsmaking learnware
specification and market evolvable. In Proceedings of the 38th AAAI Conference
on Artificial Intelligence. 13909–13917.

[15] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, and Jianfeng Gao. 2023. Chameleon: Plug-and-play composi-
tional reasoning with large language models. In Advances in Neural Information
Processing Systems 36. 43447–43478.

[16] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. 2022. The
M5 competition: background, organization, and implementation. International
Journal of Forecasting 38, 4 (2022), 1325–1336.

[17] Cuong Nguyen, Tal Hassner, Matthias Seeger, and Cedric Archambeau. 2020.
Leep: A new measure to evaluate transferability of learned representations. In
Proceedings of the 37th International Conference on Machine Learning. 7294–7305.

[18] Roman Novak, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. 2022. Fast finite
width neural tangent kernel. In Proceedings of the 39th International Conference
on Machine Learning. 17018–17044.

[19] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. 2011. Domain
adaptation via transfer component analysis. IEEE Transactions on Neural Networks
22, 2 (2011), 199–210.

[20] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–1359.

[21] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. 2023. Go-
rilla: Large language model connected with massive apis. arXiv preprint

arXiv:2305.15334 (2023).
[22] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis. 2021.

INFaaS: Automated model-less inference serving. In 2021 USENIX Annual Techni-
cal Conference. 397–411.

[23] Bernhard Scholkopf, SebastianMika, Chris JC Burges, Philipp Knirsch, K-RMuller,
Gunnar Ratsch, and Alexander J Smola. 1999. Input space versus feature space
in kernel-based methods. IEEE Transactions on Neural Networks 10, 5 (1999),
1000–1017.

[24] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. 2023. Hugginggpt: Solving ai tasks with chatgpt and its friends in
huggingface. In Advances in Neural Information Processing Systems 36. 38154–
38180.

[25] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. 2023. Handling learn-
wares developed from heterogeneous feature spaces without auxiliary data. In
Proceedings of the 32nd International Joint Conference on Artificial Intelligence.
4235–4243.

[26] Peng Tan, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. 2024. Towards enabling
learnware to handle heterogeneous feature spaces. Machine Learning 113, 4
(2024), 1839–1860.

[27] Zhi-Hao Tan, Hao-Yu Shi, Zi-Xuan Chen, and Jiang Yuan. 2024. Learnware
reduced kernel mean embedding specification based on neural tangent kernel.
Chinese Journal of Computers 47, 6 (2024), 1232–1243.

[28] Zhi-Hao Tan, Yi Xie, Yuan Jiang, and Zhi-Hua Zhou. 2022. Real-valued backprop-
agation is unsuitable for complex-valued neural networks. In Advances in Neural
Information Processing Systems 35. 34052–34063.

[29] Zifeng Wang and Jimeng Sun. 2022. Transtab: Learning transferable tabular
transformers across tables. In Advances in Neural Information Processing Systems
35. 2902–2915.

[30] Xi-Zhu Wu, Wenkai Xu, Song Liu, and Zhi-Hua Zhou. 2023. Model reuse with
reduced kernel mean embedding specification. IEEE Transactions on Knowledge
and Data Engineering 35, 1 (2023), 699–710.

[31] Yu-Chang Wu, Yi-Xiao He, Chao Qian, and Zhi-Hua Zhou. 2022. Multi-objective
evolutionary ensemble pruning guided by margin distribution. In Proceedings
of the 17th International Conference on Parallel Problem Solving from Nature.
427–441.

[32] Yi Xie, Zhi-Hao Tan, Yuan Jiang, and Zhi-Hua Zhou. 2023. Identifying helpful
learnwares without examining the whole market. In Proceedings of the 26th
European Conference on Artificial Intelligence. 2752–2759.

[33] Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, and Joost van de Weijer. 2022.
Attracting and dispersing: A simple approach for source-free domain adaptation.
In Advances in Neural Information Processing Systems 35. 5802–5815.

[34] Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I Jordan, and
Mingsheng Long. 2022. Ranking and tuning pre-trained models: a new paradigm
for exploiting model hubs. Journal of Machine Learning Research 23, 209 (2022),
1–47.

[35] Yu-Jie Zhang, Yu-Hu Yan, Peng Zhao, and Zhi-Hua Zhou. 2021. Towards enabling
learnware to handle unseen jobs. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence. 10964–10972.

[36] Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, and Han-Jia Ye.
2023. Model spider: learning to rank pre-trained models efficiently. In Advances
in Neural Information Processing Systems 36. 13692–13719.

[37] Peng Zhao, Le-Wen Cai, and Zhi-Hua Zhou. 2020. Handling concept drift via
model reuse. Machine Learning 109 (2020), 533–568.

[38] Shuai Zhao, Manoop Talasila, Guy Jacobson, Cristian Borcea, Syed Anwar Aftab,
and John F Murray. 2018. Packaging and sharing machine learning models via the
acumos ai open platform. In Proceedings of the 17th IEEE International Conference
on Machine Learning and Applications. 841–846.

[39] Zhi-Hua Zhou. 2012. Ensemble methods: foundations and algorithms. CRC press.
[40] Zhi-Hua Zhou. 2016. Learnware: on the future of machine learning. Frontiers of

Computer Science 10 (2016), 589–590.
[41] Zhi-Hua Zhou and Zhi-Hao Tan. 2024. Learnware: small models do big. Science

China Information Sciences 67, 1 (2024), 112102.
[42] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu

Zhu, Hui Xiong, and Qing He. 2021. A comprehensive survey on transfer learning.
Proc. IEEE 109, 1 (2021), 43–76.

5782

https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://www.kaggle.com/c/favorita-grocery-sales-forecasting
https://kaggle.com/competitions/competitive-data-science-predict-future-sales
https://kaggle.com/competitions/competitive-data-science-predict-future-sales

	Abstract
	1 Introduction
	2 A Brief Review of Learnware Paradigm
	3 Solving Learning Tasks via Beimingwu
	4 Design and Architecture
	4.1 Overview of Beimingwu Architecture
	4.2 Engine Architecture Design

	5 Algorithms and Methodologies
	5.1 Implemented Algorithms of Beimingwu
	5.2 Handling Tabular Learnwares with Heterogeneous Feature Spaces

	6 Experimental Evaluation
	6.1 Experiments on Tabular Data
	6.2 Experiments on Image and Text Data
	6.3 Real-World Applications

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

