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Abstract
The learnware paradigm proposed by Zhou [2016]
devotes to constructing a market of numerous well-
performed models, enabling users to solve prob-
lems by reusing existing efforts rather than start-
ing from scratch. A learnware comprises a trained
model and the specification which enables the
model to be adequately identified according to the
user’s requirement. Previous studies concentrated
on the homogeneous case where models share the
same feature space based on Reduced Kernel Mean
Embedding (RKME) specification. However, in
real-world scenarios, models are typically con-
structed from different feature spaces. If such a
scenario can be handled by the market, all models
built for a particular task even with different feature
spaces can be identified and reused for a new user
task. Generally, this problem would be easier if
there were additional auxiliary data connecting dif-
ferent feature spaces, however, obtaining such data
in reality is challenging. In this paper, we present
a general framework for accommodating heteroge-
neous learnwares without requiring additional aux-
iliary data. The key idea is to utilize the submitted
RKME specifications to establish the relationship
between different feature spaces. Additionally, we
give a matrix factorization-based implementation
and propose the overall procedure for constructing
and exploiting the heterogeneous learnware market.
Experiments on real-world tasks validate the effi-
cacy of our method.

1 Introduction
The current machine learning paradigm has achieved great
success in many scenarios, such as medicine, finance, and
ecology. However, achieving a well-performing model re-
quires several essential conditions, such as access to abundant
high-quality labeled data, strong computational resources,
and expertise in feature engineering and algorithms. Conse-
quently, ordinary individuals face a significant burden when
aiming to build a high-quality model. Moreover, the chal-
lenges of data privacy and catastrophic forgetting arise when
reusing or adapting a trained model among different users. In
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Figure 1: Heterogeneous models in real-world scenarios: trained
models usually have different feature spaces even for the same med-
ical task due to different data centralization.

order to address these challenges simultaneously, the learn-
ware paradigm [Zhou, 2016; Zhou and Tan, 2022] aims to es-
tablish a model market that assists users in solving their tasks
by leveraging existing efforts instead of starting from scratch.
The design of learnware market is to allow well-performed
models submitted by developers can be used “beyond-what-
was-submitted” instead of “as-what-was-submitted”; in other
words, the models can be reused to help tasks that were not
planned/targeted by their developers.

A learnware is comprised of a well-performed trained
model and a specification that describes its capabilities, al-
lowing the model to be adequately identified according to
the requirements of future tasks [Zhou and Tan, 2022]. The
learnware market accommodates various learnwares. Ma-
chine learning developers can submit their well-performing
models spontaneously to the market, and the market assigns
specifications to accepted models. Once the learnware market
is established, the user can exploit it by specifying her task
requirement to the market and reusing recommended learn-
wares from the market. It is important to note that the learn-
ware market have no access to the original task data of devel-
opers and users. Therefore, the specification plays a central
role when the market identifies useful models based on user
requirements. Recently the Reduced Kernel Mean Embed-
ding (RKME) specification [Zhou and Tan, 2022] was pro-
posed, describing the model as an element in the reproducing
kernel Hilbert space (RKHS), which is also called the spec-
ification space. Based on the RKME specification, different
learnware identification and reuse algorithms have been pro-
posed [Wu et al., 2023; Zhang et al., 2021].

Current studies on the learnware paradigm require that all



learnwares in a specification space share the same feature
space. However, in real-world scenarios, models are usu-
ally from different feature spaces even if they solve the same
machine learning task. For instance, in the extensively uti-
lized clinical database of critical care units [Johnson et al.,
2016], data is organized across 26 tables such as inputevents,
outputevents, labevents etc. One crucial medical task is to
predict the length of stay (LOS) for patients in the inten-
sive care unit (ICU), aiming at improving scheduling and
hospital resource management [Purushotham et al., 2018;
Harutyunyan et al., 2019]. When solving this task, models
are built on the centralized data aggregated from selected ta-
bles. Due to varying prior medical knowledge, different mod-
els developed for the same task may possess different feature
spaces since training data are centralized from different sub-
sets of tables. This situation is illustrated in Figure 1. For
such a realistic scenario, an intriguing question arises: Can
the market accommodate all these models with heterogeneous
feature spaces and identify helpful models for new user tasks?
In such a medical scenario, the user could be a newly estab-
lished hospital lacking access to precious and sensitive raw
data concerning critically ill patients.

In this problem, exploring the relationship between differ-
ent feature spaces is an essential step. However, temporary
solutions often require a significant amount of co-occurrence
data across all feature spaces to reveal this relationship [Yang
et al., 2015; Wang et al., 2016; Tan et al., 2022], which is
challenging to obtain or even absent in real-world scenar-
ios. Moreover, due to privacy concerns within the learnware
paradigm, access to the raw data of submitted models is pro-
hibited. Consequently, the market needs to establish the rela-
tionship between different feature spaces without relying on
the raw data of models or additional auxiliary co-occurrence
data. To tackle this challenge, our proposed solution is that
the market constructs the relationship of heterogeneous fea-
ture spaces based on the specifications provided with the sub-
mitted models. Based on this idea, with an increasing number
of models accommodated by the market, the established rela-
tionship can become more accurate.

In this paper, we realize a heterogeneous learnware mar-
ket. The market accommodates heterogeneous models from
developers without requiring additional auxiliary data while
ensuring the privacy of the submitted models. When the user
exploits the market, the market can recommend helpful mod-
els whose feature spaces even differs from the user task. In
summary, the contributions are threefold.
• We present a general framework for addressing the het-

erogeneous learnware problem without requiring additional
auxiliary data. RKME specifications are utilized to estab-
lish connections between different feature spaces of mod-
els and generate corresponding mapping functions. These
mapping functions are employed to adjust the specifications
of models during market construction, align task require-
ments, and address missing features when the user exploit
the market and reuse helpful models.

• Our general framework can be integrated with various ex-
isting subspace learning methods, and we provide an imple-
mentation based on matrix factorization. Additionally, we
present a two-stage procedure for constructing and utilizing

the heterogeneous learnware market.
• Experiments on both synthetic datasets and real-world tasks

validate the efficacy of our methods.
The paper proceeds as follows. Section 2 provides the pre-

liminaries, followed by Section 3 where the problem is for-
mulated. Our general framework is introduced in Section 4,
and a matrix factorization-based implementation is presented
in Section 5. The experimental results are presented in Sec-
tion 6. Section 7 discusses related topics, and finally, Sec-
tion 8 summarizes the work.

2 Preliminary
In this section, we give a brief introduction to the pioneer
work realizing the specification which can accommodate ho-
mogeneous learnwares via Reduced Kernel Mean Embedding
(RKME) [Zhou and Tan, 2022] based on Kernel Mean Em-
bedding (KME) [Smola et al., 2007].

