
Towards Making Learnware Specification and Market Evolvable

Jian-Dong Liu, Zhi-Hao Tan, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artificial Intelligence, Nanjing University, China
{liujd, tanzh, zhouzh}@lamda.nju.edu.cn

Abstract

The learnware paradigm aims to establish a market of nu-
merous well-performed machine learning models, enabling
users to leverage existing helpful models for their tasks in-
stead of starting from scratch. Each learnware in the market is
a model submitted by its developer, associated with a specifi-
cation generated with the help of learnware market, represent-
ing the model’s specialty and utility and enabling it to be iden-
tified for new user tasks. As the market continuously scales
up, accommodating an ever-increasing number of learnwares,
the critical challenge of the learnware paradigm is to effec-
tively and efficiently identify the most helpful learnware(s)
for a new user task without accessing the user’s raw data. In
this paper, to achieve increasingly accurate learnware char-
acterization and identification along with a growing num-
ber of learnwares in the market, we propose an approach
called Evolvable Learnware Specification with Index (ELSI).
Specifically, based on the key idea of leveraging the task in-
formation within learnware specifications, we tackle the chal-
lenge of ascertaining the capabilities of models beyond their
original training tasks, thereby enabling learnware specifica-
tions and the entire market to evolve continuously. Further-
more, through organizing learnwares and constructing speci-
fication indexes, we design a practical procedure to accurately
and efficiently identify helpful learnwares without examining
the entire market. Theoretical analysis and extensive experi-
ments on a learnware market prototype encompassing thou-
sands of models and covering six real-world scenarios vali-
date the effectiveness and efficiency of our approach.

1 Introduction
Machine learning has achieved significant success in var-
ious real-world applications, including medicine, robotics,
and ecology. However, developing a well-performed model
necessitates several essential conditions, such as sufficient
labeled data, adequate computational resources, and profi-
cient training skills. Without these conditions, most ordinary
users can hardly produce high-quality models starting from
scratch. Besides, it is difficult to identify and reuse beneficial
models among different users due to data privacy concerns.

To tackle the above issues simultaneously, the learnware
paradigm (Zhou 2016; Zhou and Tan 2024) was proposed to
establish a learnware market containing numerous machine

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

learning models, enabling users to build models by reusing
existing efforts instead of starting from scratch. A learnware
is a well-performed model with a specification represent-
ing its specialty and utility, enabling the model to be ade-
quately identified for subsequent user tasks. Developers can
spontaneously submit their models on various tasks to the
market, which then assigns specifications to accepted ones.
The learnware market is also called learnware dock system,
which can organize and utilize the accepted learnwares to
solve new user tasks. Given a new task, the market can iden-
tify helpful learnwares based on the submitted user require-
ments. It is important to note that the learnware market has
access to the raw data of neither the developers nor the users.

A critical challenge in the learnware paradigm is how
to effectively and efficiently identify the most helpful learn-
ware(s) in a continuously expanding market for a new user
task without accessing raw user data? This is particularly
crucial as the number of learnwares grow exponentially. The
key to the solution is the specification, which is the core of
the learnware paradigm, playing a crucial role in learnware
characterization and identification without leaking raw data.
Based on specifications, recent studies about the learnware
paradigm (Wu et al. 2023; Zhang et al. 2021; Tan et al. 2022,
2023; Xie et al. 2023) successfully identified helpful models
whose original training distribution align with the user task.
However, perfect matches are uncommon due to varying en-
vironments. Solely relying on initial training distribution for
model identification would ignore numerous beneficial mod-
els trained on tasks far from the user’s. Additionally, current
methods necessitate examining all learnwares in the market,
which is computationally infeasible in markets with contin-
uously growing scale. Hence, two specific key issues arise:

• How to characterize model abilities beyond models’
original tasks for accurate learnware identification?

• How to avoid examining the entire market for efficient
learnware identification?

The fundamental difficulties of these issues stem mainly
from the absence of labeled data for evaluating model per-
formance in various domains, as well as the lack of an ef-
fective learnware distance metric to organize models for ef-
ficient retrieval. Under the learnware paradigm, our pivotal
insight emerges: evaluating a model’s capability beyond its
initial training task could be feasible through the task infor-

12

Evolvable Learnware Market

Task 1 Model 1

RKME Specification

Generation

Developer 1
Submit

Submitting Stage Deploying Stage

SubmitTask 2 Model 2

RKME Specification

Generation

Developer 2

SubmitTask C Model C

RKME Specification

Generation

Developer C

User

Requirement

Anchor RKMEs

Send

Some Statistics

Submit

Helpful Model

Return

Index 𝐿𝐿𝑓𝑓 Specification

00…

01…

11…

Learnwares

Learnwares

RKME Indexed Tree

Specification Hash Table

Specification Index

Construction for RKME

Specification Evolving

Specification Index

Construction for 𝐿𝐿𝑓𝑓

Figure 1: In our approach ELSI, the market evolves specifications by organizing learnwares from developers and building spec-
ification indexes in the submitting stage. In the deploying stage, these indexed specifications facilitate interactive approximation
of user tasks and efficient identification of valuable models without accessing raw user data or traversing the entire market.

mation within the recently proposed Reduced Kernel Mean
Embedding (RKME) specifications (Zhou and Tan 2024) of
other learnwares. Furthermore, since specifications charac-
terize model capabilities, they provide a pathway to system-
atically organize models for efficient retrieval.