Kernel Mean Embedding. KME gives a new presentation
to the distribution which supports convenient operations like
mean calculation. More specifically, KME maps a distribu-
tion P defined over X to an element in a reproducing ker-
nel Hilbert space (RKHS) H as µk(P) :=

∫
X k(x, ·)dP(x),

where k : X × X → R is a symmetric and positive definite
kernel function [Schölkopf and Smola, 2002] with associated
RKHSH. When equipped with the characteristic kernel such
as Gaussian kernel, no information about the distribution P
will be lost [Sriperumbudur et al., 2011]. When provided
with a data set {xi}ni=1 sampled from P , the empirical esti-
mation of KME is µ̂k(P) := 1

n

∑n
i=1 k (xi, ·).

Reduced Kernel Mean Embedding. KME is a potential
specification due to several favorable properties. However,
the access to the raw data violates the privacy concern which
the specification needs. Based on KME, RKME specifica-
tion [Zhou and Tan, 2022] was recently proposed, with the
main idea of using the reduced set containing minor weighted
samples {(βj , zj)}mj=1 to approximate the empirical KME of
the original data set {xi}ni=1. The reduced set is generated by

min
β,Z

∥∥∥∥∥∥ 1n
n∑

i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·)

∥∥∥∥∥∥
2

H

, (1)

with non-negative constraints of coefficients {βj}mj=1. The
RKME Φ(·) =

∑m
j=1 βjk (zj , ·) ∈ H serves as the specifi-

cation and the RKHS H is called specification space. This
specification captures the major information of the distribu-
tion P and the raw data is not exposed which satisfies the
data privacy property which the specification needs.

3 Formulation
We consider the entire feature space Xall as a composition of
Q components: Xall = X1×· · ·×XQ. The feature space of the
developer X up and the user X us are the Cartesian product of
several components×i∈CXi where C is the set of component
indices. We assume the market encounters T kinds of feature
space for submitted models X up

1 , · · · ,X up
T .
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Figure 2: Two-staged formulation of the heterogeneous learnware
problem. In the submitting stage, the market receives heteroge-
neous models with raw specifications located in different specifi-
cation spaces, the market then merges different specification spaces
to a unified one, which enhances its ability for learnware recommen-
dation. In the deploying stage, the user submits her task requirement
and reuses recommended learnwares from the market.

The learnware paradigm consists of the submitting stage
and the deploying stage. In the submitting stage, there are
N developers submit their models. Each model fi is trained
on the labeled data set Di := {(xij , yij)}ni

j=1 defined over
X up

ϕi
× Y where ϕi ∈ {1, · · · , T}. In addition to the well-

trained model fi, the developer also provides the raw RKME
specification sraw

i to the market. The market receives a total of
N models along with their raw specifications {fi, sraw

i }Ni=1.
Temporarily, raw specifications are located in T different
specification spaces, and thus, the learnware recommendation
can only be conducted in each isolated specification space,
which restricts the scope of learnware recommendation. In
order to recommend and reuse all heterogeneous learnwares,
the market will combine all these specification spaces and
generate a global specification space, and then, reassign the
specification si for the model fi. The heterogeneous learn-
ware market is built as {fi, si}Ni=1.

In the deploying stage, the user has a unlabeled dataset
D0 := {x0j}n0

j=1 defined over X us. The user generates the
raw requirement sraw

0 and passes it to the market. The market
recommends several helpful learnwares {fi|i ∈ I} based on
specifications {si}Ni=1 and the requirement sraw

0 accordingly
where I is the indices of recommended learnwares. The user
solves her problem by reusing learnwares {fi|i ∈ I} to con-
struct a model f0 and tries to minimizing its expected error
E(x,y)∼D0

(l(f0(x), y)) where D0 is the data distribution of
the user. The overall procedure is illustrated in Figure 2.

4 General Framework
In this section, we provide a general framework for handling
the heterogeneous learnware problem based on the RKME
specification. The problem involves two main challenges:
• How to align raw specifications of models {sraw

i }Ni=1 and
the raw user’s requirement sraw

0 located in different spaces?
• How does the user reuse recommended models whose fea-

ture space may be different from the user’s task?
The first problem is fundamental because the learnware

recommendation relies on model specifications and user re-
quirements being in the same space, and the recommendation
procedure significantly impacts the second reuse problem. To
address these challenges simultaneously, our general frame-
work proposes a key idea: connecting different feature spaces
associated with models and future user tasks to a shared sub-
space using only raw specifications of submitted models.

One approach is connecting T feature spaces of models
{X up

j }Tj=1 to a common subspace and generate 2T mapping
functions, which consists of T projection functions mapping
the data from original feature space to an identical subspace
{hj : X up

j 7→ Xsub}Tj=1 and T reconstruction functions map-
ping the data in the subspace to the original feature space
{gj : Xsub 7→ X up

j }Tj=1. However, this approach has a sig-
nificant limitation. When the user’s task feature space X us, is
not included in {X up

j }Tj=1, the market is unable to recommend
models or assist the user in reusing models. Noticing that the
feature spaces of submitted models {X up

j }Tj=1 and user’s task
X us are actually the Cartesian product of a subset of compo-
nent feature spaces {Xk}Qk=1, it is more effective to connect
component feature spaces {Xk}Qk=1 to a subspace and gen-
erate 2Q(Q ≪ T ) functions {hk : Xk 7→ Xsub}Qk=1, {gk :

Xsub 7→ Xk}Qk=1 instead. This approach heavily reduces the
number of mapping functions required and can handle future
user tasks defined on any combinations of component feature
spaces. The generated mapping functions provide a unified
solution to address the aforementioned challenges.
• The raw specifications {sraw

i }Ni=1 and raw requirement sraw
0

are generated by RKME and they are based on the reduced
set containing minor samples and their weights. By utiliz-
ing projection functions {hk : Xk 7→ Xsub}Qk=1, samples
defined on different feature spaces {X up

j }Tj=1,X us can be
aligned to the common subspace Xsub.

• When the user wants to reuse a model with different feature
space, i.e., X up

j ̸= X us, missing features that model predic-
tion needs must be filled up, the user can fist project the
data to the subspace via projection functions {hk : Xk 7→
Xsub}Qk=1 and then reconstruct them in corresponding miss-
ing component feature spaces via reconstruction functions
{gk : Xsub 7→ Xk}Qk=1.
In the following, we describe the general framework about

how to learn a common subspace and generate mapping func-
tions using raw specifications of models. The market receives
N models from T feature spaces with their raw specifications
implemented by RKME and the corresponding reduced sets
are {sraw

i := {(βij , zij)}mi
j=1}Ni=1 where mi is the size of the

i-th reduced set. For simplicity, we define the union set of
all reduced sets as U := {βl, zl}ml=1 where m =

∑N
i=1 mi.



The procedure of subspace learning uses whole reduced set
U to optimize mapping functions between component fea-
ture spaces and subspace {hk, gk}Qk=1, it also generate sam-
ple projections {vl}ml=1. The objective accordingly is

min
{hk,gk},{vl}

m∑
l=1

βlL(zl,vl) + S({zl}ml=1, {vl}ml=1). (2)

The objective comprises two parts: the weighted subspace
learning loss and the similarity loss. Specifically, the first
term calculates the sum of the losses of each sample zl in the
reduced set, weighted by βl, during subspace learning. Since
each sample’s feature space is a combination of multiple com-
ponents Xk, the subspace learning loss can be decomposed as
L(zl,vl) =

∑
k∈C L(z

(k)
l ,v

(k)
l ), where C represents the set

of component indices, z(k)
l and v

(k)
l are the slices of zl,vl on

Xk. The loss L(z(k)
l ,v

(k)
l ) can be defined in three ways:

• Defined on the original component feature space Xk. For
example, Lo = ∥z(k)

l − gk(v
(k)
l )∥. After obtaining gk, hk

can be optimized by minv
∑

l∈Ik
∥z(k)

l − gk(v)∥ where Ik
is indices of samples whose feature space contains Xk.

• Defined on the identical subspace Xsub. For example, Ls =

∥hk(z
(k)
l )−v(k)

l ∥. After obtaining hk, gk can be optimized
by minz

∑
l∈Ik
∥hk(z)− v

(k)
l ∥.

• Defined on both component feature space and subspace like
Lo + Ls. {hk, gk}Qk=1 can be obtained simultaneously.

The second item indicates the similarity loss. This loss aims
to ensure that when two samples xi and xj are similar, their
respective projections vi and vj exhibit similarity as well. To
be noticed that zi, zj may defined on different feature space.
In such a case, the similarity can be calculated on the intersec-
tion of two feature spaces, which is still the Cartesian product
of some components within {Xk}Qk=1.

The paper presents a general framework that supports three
types of subspace learning loss, and can be incorporated with
various existing subspace learning methods to obtain differ-
ent mapping functions {hk}Qk=1, {gk}

Q
k=1. The subsequent

section describes a matrix factorization-based implementa-
tion that satisfies the first type of loss.

5 Matrix Factorization Implementation
In this section, we present our matrix factorization-based im-
plementation of the general framework, which serves as the
foundation for the overall procedure of constructing and uti-
lizing the heterogeneous learnware market.

5.1 Construct the Learnware Market
The market receives N models with raw specifications from
developers and submitted models totally come from T dif-
ferent feature spaces. The raw specification implemented by
RKME transforms a data set defined on X up

t (t ∈ 1, · · · , T )
to an element in a particular specification space (RKHS) Ht.
Therefore, total N raw specifications {sraw

i }Ni=1 locate in T
different specification spaces. In order to better organize het-
erogeneous models to support service of model recommenda-
tion and reuse, the market constructs the learnware market by

merging T specification spaces to a global one and adjusting
raw specifications {sraw

i }Ni=1 to specifications {si}Ni=1.
Concept factorization. As described in the general frame-
work, merging different specification spaces (align different
raw specifications) is achieved by subspace learning, we first
present the preliminary of a classical matrix factorization-
based subspace learning method called Concept Factoriza-
tion (CF) [Xu and Gong, 2004; Cai et al., 2010; Wang et al.,
2016]. Given a data matrix Z = [z1, · · · , zN ] ∈ Rd×n, CF
first generates k concepts which are the linear combination of
the original data C := ZW = [c1, · · · , ck] ∈ Rd×k, then CF
uses concepts to reconstruct the original data by linear com-
bination with the coefficient matrix V. The two coefficient
matrices W,V is learned by minimizing the reconstruction
error ∥Z− ZWV⊤∥2F and the reconstruction coefficient ma-
trix V is projection of Z in the subspace with dimension k.
Subspace learning. Based on CF, we proposed the follow-
ing objective function to learn a subspace by only using raw
specifications {sraw

i := {(βij , zij)}mi
j=1}Ni=1 located in dif-

ferent spaces instead of accessing to raw data of model or
collecting extra data across the entire feature space. The ob-
jective is optimized over {W(k)}, {V(k)}, {(V∗)(k)}.

min

Q∑
k=1

(
∥[Z(k) − Z(k)W(k)(V(k))⊤](Γ(k))1/2∥2F

+ αTr((V(k))⊤L(k)V(k))

+ γ∥(Γ(k))1/2[V(k) − (V∗)(k)]∥2F
)

s.t. W(k) ≥ 0. (3)

For the sample zij defined on X up
ϕi

= ×i∈Cϕ
Xi with re-

lated component feature space index set Cϕi
, it can be split

into several slices {z(k)
ij }k∈Cϕi

. Z(k) is the concatenation of
all slices on Xk, Γ(k) is a diagonal matrix constructed from
weights associated with Z(k), L(k) is the Laplacian matrix
calculated on Z(k). V(k) is the projection of Z(k) in the sub-
space and (V∗)(k) is the intermediate optimization results of
V(k). α, γ are regularizer coefficients. The objective sums
the loss of Q component feature spaces, each consists of three
items, the first is the reconstruction error of subspace learn-
ing, the second is a manifold regularizer which keeps the local
structure and the third enforces similarity among the projec-
tions of {z(k)

ij }k∈Cϕi
. The iterative optimization using gradi-

ent descent and multiplicative updated rule [Févotte and Idier,
2011] is described in the Appendix.
Subspace projection and reconstruction. During the step
of subspace learning, the base matrix B(k) = Z(k)W(k) of
the component feature space Xk is obtained, resulting in the
reconstruction function gk : Xsub 7→ Xk given by

gk(v) = B(k)v. (4)

Subsequently, the subspace projection functions hk : Xk 7→
Xsub can be obtained by minv∥z − B(k)v∥2F, which has a
closed-form solution given by

hk(z) = ((B(k))⊤B(k))−1(B(k))⊤z. (5)



Heterogeneous learnware market construction. Based
on the aforementioned matrix factorization-based implemen-
tation for the general framework, the learnware market can
generate mapping functions {hk, gk}Qk=1 from submitted
raw specifications sraw

i to connect component feature spaces
{Xk}Qk=1 to the unified subspace Xsub. For the raw specifica-
tion of i-th model sraw

i := {(βij , zij)}mi

j=1 whose component
feature space index set is Cϕi

, the market transforms it to the
specification si = {(βij ,vij)}mi

j=1 by

vij =
1

|Cϕi |
∑

k∈Cϕi

hk(z
(k)
ij ). (6)

The raw specifications {sraw
i }ki=1 are located in T different

specification spaces initially, but with market merging differ-
ent specification spaces, all adjusted specifications {si}Ni=1
are located in an identical specification space.