In this paper, to tackle the two issues simultaneously,
we propose an approach that continuously evolves indexed
learnware specifications and the entire market for accurate
and efficient learnware identification. As illustrated in Fig-
ure 1, the market generates evolvable specifications with in-
dexes in the submitting stage, which are utilized to interac-
tively approximate user tasks and effectively identify bene-
ficial learnwares for users without accessing raw user data
or examining the entire market in the deploying stage. We
summarize the main contributions of our work as follows:

• We make the first attempt to establish evolvable learn-
ware specifications, aiming for increasingly accurate
characterization of model abilities beyond their original
training tasks as the market continuously grows, thereby
constantly facilitating the evolution and enhancement of
the overall market capability. Theoretical analysis for
learnware identification is provided.

• Through organizing learnwares and constructing speci-
fication indexes, we propose an approach called Evolv-
able Learnware Specification with Index (ELSI), which
could achieve evolvable learnware specifications and cor-
responding efficient learnware identification for users
without leaking raw data. As the key components of our
approach, specification indexes are established based on
the RKME indexed tree and the specification hash table.

• We design a practical and efficient procedure for imple-
menting our approach ELSI. Extensive experimental re-
sults on a learnware market encompassing thousands of
models and covering six real-world scenarios validate the
effectiveness and efficiency of our approach.

Organization. The rest is structured as follows. Section 2
introduces preliminaries and Section 3 presents the learn-
ware paradigm formulation. Section 4 details our approach
ELSI. Section 5 reports the experiments. Section 6 con-
cludes the paper.

2 Preliminary
This section introduces related techniques within this paper.

Kernel Mean Embedding. KME (Smola et al. 2007) is
powerful to map a probability distribution to a point in repro-
ducing kernel Hilbert space (RKHS). Let P be a probability
distribution defined over X and k : X ×X 7→ R be a kernel
function. Assuming

∫
X

√
k(x,x)dP (x) < ∞, the KME is

µP =
∫
X k(x, ·)dP (x) with RKHS Hk. KME captures all

necessary information about the distribution P with char-
acteristic kernels (Sriperumbudur, Fukumizu, and Lanckriet
2011), such as the Gaussian kernel. In practice, due to the
inaccessibility of the true distribution P , we often approx-
imate µP by the empirical KME µ̂P = 1

m

∑m
i=1 k(xi, ·),

where the samples {xi}mi=1 are drawn i.i.d. from P . Un-
der mild conditions, µ̂P converges to µP at rate O(1/

√
m),

measured by the RKHS norm ∥ · ∥Hk
(Smola et al. 2007).

Reduced Kernel Mean Embedding. Although KME has
several beneficial properties, it requires access to raw data,
conflicting with the principle of data privacy in the learn-
ware paradigm. Based on KME, the Reduced Kernel Mean
Embedding (RKME) is proposed as the specification (Zhou
and Tan 2024), which preserves the abilities of KME by
concisely representing the model’s training data distribution
without exposure of raw data. Specifically, the RKME gen-
erates a reduced set {(βj ∈ R, zj ∈ X)}nj=1 to approximate
the empirical KME µ̂P by solving

min
β,z

∥∥∥∥ 1

m

∑m

i=1
k(xi, ·)−

∑n

j=1
βjk(zj , ·)

∥∥∥∥2
Hk

. (1)

Based on RKME specifications, recent research has suc-
ceeded in identifying helpful learnwares by measuring dis-
tribution similarity between RKME specifications and user
tasks. Additionally, the RKME µ̃P =

∑n
j=1 βjk(zj , ·) ex-

hibits a linear convergence rate of O(e−n) towards µ̂P when
Hk is finite-dimensional (Bach, Lacoste-Julien, and Obozin-
ski 2012; Zhang et al. 2021).

3 Formulation
The learnware paradigm consists of two distinct stages:
submitting and deploying stages. Let ∆p = {α =
(α1; . . . ;αp) :

∑p
k=1 αk = 1, αk ≥ 0} denote the p-

dimensional simplex within Rp.
Submitting Stage. In this stage, developers can sponta-

neously submit their well-performed models with RKME
specifications. Suppose there are C developers in this stage.
The c-th developer has access to a private local dataset
Dc = {(xc,i, yc,i)}mc

i=1, representing her specific task. In
Dc, xc,i is sampled from a distribution Dc on the input
space X and yc,i is determined by a ground-truth function
hc ∈ F = {f | f : X 7→ Y} of the distribution Dc, i.e.,

∀(x, y) ∈ Dc,x ∼ Dc, y = hc(x). (2)

Based on the local dataset Dc, the c-th developer can train
a well-performed model fc ∈ F for the c-th task and the
model fc holds the following property:

LDc
(fc, hc) = Ex∼Dc

[ℓ(fc(x), hc(x))] ≤ ε, (3)

where ℓ : Y × Y 7→ R is the loss function. Besides, to
approximate the c-th task without exposing the private local
dataset Dc, a RKME specification Rc = {(βc,j , zc,j)}nc

j=1 is
constructed by solving Eq. (1), where βc ∈ ∆nc , zc,j ∈ X ,
and nc ≪ mc. Then the developer submits the learnware
(fc, Rc) to the market. After receiving a number of learn-
wares, the learnware market will organize them, facilitating
accurate and efficient identification of helpful learnwares for
users in the future. The detailed generation of RKME speci-
fications can be found in a longer version of this paper.

Deploying Stage. In this stage, the user hopes to re-
ceive some helpful models from the market to handle her
task while ensuring data security, i.e., without disclosing
her raw data. Specifically, the user expects to obtain models
{fUc}Cu

c=1 from the learnware market. These models will en-
able the user to predict her dataset Du = {xu,i}mu

i=1, which
contains unknown labels and is sampled from a distribution
Du on X . The ground-truth function of the distribution Du

is denoted as hu ∈ F . In this study, for simplicity, we con-
sider the single model case, i.e., Cu = 1. Thus, we focus on
the identification for a model fu that is helpful for the user
task within the learnware market, i.e.,

fu = argmin
f∈{fc}C

c=1

LDu
(f, hu)

= argmin
f∈{fc}C

c=1

Ex∼Du
[ℓ(f(x), hu(x))].

(4)

The single model case combined with some existing ensem-
ble techniques (Zhou 2012) can be directly extended to the
multiple model case, i.e., Cu > 1, and more details will be
considered in the future.

4 Our Approach
In this section, we begin by offering a high-level overview
of our approach ELSI in the first two subsections, with Sec-
tion 4.1 presenting the evolvable design for precise learn-
ware characterization and identification, while Section 4.2
introducing specification indexes for accelerating the design
and making it feasible. Subsequently, we delve into the de-
tailed implementation of ELSI in Section 4.3.

4.1 Evolvable Learnware Specification and
Learnware Identification

Learnware specifications represent model capabilities, form-
ing the foundation of the learnware paradigm. When charac-
terizing a model’s ability, it is common to start from natural
language descriptions or its training data distribution. How-
ever, since the model is essentially a function in a functional
space, its true capability extends beyond the constraints im-
posed by ambiguous descriptions or restrictive data distribu-
tions. Thus, the pivotal issue emerges: how to design specifi-
cations that precisely assess a model’s capability, especially
in aspects extending beyond its initial training tasks?

The mentioned issue is a fundamental challenge due to
the lack of labeled data for evaluating models in various do-
mains. Nevertheless, in the learnware paradigm, task infor-
mation from RKME specifications in other learnwares may
help address this challenge. As the market grows, leveraging
these diverse tasks enables continuous evolution of learn-
ware specifications for improved learnware characterization.

In the learnware paradigm, the market rigorously evalu-
ates submitted learnwares, admitting only high-quality ones
that excel in their intended tasks. Consequently, as a starting
point, it is reasonable to consider the output of each model
on its corresponding RKME specification as ground truth.
This enables the market to estimate model performance
across existing RKME specifications, facilitating continu-
ous evolution of learnware characterization. Specifically, the
market can assign a new specification Lf ∈ RC to each
model f , where Lf,c represents the loss of the model f on
the c-th RKME specification, i.e.,

∀c ∈ [C], Lf,c =
∑nc

j=1
βc,jℓ(f(zc,j), fc(zc,j)). (5)

RKME specifications and Lf together constitute the evolv-
able learnware specification. As the market scales up, the
model information captured in evolvable learnware specifi-
cations will continuously increase, bringing about enhanced
accuracy in learnware characterization and identification.

For the evolvable learnware specification, we propose a
new learnware identification method that evaluates model
performance on user tasks, denoted asLDu(f, hu) in Eq. (4).
Estimating this is challenging due to the fact that the mod-
els do not have access to the raw user data and the unquan-
tifiable nature of generalization loss LDu

(f, hu). Our main
idea is to leverage all RKME specifications in the market as
a bridge between user tasks and learnwares to approximate
the former and subsequently evaluate the latter with a quan-
tifiable surrogate loss. The corresponding theoretical guar-
antee is presented in Theorem 4.1, and its complete proof is
presented in a longer version of this paper.

Theorem 4.1. Assume supx∈X k(x,x) ≤ BH, the loss
function ℓ obeys the triangle inequality, and for all c ∈ [C],
the local dataset size mc = m, the RKME specification
size nc = n, and the submitted model fc satisfies Eq.
(3). Let ℓf,f ′ : x 7→ ℓ(f(x), f ′(x)) ∈ Hk, and suppose
∥ℓf,f ′∥Hk

≤ U , ∀f, f ′ ∈ F . Then, with probability at least
1− δ, δ ∈ (0, 1), for all w ∈ ∆C and f ∈ F , we have:

LDu(f, hu) ≤ w⊤Lf + U

∥∥∥∥µ̂Du −
∑C

c=1
wcµ̃Dc

∥∥∥∥
Hk

+ ε̂+O
(
m− 1

2 + n− 1
2 +m

− 1
2

u

)
,

where µ̃Dc
=

∑nc

j=1 βc,jk(zc,j , ·) denotes the c-th RKME,
µ̂Du =

∑mu

i=1 k(xu,i, ·)/mu is the empirical KME of the
user data, and ε̂ = ε+maxc∈[C] LDc(hc, hu).