5.2 Exploit the Learnware Market
Learnware recommendation. When the user submits her
task requirement sraw

0 := {β0j , z0j}m0
j=1 generated by RKME,

the market uses subspace projection functions {hk}Qk=1 to
project the requirement to the unified specification space
which contains all specifications {si}Ni=1 via Eq. (6) and the
projected requirement is s0 := {β0j ,v0j}m0

j=1. The market
then calculate the relevance for each learnware by

min
w

∥∥∥∥∥Φ0(·)−
N∑
i=1

ωiΦi(·)

∥∥∥∥∥
2

H

, s.t. ωi ≥ 0,

N∑
i=1

ωi = 1, (7)

where Φ0(·) =
∑m0

j=1 β0jk(v0j , ·) is KME of the adjusted
requirement s0 and Φi(·) =

∑mi

j=1 βijk(vij , ·) is KME of
adjusted specification si. The relevance estimation problem
Eq. (7) can be solved by quadratic programming [Smola et
al., 2007]. With pre-defined threshold th, the learnware mar-
ket recommends learnwares whose relevance is above the
threshold. Furthermore, the market will pass a learnware se-
lector [Wu et al., 2023] and mapping functions {hk, gk}Qk=1
to the user. The learnware selector is used to predict which
learnware should each sample use and the selector F (·) is
trained by the samples in {si|ωi ≥ th} and the labels are
corresponding learnware indices.
Learnware reuse. When the user receives recommended
models {fi|ωi ≥ th}, the learnware selector F (·) and map-
ping functions {hk, gk}Qk=1, the user can make a prediction
via dynamic classifier selection [Zhou, 2012] and feature
space transformation. More specifically, the user first projects
her task data D0 := {x0j}n0

j=1 to the subspace via Eq. (6)
and get Dproj

0 := {v0j}n0
j=1. The learnware selector predicts

on Dproj
0 to decide for each example which model should be

used. For example, the sample x0j is predicted to use the
learnware fF (v0j), when the model shares the same feature
space with x0j , the model can make a prediction directly,
otherwise, the user needs to fill up the corresponding miss-
ing part by gk(v0j). For example, the model is defined on
X1×X2 and the instance x0j is defined on X2×X3, then the
user needs to fill up the data on X1 by g1(v0j).

Algorithm 1 Submitting stage (market construction)

1: Each developer trains a model fi and generates the raw
specification sraw

i on her dataset Di.
2: Each developer uploads both model and the raw specifi-

cation (fi, s
raw
i ) to the learnware market.

3: The learnware market generates 2Q mapping functions
{hk, gk}Qk=1 on all feature space components {Xi}Qi=1

based on submitted raw specifications {sraw
i }Ni=1.

4: The learnware market uses mapping functions {hk}Qk=1
to generate the specification si for each uploaded model
fi based on the raw specification sraw

i .
5: The heterogeneous learnware market is established as
{(fi, si)}Ni=1.

Algorithm 2 Deploying stage (market exploitation)

1: The user generates her requirement of the task sraw
0 and

passes it to the market.
2: The market uses mapping functions {hk}Qk=1 to post-

process the user requirement and get s0.
3: The market recommends models based on the require-

ment s0 and specifications {si}Ni=1, it also passes map-
ping functions {hk, gk}Qk=1 and the model selector F in
the subspace.

4: The user reuses recommended models on her task via dy-
namic classifier selection.

5.3 Overall Procedure
In the submitting stage, the market manager receives mod-
els from different feature spaces and builds a heterogeneous
learnware market by aligning specifications to a common
space. In the deploying stage, the user describes her require-
ment of the task and get help from the market by reusing rec-
ommended learnwares. The overall procedure is sketched in
Algorithms 1 and 2.

6 Experiments
The experiments1 consists of two parts, we first illustrate the
overall procedure through a toy example for visualizing the
superiority of our solution, and then we present performance
on several real-world tasks to showcase the effectiveness.

6.1 Toy Example
In the toy example, we assume the overall feature space is
split into three components Xall = X1×X2×X3. The overall
feature space Xall is R6 and each component Xi is R2.

In the submitting stage, there are three developers submit
their models defined over X1 × X2,X2 × X3,X1 × X3 sep-
arately and each model is a 2-class support vector machine
using RBF kernel. Raw specifications are illustrated in Fig-
ures 3(a), 3(b) and 3(c) by the reduced set (minor weighted
samples) and based on which the market generates mapping
functions. Then, the market can adjust three specifications
located in three spaces to a unified one as Figure 3(d) shows.

1https://github.com/LAMDA-TP/Heterogeneous-learnware-
without-auxiliary-data
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Figure 3: Submitting stage: (a), (b) and (c) present raw specifica-
tions of three learnwares in three spaces, (d) illustrates the learned
unified space for all specifications.
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Figure 4: Deploying stage: (a) and (b) present the user data defined
on the union of two component feature spaces, (d) is the projection
of the requirement in the subspace. (c) shows the reconstructed user
data in X3 for reusing recommended models.

In the deploying stage, the user possesses the unlabeled
data defined overX1×X2 showed in Figures 4(a) and 4(b) and
hopes to receive service from the market. The distribution of
user’s task is a mixture of that of learnware #2 and #3 with
equal weights (the mixture is defined over X ). The user first
generates the task requirement and submit it to the market
and then the market projects the requirement in the unified
space which contains all specifications as Figure 4(d) shows.
After requirement projection, the market is able to calculate
the relevance of each learnwares as [0, 0.457, 0.543]. With
preset threshold L = 0.1, the learnware market recommends
models #2,#3 to the user. To be noticed that the feature
space of user’s task X1×X2 doesn’t match that of learnwares
#2,#3 (X2 × X3,X1 × X3), the user can reconstruct data
on X3 based on the original data and mapping functions as
Figure 4(c) shows. After features are complemented, the user
reuses recommended models via dynamic classifier selection
and the final accuracy is 0.995.

If the market only recommends learnwares which precisely
match user’s feature space, then the totally irrelevant model
#1 is recommended to the user and the final accuracy on
user’s task is 0, which shows the necessity of exploring learn-
wares whose feature spaces are not matched with user’s task.

6.2 Real-world Tasks
Data set. We conduct empirical experiments on six hetero-
geneous learnware scenarios involving five real-world tasks:
Mfeat [van Breukelen et al., 1998], Anuran [Colonna et al.,
2012], Digits [Garris et al., 1997], Kddcup99 [Lippmann et
al., 2000] and Covtype [Blackard and Dean, 1999]. Mfeat is
a digit recognition data set with six feature spaces, we split
it into two parts, generating two separate scenarios. Anuran
is used for classifying Anuran sounds. Digits is a collection
of handwritten numbers, Kddcup99 is a dataset for network
intrusion detection, and Covtype is used for classifying the

Dataset #samples #classes #dim

Mfeat (far, kar, pix) 2000 10 [76, 216, 64]
Mfeat (zer, fou, mor) 2000 10 [240, 47, 6]

Anuran 7195 10 [7,7,8]
Digits 1797 10 [21, 21, 22]

Kddcup99 3200 6 [29, 29, 30]
Covtype 6000 6 [18, 18, 18]

Table 1: Information of data sets.

cover type (the dominant species of trees) in forest patches
across the United States. The original datasets of Anuran,
Digits, Kddcup99, and Covtype each have a single feature
space. We randomly split them into three parts. The informa-
tion of five processed data set is shown in Table 1.
Contenders. As the heterogeneous learnware problem is a
new problem, we first compare with two basic contenders.
• Random: The market randomly selects a model whose fea-

ture space is identical with the user’s task and the user uses
it directly to make a prediction.