Theorem 4.1 presents the upper bound of the model gen-
eralization loss on the user task, where w is the variable to
be optimized. To obtain a tighter bound, we should seek a
value of w by minimizing w⊤Lf + Uζw, where ζw is de-

fined as
∥∥∥µ̂Du −

∑C
c=1 wcµ̃Dc

∥∥∥
Hk

. However, this optimiza-

tion is challenging due to the unavailability of Lf to the user
and µ̂Du

to the learnware market.
To tackle these challenges, we propose a two-step ap-

proach. In the first step, the user obtains wu by solving
minw∈∆M ζw. In the second step, the learnware market cal-
culates w⊤

uLf to estimate the model loss over the user task
for arbitrary model f ∈ F . This estimation accurately mea-
sures model performance on user tasks, enabling the appli-
cation of models on tasks that extend beyond original pur-
poses. Moreover, we can substitute the generalization error
in Eq. (4) with the estimated model performance, i.e.,

fu = argmin
f∈{fc}C

c=1

w⊤
uLf , (6)

which enables the market to select the optimal model for
user tasks based on its estimated performance.

4.2 Making the Design Feasible: Learnware
Specification Index

In the learnware paradigm, evolvable learnware specifica-
tions facilitate increasing accuracy in learnware charac-
terization and identification. However, achieving evolvable
learnware specifications is infeasible without systematic or-
ganization of learnwares. As the market scale expands, the
designed identification method presented in Section 4.1 will
face significant efficiency challenges stemming from two
critical factors: the increasing dimensions of Lf and wu

which equal the number of learnwares in the market, as well
as the inefficiency of traversing the entire market in Eq. (6).

To address the above efficiency issues, we propose a gen-
eral concept: learnware specification index, which is used to
systematically organize learnware specifications and effec-
tively accelerate various operations related to specifications
and learnwares. Various data structures and algorithms can
be applied to build specification indexes, such as Binary In-
dexed Trees, B+-Trees, and hash tables. For different sce-
narios, selecting and designing an appropriate implementa-
tion for specification indexes must consider several factors,

including market scale, specification types, and learnware
identification methods.

In this paper, we construct specification indexes for
RKME and Lf specifications, respectively. The overall idea
is as follows: first, we establish a tree-like structure to build
indexes for RKME specifications, enabling sparse represen-
tations of Lf and wu and addressing the challenge posed by
high dimensionality. Second, we build hash tables to imple-
ment Lf specification indexes, facilitating efficient retrieval
during learnware identification without examining the entire
learnware market.

Indexes for RKME Specifications. After receiving C

learnwares {fc, Rc}Cc=1 from developers, we can organize
all RKME specifications into a hierarchy called RKME in-
dexed tree based on their distance metric defined with asso-
ciated Reproducing Kernel Hilbert Spaces (RKHS)Hk, i.e.,

dHk
(Ri, Rj) =

∥∥µ̃Di
− µ̃Dj

∥∥2
Hk

, (7)

where µ̃Di
and µ̃Dj

are defined the same as µ̃Dc
in The-

orem 4.1. Utilizing the distance metric dHk
, indexes for

RKME specifications can be constructed through divi-
sive hierarchical clustering, relying on k-medoids cluster-
ing (Kaufman and Rousseeuw 1990) as a fundamental tech-
nique. The latter involves identifying k representative ob-
jects from a set by dividing it into k clusters and choosing
an object with the smallest average dissimilarity to others
in each cluster. The k-medoids problem is known to be NP-
hard, and thus, heuristic algorithms such as CLARANS (Ng
and Han 2002) and FasterPAM (Schubert and Rousseeuw
2021) are commonly employed to provide efficient solu-
tions. These indexes accelerate the localization of RKME
specifications, enabling the sparse representations of Lf and
wu, since we focus solely on the dimensions with lower
losses in Lf and higher weights in wu.

Indexes for Lf Specifications. Avoiding traversing the
entire market when solving Eq. (6), we use the well-known
hashing technique Locality Sensitive Hashing (LSH) (In-
dyk and Motwani 1998) to construct indexes for Lf spec-
ifications. Specifically, inspired by Neyshabur and Srebro
(2015), we define two vector transformations p(wu) :
RC 7→ RC+1 and q(Lf) : RC 7→ RC+1 under the assump-
tion of 0 ≤ Lf,c ≤ Ur,∀f ∈ {fc}Cc=1,∀c ∈ [C], i.e.,

p(wu) = (wu/∥wu∥2 ; 0)

q(Lf) =

(
Ur − 2Lf ; 2

√
Ur∥Lf∥1 − ∥Lf∥22

)/√
CUr .

(8)
Observing that ∥p(wu)∥2 = ∥q(Lf)∥2 = 1, we can con-
vert the minimum inner product search between wu and Lf

into maximum cosine similarity search between p(wu) and
q(Lf), as follows:

fu = argmin
f∈{fc}C

c=1

w⊤
uLf = argmax

f∈{fc}C
c=1

p(wu)
⊤q(Lf). (9)

To enable effective cosine similarity search, we introduce a
hash function hsrp

a : RC+1 7→ {0, 1} from a famous LSH
family known as “sign random projections” (Goemans and

Algorithm 1: RKMEIndexConstruction(S, l, r, s)

Input: Set of RKME Specifications S, depth in the tree l,
constants r, s.

Output: RKME indexed tree T .
1: Initialize T .subtrees← {}, T .size = |S|, T .depth =

l, T .a ← (a1; . . . ; ar) and T .b ← T .a, where ai is a
random value sampled from a standard normal distribu-
tion for all i ∈ [r].

2: if |S| ≠ 0 then
3: ns← min(|S|, s). ▷ Number of subtrees.
4: Divide S into subsets {Si}nsi=1 with the corresponding

anchor RKME specifications {RIi}nsi=1 by running k-
medoids on S based on the distance metric dHk

de-
fined in Eq. (7).

5: for i = 1 to ns do
6: Ti ← RKMEIndexConstruction(Si \ {RIi}, l +

1, r, s). ▷ Generate the subtree.
7: Ti.anchor ← RIi . ▷ Set the anchor RKME

specification for the subtree.
8: Ti.size← Ti.size+ 1.
9: T .b← T .b+ Ti.b.

10: T .subtrees← T .subtrees ∪ {Ti}.
11: end for
12: end if

Williamson 1995; Charikar 2002). This hash function is de-
fined as hsrp

a (x) = sign(a⊤x), where a is a random vector
sampled from a normal distribution N (0, I). We show that
the probability of vectors wu and Lf having the same en-
coding increases with their cosine similarity increasing, i.e.,

P [hsrp
a (p(wu)) = hsrp

a (q(Lf))]

= 1− cos−1
(
p(wu)

⊤q(Lf)
)/

π .
(10)

Thus, we employ r random vectors {ai}ri=1(∀i ∈ [r],ai ∼
N (0, I)) to encode p(wu) and q(Lf) as indexes. Evolved
specifications with their indexes constitute the specification
hash table, which enables efficient learnware identification
through employing the classic hash lookup technique, multi-
index hashing (Norouzi, Punjani, and Fleet 2014).

4.3 Detailed Procedure of ELSI
The detailed procedure of our approach ELSI comprises
four main components: RKME indexed tree construction, Lf

specifications generation and indexing, user task representa-
tion and encoding, and learnware identification.

RKME Indexed Tree Construction. To simultaneously
accomplish the generation and indexing of Lf specifica-
tions, we assign an r-dimensional random vector T .a ∈ Rr

to each subtree T in the dendrogram of RKME specifica-
tions. The sum of the random vectors Ti.a for each subtree
Ti of T is computed in a one-pass manner and denoted as
T .b, which will be used to accelerate the Lf specifications
indexing process. The detailed construction process is sum-
marized in Algorithm 1.

Lf Specifications Generation and Indexing. RKME in-
dexed tree can be utilized to generate Lf specifications and
simultaneously hash them into r-dimensional binary codes

Algorithm 2: Lf Specifications Generation and Indexing

Input: Model f , RKME indexed tree T , constants
Ul, Ur,∆U .

Output: Specification Lf with its index Bf .
1: Initialize Bf ← (0; . . . ; 0) ∈ Rr, Πf ← T .subtrees,

o1 ← 0 and o2 ← 0.
2: while |Πf | > 0 do
3: Let Ti be the first element in Πf , whose anchor

RKME specification Ti.anchor = Rc.
4: Πf ← Πf \ {Ti}.
5: Lf,c ←

∑nc

j=1 βc,jℓ(f(zc,j), fc(zc,j)).

6: L̂f,c ← min(Lf,c, Ur).
7: δi ← max(Ul, Ur − (Ti.depth− 1)∆U).
8: if Lf,c ≤ δi then
9: Bf ← Bf + L̂f,cTi.a.

10: Πf ← Πf ∪ Ti.subtrees. ▷ Continue traversal.
11: Let o1 ← o1 + L̂f,c and o2 ← o2 + L̂f,c × L̂f,c.
12: else
13: Bf ← Bf + L̂f,cTi.b.
14: o1 ← o1 + Ti.size× L̂f,c.
15: o2 ← o2 + Ti.size× L̂f,c × L̂f,c.
16: end if
17: end while
18: Bf ← sign(Ur(T .b−T .a)−2Bf+2T .a√Uro1 − o2).

Bf ∈ {0, 1}r as indexes. We employ threshold parameters
(Ul, Ur,∆U) to terminate the downward traversal process,
leading to a sparse representation of Lf . During the traver-
sal, if the model loss Lf,c on the anchor RKME specification
Ti.anchor = Rc exceeds the maximum between Ul and
Ur − (l − 1)∆U (which decreases with increasing depth)
while reaching a subtree Ti at depth l, the traversal process
halts. Then model losses on all subtrees within Ti are ap-
proximated by Lf,c instead of accurate calculation. Simul-
taneously, q(Lf) from Eq. (8) is encoded into binary codes
Bf through random vectors T .a. The overall process is il-
lustrated in Algorithm 2, and evolved specifications with bi-
nary codes constitute the specification hash table to acceler-
ate subsequent learnware identification.