• Ensemble: The market selects all models whose feature
space are identical with the user’s task and the user uses
them via average ensemble.

Then we consider other three additional contenders in which
model recommendation and reuse rely on specifications.
• MMD: Each model is equipped with the raw specification

and the market recommends the learnware with minimum
maximum mean discrepancy within models sharing the
same feature space with the user’s task. The user reuses
the model directly [Wu et al., 2023].

• Auxiliary: Each model is equipped with specification
generated based on the raw data of the model and the ex-
tra auxiliary data across the entire feature space. The user
reuses recommended models via dynamic classifier selec-
tion [Tan et al., 2022].

• Projection: This method is slightly different from our
method. The market recommends learnwares instead of
models to the user and the user samples a mimic data set
by kernel herding [Chen et al., 2012] for each learnware
and uses the learnware to make a prediction, then the user
project multiple pseudo-labeled mimic data sets to the sub-
space and trains a classifier. Finally, the prediction is made
on the projected task data with newly trained model.

Experiment setup. The overall feature space is split into
three parts Xall = X1 × X2 × X3, we generate 6 learnwares
on three feature spaces (X1 × X2,X2 × X3,X1 × X3) and
each learnware only classifies a subset of entire classes. The
distribution of the user’s task is a mixture of several learn-
wares with equal weights. In our experiment, parameters are
set as follows: the reduced set size mi is 10, which is much
smaller than the size of original data set ni (mi = O(lnni)).
For subspace learning, the trade-off parameters is set as α =
10−5, γ = 1, the max iteration is t = 500 and the learning
rate is η = 10−2. The dimension of subspace is chosen by
cross validation. We test several model types like SVM and
random forest. All experiments are repeated 50 times.
User’s task performance. Table 2 shows the accuracy
of different methods on the user’s task, with our method



Task name #Mix Random Ensemble MMD Auxiliary Projection Ours

Mfeat (far, kar, pix)
1 0.284 ± 0.358 0.599 ± 0.357 0.568 ± 0.352 0.537 ± 0.306 0.629 ± 0.256 0.770 ± 0.223
2 0.299 ± 0.205 0.640 ± 0.229 0.483 ± 0.176 0.576 ± 0.194 0.623 ± 0.135 0.735 ± 0.115
3 0.284 ± 0.146 0.612 ± 0.173 0.405 ± 0.113 0.549 ± 0.149 0.579 ± 0.114 0.665 ± 0.108

Mfeat (zer, fou, mor)
1 0.279 ± 0.353 0.522 ± 0.323 0.555 ± 0.343 0.536 ± 0.317 0.531 ± 0.338 0.590 ± 0.357
2 0.292 ± 0.201 0.548 ± 0.208 0.436 ± 0.197 0.572 ± 0.205 0.546 ± 0.198 0.584 ± 0.207
3 0.277 ± 0.142 0.526 ± 0.153 0.357 ± 0.129 0.547 ± 0.153 0.519 ± 0.148 0.555 ± 0.157

Anuran
1 0.235 ± 0.310 0.409 ± 0.334 0.462 ± 0.365 0.418 ± 0.293 0.543 ± 0.268 0.597 ± 0.254
2 0.192 ± 0.180 0.417 ± 0.259 0.364 ± 0.245 0.407 ± 0.224 0.437 ± 0.176 0.468 ± 0.156
3 0.163 ± 0.126 0.356 ± 0.203 0.294 ± 0.183 0.357 ± 0.180 0.400 ± 0.163 0.420 ± 0.115

Digits
1 0.284 ± 0.355 0.513 ± 0.310 0.569 ± 0.350 0.527 ± 0.320 0.626 ± 0.096 0.729 ± 0.246
2 0.299 ± 0.204 0.551 ± 0.197 0.480 ± 0.182 0.549 ± 0.205 0.500 ± 0.087 0.581 ± 0.117
3 0.283 ± 0.145 0.526 ± 0.152 0.411 ± 0.121 0.527 ± 0.152 0.479 ± 0.051 0.550 ± 0.107

Kddcup99
1 0.320 ± 0.370 0.550 ± 0.247 0.638 ± 0.316 0.609 ± 0.276 0.719 ± 0.205 0.735 ± 0.239
2 0.324 ± 0.219 0.571 ± 0.146 0.503 ± 0.195 0.642 ± 0.166 0.592 ± 0.126 0.687 ± 0.164
3 0.309 ± 0.148 0.550 ± 0.118 0.418 ± 0.137 0.616 ± 0.133 0.576 ± 0.117 0.652 ± 0.123

Covtype
1 0.293 ± 0.349 0.391 ± 0.372 0.491 ± 0.375 0.352 ± 0.208 0.534 ± 0.268 0.575 ± 0.300
2 0.240 ± 0.197 0.297 ± 0.214 0.335 ± 0.217 0.334 ± 0.143 0.383 ± 0.129 0.427 ± 0.126
3 0.251 ± 0.154 0.322 ± 0.161 0.321 ± 0.166 0.338 ± 0.091 0.368 ± 0.080 0.378 ± 0.082

Ours: win/tie/loss 18/0/0 18/0/0 18/0/0 18/0/0 18/0/0 Rank first 18/18

Table 2: Accuracy (mean ± std.) on true labels of the user data. The best method is emphasized in bold.

consistently outperforming the others. However, Random,
Ensemble, and MMD don’t fully leverage the potential of the
learnware market as they only recommend learnwares within
the same feature space. Among them, Random performs
the worst, while MMD achieves better accuracy using distribu-
tion information. Compared to these methods, Auxiliary
identifies all heterogeneous models but can’t reuse models
with partially intersected feature spaces. In contrast, both
Projection and our method can identify and reuse all
heterogeneous models. Projection uses pseudo-labels to
reuse models, while we directly use models for predictions.
Our method offers a superior approach to reusing models and
provides better data privacy protection than Projection.

7 Related Work
The learnware paradigm [Zhou, 2016; Zhou and Tan, 2022]
devotes to build a model market to help users identify and
reuse helpful models for their tasks instead of starting from
scratch. When all models share the same feature space, the
learnware identification can be conducted by RKME match-
ing and job selector [Wu et al., 2023]. Based on RKME
specification, the market can also identify unseen part within
user’s data and handle the remaining part [Zhang et al., 2021].
When models have different feature spaces, existing study
can only initialize the market with the help of extra auxiliary
data [Tan et al., 2022].