User Task Representation and Encoding. To avoid re-
vealing raw user data, we employ the RKME indexed tree to
capture user requirements interactively. At the t-th iteration,
the learnware market sends a subset of RKME specifications
{RIi}sti=st−1

as anchors to the user, who computes the sparse

vector w(t)
u using all received specifications by solving

min
w∈∆C ,

∑st
i=1 wIi

=1
ζw =

∥∥∥µ̂Du
−

∑st

i=1
wIi µ̃DIi

∥∥∥
Hk

,

(11)
and returns w(t)

u , ζ
(t)
wu to the market. Guided by these statis-

tics, the market sends another subset of specifications simi-
lar to the dimensions with larger weights in w

(t)
u to the user

by traversing the RKME indexed tree downward one layer.
The distance ζ(t)w becomes smaller as the iteration continues,
i.e., ζ(t)wu ≤ ζ

(t−1)
wu . While converting the user task into wu,

Scenario (ℓ) Ratio (%) Random A-distance RKME-task ELSI-hash ELSI-traverse

Postures
(Error Rate)

40 52.20 ± 0.87 42.34 ± 1.57 42.44 ± 1.82 ◦ 33.93 ± 2.15 ◦ 33.93 ± 2.15
60 51.72 ± 0.58 36.62 ± 1.17 36.34 ± 1.77 ◦ 27.45 ± 1.93 ◦ 27.45 ± 1.93
80 51.56 ± 0.60 31.40 ± 0.63 31.16 ± 0.81 ◦ 22.15 ± 1.48 ◦ 22.03 ± 1.27

100 51.59 23.43 23.43 11.08 11.27

Bank
(Error Rate)

40 15.53 ± 1.04 15.98 ± 1.70 15.00 ± 0.58 ◦ 12.41 ± 0.18 ◦ 12.38 ± 0.19
60 15.20 ± 0.59 15.25 ± 0.90 14.32 ± 0.49 ◦ 11.75 ± 0.35 ◦ 11.74 ± 0.35
80 15.06 ± 0.21 14.93 ± 0.34 14.26 ± 0.51 ◦ 12.19 ± 0.35 ◦ 12.17 ± 0.35

100 14.83 14.64 14.13 12.11 12.31

Mushroom
(Error Rate)

40 44.09 ± 0.68 30.64 ± 2.47 30.47 ± 2.22 ◦ 22.27 ± 2.65 ◦ 22.22 ± 2.68
60 43.94 ± 0.58 26.10 ± 2.15 24.93 ± 2.02 ◦ 20.38 ± 1.86 ◦ 21.20 ± 1.80
80 43.67 ± 0.46 21.18 ± 1.67 19.76 ± 0.84 ◦ 15.74 ± 2.18 ◦ 15.67 ± 2.04

100 43.66 16.90 16.29 6.23 6.29

PPG-DaLiA
(RMSE)

40 37.01 ± 1.19 30.74 ± 1.25 29.51 ± 0.91 ◦ 17.68 ± 0.44 ◦ 17.36 ± 0.52
60 36.42 ± 1.21 27.48 ± 0.79 26.30 ± 0.59 ◦ 16.21 ± 0.88 ◦ 15.17 ± 0.83
80 36.38 ± 0.45 23.89 ± 0.62 23.28 ± 0.36 ◦ 14.65 ± 0.54 ◦ 12.70 ± 0.35

100 36.43 20.62 20.62 13.88 11.11

PFS
(RMSE)

40 2.46 ± 0.12 2.16 ± 0.10 2.11 ± 0.15 2.03 ± 0.15 2.00 ± 0.13
60 2.52 ± 0.14 2.17 ± 0.10 2.18 ± 0.09 ◦ 1.98 ± 0.07 ◦ 1.99 ± 0.06
80 2.57 ± 0.06 2.22 ± 0.08 2.18 ± 0.09 ◦ 2.04 ± 0.15 ◦ 1.99 ± 0.10

100 2.58 2.21 2.21 2.03 1.97

M5
(RMSE)

40 3.28 ± 0.35 4.17 ± 1.78 2.33 ± 0.07 ◦ 2.26 ± 0.09 ◦ 2.22 ± 0.05
60 3.35 ± 0.28 4.80 ± 1.53 2.28 ± 0.06 ◦ 2.22 ± 0.05 ◦ 2.19 ± 0.04
80 3.28 ± 0.17 4.28 ± 1.30 2.23 ± 0.05 2.21 ± 0.06 ◦ 2.16 ± 0.05

100 3.36 5.25 2.19 2.14 2.14

Table 1: Losses (ℓ) on user data’s ground truth. For all ratios except 100%, the evaluation is repeated ten times, and the results
are presented as the mean and standard deviation. The best method is emphasized in bold. “◦” indicates the methods that are
significantly superior to all contenders by the paired t-test at a 5% significance level.

we simultaneously encode p(wu) into binary codes Bu for
subsequent retrieval. The entire process efficiency is con-
trolled by the number of iterations Tu and the tolerance ϵ,
as detailed in a longer version of this paper. Users may also
upload RKME specifications of their tasks to simplify the
anchor interaction process described above.

Learnware Identification. Based on the sparse vector
wu and its binary codes Bu, we can estimate model per-
formance and use hash techniques to accelerate identifica-
tion of models that perform well on user tasks. This pro-
cess involves two steps. First, based on the specification
hash table, the classical hash technique called multi-index
hashing (Norouzi, Punjani, and Fleet 2014) is applied to re-
trieve K potentially helpful models {fJi

}Ki=1 from {fc}Cc=1
with a minimum Hamming distance between Bu and Bf ,
which significantly narrows down the search scope and is
highly efficient. Then, the market identifies the model fu
from {fJi}Ki=1 using estimated model loss w⊤

uLfJi
. Addi-

tionally, the dimensions in Lf that are approximated in Al-
gorithm 2 but are non-zero in wu will be precisely computed
when calculating the loss w⊤

uLf . The Lf specification with
its index Bf will be updated in real-time. With continuous
user interactions, both the learnware specifications and the
entire market will continuously evolve, leading to improved
accuracy in learnware characterization and identification.

5 Experiments
In this section, we have developed a learnware market pro-
totype encompassing thousands of models with different
types, spanning various real-world scenarios. We conduct
comparisons against several existing methods, validating the
efficacy and efficiency of our proposed approach.

5.1 Experimental Setup
Here we introduce experimental settings about a learnware
market prototype, evaluation, contenders, and configuration.

Learnware Market Prototype. We have developed a
learnware market prototype comprising 3090 models of
various model types, each trained on different data sets,
covering six real-world scenarios involving classification
and regression. These scenarios correlate with several real-
world datasets: Postures (Gardner et al. 2014), Bank (Moro,
Cortez, and Rita 2014), Mushroom (Wagner, Heider, and
Hattab 2021), PPG-DaLiA (Reiss et al. 2019), PFS (Kaggle
2018) and M5 (Makridakis, Spiliotis, and Assimakopoulos
2022). Postures involves hand postures, Bank relates to mar-
keting campaigns of a banking institution, and Mushroom
contains different mushrooms. PPG-DaLiA focuses on heart
rate estimation, while PFS and M5 concern sales prediction.
These datasets span various tasks and scenarios, varying in
scale from 55 thousand to 46 million instances. Each dataset

Postures
[40%]

Postures
[60%]

Postures
[80%]

Postures
[100%]

Bank
[40%]

Bank
[60%]

Bank
[80%]

Bank
[100%]

Mushroom
[40%]

Mushroom
[60%]

Mushroom
[80%]

Mushroom
[100%]

2−3

2−1

21

23

25

E
xe

cu
ti

on
ti

m
e

(s
ec

)
Classification Scenarios Including Postures, Bank, and Mushroom with Four Ratios

ELSI-hash ELSI-traverse RKME-task A-distance

PPG-DaLiA
[40%]

PPG-DaLiA
[60%]

PPG-DaLiA
[80%]

PPG-DaLiA
[100%]

PFS
[40%]

PFS
[60%]

PFS
[80%]

PFS
[100%]

M5
[40%]

M5
[60%]

M5
[80%]

M5
[100%]

20

22

24

26

28

210

E
xe

cu
ti

on
ti

m
e

(s
ec

)

Regression Scenarios Including PPG-DaLiA, PFS, and M5 with Four Ratios

ELSI-hash ELSI-traverse RKME-task A-distance

Figure 2: The comparison of full execution time in the deploying stage on six real-world scenarios.

is naturally split into multiple parts with different data distri-
butions based on categorical attributes, and each part is then
further subdivided into training and test sets. For each train-
ing set, we train various models with different model types,
including linear models (Hosmer Jr, Lemeshow, and Sturdi-
vant 2013; Hoerl and Kennard 1970), LightGBM (Ke et al.
2017), and neural networks (Glorot and Bengio 2010) with
different hyperparameters. The number of models in each
scenario ranges from 165 to 1050. For evaluation, we use
each test set as user testing data, which does not appear in
any model’s training data. The various scenarios, partitions
and models ensure that the market encompasses a wide array
of tasks and models, significantly enhancing the diversity in
the prototype and the authenticity of experimental settings.
More details are presented in a longer version of this paper.

Evaluation. We access methods across six scenarios in
the prototype. Given a specific scenario with nu users, we
evaluate methods using the metric 1

nu

∑nu

i=1 lossi, where
lossi is the loss of the identified model on the i-th user test-
ing instances. We employ error rate and root-mean-square
error (RMSE) as the loss function ℓ for classification and re-
gression scenarios, respectively. To further verify the effec-
tiveness and robustness of our approach, we conduct evalua-
tions at four ratios: 40%, 60%, 80% and 100%. For instance,
at a 60% ratio, we randomly select 60% of learnwares within
the corresponding scenario for subsequent learnware identi-
fication. We repeat the evaluation ten times for all ratios ex-
cept 100% and record both the mean and standard deviation.

Contenders. We compare our proposed approach with
three other methods: a naive baseline Random and a re-
lated method RKME-task (Wu et al. 2023) with its variant
A-distance. Random selects models in a random manner
and RKME-task identifies the model whose RKME speci-
fication is most similar to the user’s RKME specification.
Different from the latter, A-distance chooses the metric A-
distance (Ben-David et al. 2006, 2010) to measure the simi-
larity between RKME specifications.