Domain adaptation [Ben-David et al., 2006] and transfer
learning [Pan and Yang, 2009; Ding et al., 2022] transfer the
knowledge from the source domain to the target domain. This
presupposes a similarity between target and source tasks to
avoid negative transfer [Wang et al., 2019]. However, within
the learnware paradigm, the user’s task may only correlate
with a few learnwares in the market, making model identifi-
cation vital. Model reuse focuses on reusing existing models

for a current task without raw data access [Zhao et al., 2020;
Ding and Zhou, 2020]. However, it assumes all models
are beneficial to the task, which differs from the learnware
paradigm where only a few models are useful.

Existing studies on heterogeneous feature spaces includ-
ing heterogeneous domain adaptation [Duan et al., 2012;
Wang and Mahadevan, 2011], heterogeneous transfer learn-
ing [Day and Khoshgoftaar, 2017], heterogeneous model
reuse [Ye et al., 2018; Ye et al., 2020], etc., generally map
different feature spaces to an intermediate subspace. In this
process, original data from both domains or co-occurrence
data are always necessary for constructing the relationship be-
tween different spaces. However, in the learnware paradigm,
handling models developed from different feature spaces
without auxiliary data becomes feasible due to the existence
of RKME specifications associated with each model. Based
on the learnware paradigm, we realize to solve the challenge
of accommodating, identifying, and reusing heterogeneous
models of any type while having no access to original data
or extra co-occurrence auxiliary data.

8 Conclusion

This paper presents a general framework for constructing and
utilizing the heterogeneous learnware market without rely-
ing on additional auxiliary data, while ensuring the privacy
of the developers and users. The key idea is to utilize the
raw RKME specifications to generate mapping functions that
connect different feature spaces to a shared subspace. The
generated mapping functions allow for the adjustment of raw
specifications during market construction and the handling
of missing features when users exploit the market. A com-
pelling issue for future research is how to further adapt map-
ping functions on user’s task for better learnware reuse.
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Supplementary Materials for “Handling Learnwares
Developed from Heterogeneous Feature Spaces without Auxiliary Data”

This is the supplemental material for the paper ”Handling Learnwares Developed from Heterogeneous Feature Spaces with-
out Auxiliary Data”.

A Notations
The major notations of this paper are summarized in Table 3.

Category Notations Description

basic

Xall = X1 × · · · × XQ the overall feature space and its Q components, the corresponding dimensions are dall, d1, · · · , dQ.
X up

1 , · · · ,X up
T T kinds of feature spaces for developers’ task, each of them is the Cartesian product of several

component feature spaces. The index set of components that X up
k has is Ck, i.e., X up

k = ×i∈Ck
Xi.

X us the feature space of the user’s task, it is the Cartesian product of several component feature spaces,
the corresponding index set of components is C0, i.e., X us = ×i∈C0

Xi.
Y the label space.

developer
Di := {(xij , yij)}ni

j=1 the labeled dataset of the i-th developer defined on X up
ϕi
× Y where ki ∈ [1, · · · , T ].

fi : X up
ϕi
7→ Y the model of the i-th developer trained on Di.

sraw
i := {(βij , zij)}mi

j=1 the raw specification of the i-th model generated from Di via RKME.

user D0 := {x0j}n0
j=1 the unlabeled dataset of the user.

sraw
0 := {(β0j , z0j)}m0

j=1 the raw requirement of the user generated from D0 via RKME.

market

si := {(βij ,vij)}mi
j=1 the specification of the i-th model given by the learnware market, which is generated by adjusting

the raw specification sraw
i .

li := (fi, si) the i-th learnware accommodated by the learnware market.
{li}Ni=1 the heterogeneous learnware market.

s0 := {(β0j ,v0j)}m0
j=1 the requirement of the user generated by the market.

subspace

Xsub the learned subspace with dimension dsub.
hk : Xk 7→ Xsub the mapping function which transform the data on the k-th component feature space Xk to the sub-

space Xsub.
gk : Xsub 7→ Xk the mapping function which transform the data on the subspace Xsub to the k-th component feature

space Xk.
Zi the concatenation of all specification without weights in the i-th feature space X up

i whose domain
is RNi×(

∑
k∈Ci

dk) where Ni is total number of samples in X up
i . Zi can be split into |Ci| parts:

{Z(j)
i |j ∈ Ci}.

Γi the i-th weight matrix whose domain is RNi×Ni , it is a diagonal matrix constructed from weights
of all specification in the i-th feature space X up

i .
Vi the projection of i-th data matrix in the subspace whose domain is Rni×dsub .
Ci the index set of component feature space that Zi relates to.
Rk the index set of data matrix whose feature space contains Xk.
Z(k) the concatenation of all data matrix slices in Xk for all data matrix {Zi}: {Z(k)

i |i ∈ Rk} with the
shape (

∑
i∈Rk

Ni)× dk.
V(k) the concatenation of some mapped data matrices: {V(k)

i |i ∈ Rk} with the shape is (
∑

i∈Rk
Ni) ×

dsub.
(V∗)(k) intermediate optimization results of V(k).
L(k) the Laplacian matrix calculated on Z(k) with the shape (

∑
i∈Rk

Ni)× (
∑

i∈Rk
Ni).

Γ(k) the diagonal matrix with weights associated with Z(k), the shape is (
∑

i∈Rk
Ni)× (

∑
i∈Rk

Ni).

Table 3: Notations of this work.

B Optimization
This section provides a detailed description of the optimization methods employed in our study. Initially, we introduce the
optimization of RKME with non-negative constraints, followed by the optimization of subspace learning and the associated
procedure for generating mapping functions as defined by Eq. (3). Since the subspace learning objective, as denoted by Eq. (3),
is not convex across all variables, achieving the global minimum becomes impossible. We propose an iterative optimization
solution to attain the local minimum. During each iteration, we employ gradient descent and the multiplicative updated rule to



optimize the variables. We provide a brief introduction of the multiplicative updated rule for nonnegative quadratic program-
ming, followed by a detailed description of our optimization approach.

B.1 Optimization of RKME
The optimization problem of RKME with non-negative constraints is

min
β,Z

∥∥∥∥∥∥ 1n
n∑

i=1

k (xi, ·)−
m∑
j=1

βjk (zj , ·)

∥∥∥∥∥∥
2

H
s.t. βj ≥ 0,

(8)

which can be solved by alternative optimization. The objective function can be rewritten as

F (β,Z) =

n∑
i,j=1

1

n2
k (xi, xj) +

m∑
i,j=1

βiβjk (zi, zj)− 2

n∑
i=1

m∑
j=1

βj

N
k (xi, zj)

= β⊤Kzzβ − 2
1⊤

N
Kxzβ +

1

N2
1⊤Kxx1,

(9)

where β = (β1; · · · ;βm), [Kxz]ij = k(xi, zj).
Update coefficients βj . Coefficients βj can be updated by quadratic programming with non-negative constraint.
Update samples zj . Samples zj can be updated by gradient descent [Wu et al., 2023].

z
(t)
j = z

(t−1)
j − η

∂F (β,Z)

∂zj
. (10)

B.2 Multiplicative Updated Rule
One efficient way to solve the nonnegative quadratic programming is multiplicative update rule [Sha et al., 2007]. We first
review the multiplicative update rule as follows,
Proposition 1. The general nonnegative quadratic form is defined as

f(x) =
1

2
x⊤Ax+ b⊤x,

where x is an d-dimensional nonnegative vector, A is a symmetric positive definite matrix and b is an arbitrary d dimensional
vector. Let A+and A−denote the nonnegative matrices with elements:

A+
ij =

{
Aij if Aij > 0,
0 otherwise, A−

ij =

{
|Aij | if Aij < 0,

0 otherwise.

It is easily to observe that A = A+ − A−. Then, the solution x that minimizes f(x) can be obtained through the iterative
update as

xi ← xi

[
−bi +

√
b2
i + 4 (A+x)i (A

−x)i
2 (A+x)i

]
. (11)

In this proposition, the crucial elements used for update are b, A+x and A−x. The elements can be calculated by b =
∇f(x)|x=0 ,Ax = ∇f(x)|x=0 − b and decomposing Ax as A+x, A−x [Tan et al., 2022].

For the nonnegative quadratic optimization when the optimized variable is a matrix, this paper first gives the explicit general
updated rules. We use the following notation MUR(X,B,P,N) to describe the update.

Xij ← Xij

Bij +
√
B2

ij + 4PijNij

2Pij

 , (12)

where B = − ∇f(X)|X=0. P and N are generated from ∇f(X) − ∇f(X)|X=0. ∇f(X) − ∇f(X)|X=0 has the form of∑
i CiXDi, which generates P =

∑
i(C

+
i XD+

i +C−
i XD−

i ) and N =
∑

i(C
+
i XD−

i +C−
i XD+

i ). If all elements of Ci are
non-negative, then C−

i = 0,C+
i = Ci, and the decomposition CiXDi = (C+

i XD+
i +C−

i XD−
i )−

∑
i(C

+
i XD−

i +C−
i XD+

i )

degenerates to CiXDi = CiXD+
i − CiXD−

i . To be noticed that the update result won’t be changed if B,P,N are scaled
with a common positive real number. When N = 0 and elements of B are all non-negative, the update rule degenerates to

Xij ← Xij

(
Bij

Pij

)
, (13)



B.3 Detailed Optimization
The objective function of subspace learning is reviewed as

min
{W(k)},{V(k)},{(V∗)(k)}

O =

Q∑
k=1

(
∥[Z(k) − Z(k)W(k)(V(k))⊤](Γ(k))1/2∥2F

+ αTr((V(k))⊤L(k)V(k)) + γ∥(Γ(k))1/2[V(k) − (V∗)(k)]∥2F
)

s.t. W(k) ≥ 0.

(14)

Initialization. The parameters {W(k),V(k)}Qk=1 are initialized with the clustering method. More specifically,we use C(k) ∈
{0, 1}(

∑
i∈Rk

Ni)×dk to denote the indicator matrix of weighted k-means clustering results of Z(k) ∈ R(
∑

i∈Rk
Ni)×dk , i.e.,

if xi belongs to the j-th cluster, then C
(k)
ij = 1 and C

(k)
il = 0 for l ̸= j. Then, we initialize W(k) as W(k) = (C(k) +

0.1E(k))(D(k))−1 where D(k) = diag(n1, · · · , nk), nk is the cardinality of the k-th cluster and E(k) is a matrix with all
elements equal to 1. {V(k)} is initialized by (V(k))⊤ = ((W(k))⊤K(k)W(k))−1(W(k))⊤K(k). (V∗)(k) is initialized by
concatenating {V∗

i |i ∈ Rk} where V∗
i = 1

|Ci|
∑

k∈Ci
V

(k)
i .

Optimizing W(k) with Fixed Other Variables. The subproblem is

min
W(k)

O = ∥[Z(k) − Z(k)W(k)(V(k))⊤](Γ(k))1/2∥2F

s.t. W(k) ≥ 0.
(15)

For brevity, we ignore the superscript and mark Z(k),W(k),V(k),Γ(k),L(k) as Z,W,V,Γ,L. The subproblem is restated as

min
W

O = ∥(Z− ZWV⊤)Γ1/2∥2F
s.t. W ≥ 0.

(16)

The objective function can be rewritten as

O(W) = Tr(ΓK)− 2Tr(ΓKWV⊤) + Tr(ΓVW⊤KWV⊤), (17)

where Kij = z⊤
i zj . The derivative of O(W) is

∂O

∂W
= −2KΓV + 2KWV⊤ΓV, (18)

which results in the multiplicative update rule:

W← MUR(W,KΓV,PW,NW), (19)

PW = K+W(V⊤ΓV)+ +K−W(V⊤ΓV)−, (20)
NW = K+W(V⊤ΓV)− +K−W(V⊤ΓV)+, (21)

Optimizing V(k) with Fixed Other Variables. The subproblem is

min
V(k)

O = ∥[Z(k) − Z(k)W(k)(V(k))⊤](Γ(k))1/2∥2F + αTr((V(k))⊤L(k)V(k))

+ γ∥(Γ(k))1/2[V(k) − (V∗)(k)]∥2F
(22)

We ignore the superscript and mark Z(k),W(k),V(k), (V∗)(k),Γ(k),L(k) as Z,W,V,V∗,Γ,L for brevity, and the subprob-
lem is restated as

min
V

O = ∥(Z− ZWV⊤)Γ1/2∥2F + αTr(V⊤LV) + γ∥Γ1/2(V −V∗)∥2F (23)

The objective function can be rewritten as

O(V) = Tr(ΓK)− 2Tr(ΓKWV⊤) + Tr(ΓVW⊤KWV⊤) + αTr(V⊤LV)

+ γ Tr(V⊤ΓV)− 2γ Tr((V∗)⊤ΓV) + γ Tr((V∗)⊤Γ(V∗))
(24)

where Kij = k(zi, zj). The derivative of O(V) is

∂O

∂V
= −2ΓKW + 2ΓVW⊤KW + 2αLV + 2γΓV − 2γΓV∗, (25)

which results in the gradient decent update rule:

V← V − η
∂O

∂V
. (26)



Algorithm 3 Detailed optimization of subspace learning
Input: data matrices {Zi}Ti=1 and coefficient matrices {Γi}Ti=1 generated by concatenating raw specifications of submitted
models {sraw

i }Ni=1, Ci describing the indices of component feature spaces Zi contains, Rk describing the indices of data matrix
whose feature space contains Xk.
Hyper-Parameters: the dimension of subspace d, trade-off parameters {α, γ}; learning rate η, max iteration t; number of
nearest neighbors p for manifold regularizer.
Output: mapping functions {hk}Qk=1, {gk}

Q
k=1 used for connecting component feature spaces {Xk}Qk=1 with the unified sub-

space Xsub.
1: Use raw specifications {(Zi,Γi)}Ti=1 to generate Z(k),Γ(k) according to Rk.
2: initialize W(k),V(k), (V∗)(k) with the weighted k-means clustering method.
3: while max iteration t is not achieved do
4: for k = 1 to Q do
5: update W(k) according to Eq. (19).
6: update V(k) according to Eq. (26).
7: cooperative normalized W(k),V(k) according to Eq. (31).
8: end for
9: update (V∗)(k) according to Eq. (30).

10: end while
11: return mapping functions {hk(z) = ((B(k))⊤B(k))−1(B(k))⊤z}Qk=1, {gk(v) = B(k)v}Qk=1.

Optimizing {(V∗)(k)}Qk=1 with Fixed Other Variables. The subproblem is

min
{(V∗)(k)}

O = ∥(Γ(k))1/2[V(k) − (V∗)(k)]∥2F (27)

Each element in {(V∗)(k)}Qk=1 is the concatenation of {V∗
i }Ti=1, we rewrite the subproblem as

min
{V∗

i }T
i=1

T∑
i=1

∑
k∈Ci

∥Γ1/2
i (V

(k)
i −V∗

i )∥2F (28)

The derivative of O(V∗
i ) is

∂O

∂V∗
i

= Γi

∑
k∈Ci

(V∗
i −V

(k)
i ), (29)

which results in the closed-form solution

V∗
i =

1

|Ci|
∑
k∈Ci

V
(k)
i (30)

Cooperative Normalization. To ensure uniqueness of the solution and comparability of mapping results across different
component feature spaces, we impose a restriction that limits the maximum absolute value of each column in V to 1. This leads
to the cooperative normalization described below:

W(k) = W(k)Λ(k),

V(k) = V(k)(Λ(k))−1,
(31)

where Λ(k) = diag(∥V1·∥, · · · , ∥Vk·∥) and the norm used is the maximum norm ∥x∥∞ = maxj |xj |. This step is followed by
updating W(k),V(k), (V∗)(k) in each updated iteration.

Overall Algorithm. The overall procedure is summarized in Algorithm 3.

C More Discussion for the General Framework
Weighted extensions. In Equation (3), all component feature spaces are assigned equal weights. However, incorporating prior
knowledge for specific tasks would entail assigning different weights to different components. We can easily generalize our
objective function by multiplying the weights c1, · · · , cQ with their corresponding component losses. Additionally, by including
the norm of the weights as a regularizer, the weights can be automatically adjusted rather than being assigned manually (Wang
et al., 2016).



Time complexity analysis. Subspace learning is the procedure that dominates the time complexity of the overall process, with
a time complexity of O(QN2M2dsubt). In this context, Q represents the number of feature space blocks, N denotes the number
of learnwares available in the market, and M = O(log(n)) indicates the size of the RKME specification, which is significantly
smaller than the original dataset size n. dsub represents the dimension of the subspace, and t indicates the maximum iteration
of optimization. In the following section, we provide a detailed explanation of the time complexity calculation. The primary
computation in subspace learning involves calculating the product of five matrices: the different variants of KWV⊤ΓV in
the optimization step for W(k) and ΓVW⊤KW in the optimization step for V(k). Each of these calculations has a time
complexity of n2dsub, where n represents the number of samples with data on Xk and can be bounded by NM . By traversing
all M component feature spaces and performing t iterations, the overall time complexity of subspace learning can be expressed
as O(QN2M2dsubt).

D More Experiments
This section presents additional results of the heterogeneous learnware market with various configurations. The Mfeat dataset
naturally comprises multiple feature spaces, whereas Anuran, Digits, Kddcup99, and Covtype datasets contain only one feature
space. In the experiments described in Section 6.2, the heterogeneous learnware scenario is generated by randomly splitting
the feature space of each of the four datasets into three parts. However, in this section, we conduct experiments where the
feature space of the four datasets is multiplied by three random Gaussian matrices to generate component feature spaces for
preprocessing. The processed Anuran, Digits, Kddcup99, and Covtype datasets have component dimensions of [22, 22, 22],
[64, 64, 64], [88, 88, 88], and [18, 18, 18], respectively. The number of mixed components for the user’s task ranges from 1 to
3, and the other configurations are similar to those described in Section 6.2.
Performance. The performance of various methods is summarized in Table 4. Our method continues to outperform other
methods in this scenario. Out of the total of 12 cases, our method achieves the best performance in 11 cases. The results
presented in Table 2 and Table 4 demonstrate the strong performance of our method across various situations, thereby validating
the effectiveness of our proposed approach.

Task name #Mix Random Ensemble MMD MLJ Projection Ours

Anuran
1 0.272 ± 0.358 0.464 ± 0.336 0.511 ± 0.407 0.333 ± 0.310 0.639 ± 0.150 0.723 ± 0.196
2 0.219 ± 0.199 0.458 ± 0.265 0.372 ± 0.247 0.273 ± 0.194 0.534 ± 0.146 0.554 ± 0.187
3 0.184 ± 0.135 0.394 ± 0.209 0.310 ± 0.193 0.227 ± 0.119 0.528 ± 0.089 0.529 ± 0.118

Digits
1 0.285 ± 0.358 0.560 ± 0.341 0.568 ± 0.351 0.527 ± 0.304 0.536 ± 0.258 0.760 ± 0.237
2 0.299 ± 0.205 0.600 ± 0.218 0.482 ± 0.175 0.549 ± 0.193 0.520 ± 0.138 0.677 ± 0.126
3 0.283 ± 0.145 0.573 ± 0.167 0.416 ± 0.111 0.526 ± 0.147 0.497 ± 0.110 0.665 ± 0.078

Kddcup99
1 0.289 ± 0.359 0.379 ± 0.380 0.430 ± 0.358 0.381 ± 0.377 0.386 ± 0.190 0.451 ± 0.336
2 0.260 ± 0.215 0.324 ± 0.224 0.324 ± 0.187 0.328 ± 0.222 0.210 ± 0.154 0.402 ± 0.194
3 0.240 ± 0.140 0.325 ± 0.148 0.256 ± 0.155 0.329 ± 0.147 0.178 ± 0.111 0.377 ± 0.167

Covtype
1 0.313 ± 0.366 0.329 ± 0.186 0.547 ± 0.382 0.411 ± 0.255 0.369 ± 0.253 0.493 ± 0.382
2 0.315 ± 0.215 0.283 ± 0.114 0.454 ± 0.231 0.414 ± 0.158 0.321 ± 0.112 0.472 ± 0.197
3 0.301 ± 0.144 0.283 ± 0.084 0.326 ± 0.149 0.401 ± 0.112 0.279 ± 0.095 0.419 ± 0.145

Table 4: Accuracy (mean ± std.) on true labels of the user data. The best method is emphasized in bold.
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