Configuration. For all RKME-based methods, we set the
specification size nc to 100 and use the Gaussian kernel
k(x1,x2) = exp(−γ∥x1−x2∥22) with γ = 0.1. In the sub-

mitting stage, we set r = 150 and select s from {3, 4} for
different scenarios. In the deploying stage, we set the num-
ber of iterations Tu = 5 and the constants s′ = s,K = 50.

5.2 Evaluation on the Learnware Market
Encompassing Thousands of Models

Learnware Identification Performance. Table 1 presents
the empirical results of our proposed approach, where ELSI-
hash only estimates the performance of a few learnwares fil-
tered out from all learnwares utilizing hash techniques, and
ELSI-traverse estimates the performance of all learnwares
without pre-filtering. As shown in Table 1, ELSI-traverse
outperforms other contenders in accuracy for estimating
learnware performance. Furthermore, although ELSI-hash
estimates fewer learnwares, its performance closely matches
ELSI-traverse and still exceeds other contenders, validating
the effectiveness of our learnware identification approach.

Learnware Identification Efficiency. We compare the
full execution time of each method in the deploying stage.
As shown in Figure 2, ELSI-hash achieves the highest ef-
ficiency, significantly outperforming RKME-task and A-
distance, and its execution time variation remains insignifi-
cant with the change of ratios, reflecting the effectiveness of
our learnware identification approach. ELSI-traverse outper-
forms other contenders in most scenarios, indicating that in-
ner product computation of sparse vectors wu and Lf is ef-
ficient. Moreover, the difference between ELSI-traverse and
ELSI-hash increases as the market scales up. For a medium-
sized market, ELSI-traverse is comparable to ELSI-hash.

6 Conclusion
This paper presents ELSI, an approach utilizing the vast
amount of learnwares shared by the community developers
to solve new user tasks. By organizing these learnwares and
constructing specification indexes including the RKME in-
dexed tree and the specification hash table, ELSI continu-
ously evolves specifications and the entire market, and effec-
tively facilitates the reuse of learnwares beyond their origi-
nal purposes without disclosing raw data. Theoretical guar-
antees and empirical evaluations validate ELSI’s efficacy.

Acknowledgments
This research was supported by NSFC (62250069) and the
Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization. The authors would like to thank
Peng Tan for helpful discussions. We are also grateful for
the anonymous reviewers for their valuable comments.

References
Bach, F. R.; Lacoste-Julien, S.; and Obozinski, G. 2012. On
the Equivalence between Herding and Conditional Gradient
Algorithms. In Proceedings of the 29th International Con-
ference on Machine Learning, 1355–1362.
Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.;
Pereira, F.; and Vaughan, J. W. 2010. A theory of learning
from different domains. Machine Learning, 79(1-2): 151–
175.
Ben-David, S.; Blitzer, J.; Crammer, K.; and Pereira, F.
2006. Analysis of Representations for Domain Adaptation.
In Advances in Neural Information Processing Systems 19,
137–144.
Charikar, M. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings on 34th Annual ACM
Symposium on Theory of Computing, 380–388.
Gardner, A.; Kanno, J.; Duncan, C. A.; and Selmic, R. R.
2014. Measuring Distance between Unordered Sets of Dif-
ferent Sizes. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 137–143.
Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the 13th International Conference on Artificial
Intelligence and Statistics, 249–256.
Goemans, M. X.; and Williamson, D. P. 1995. Improved
Approximation Algorithms for Maximum Cut and Satisfia-
bility Problems Using Semidefinite Programming. Journal
of the ACM, 42(6): 1115–1145.
Hoerl, A. E.; and Kennard, R. W. 1970. Ridge regression:
Biased estimation for nonorthogonal problems. Technomet-
rics, 12(1): 55–67.
Hosmer Jr, D. W.; Lemeshow, S.; and Sturdivant, R. X. 2013.
Applied logistic regression. John Wiley & Sons.
Indyk, P.; and Motwani, R. 1998. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimensional-
ity. In Proceedings of the 30th Annual ACM Symposium on
the Theory of Computing, 604–613.
Kaggle. 2018. Predict future sales. https://kaggle.com/
competitions/competitive-data-science-predict-future-
sales. Accessed: 2023-05-20.
Kaufman, L.; and Rousseeuw, P. J. 1990. Finding Groups in
Data: An Introduction to Cluster Analysis. John Wiley.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T. 2017. LightGBM: A Highly Efficient
Gradient Boosting Decision Tree. In Advances in Neural
Information Processing Systems 30, 3146–3154.
Makridakis, S.; Spiliotis, E.; and Assimakopoulos, V. 2022.
The M5 competition: Background, organization, and im-
plementation. International Journal of Forecasting, 38(4):
1325–1336.

Moro, S.; Cortez, P.; and Rita, P. 2014. A data-driven ap-
proach to predict the success of bank telemarketing. Deci-
sion Support System, 62: 22–31.
Neyshabur, B.; and Srebro, N. 2015. On Symmetric and
Asymmetric LSHs for Inner Product Search. In Proceedings
of the 32nd International Conference on Machine Learning,
1926–1934.
Ng, R. T.; and Han, J. 2002. CLARANS: A Method for
Clustering Objects for Spatial Data Mining. IEEE Trans-
actions on Knowledge and Data Engineering, 14(5): 1003–
1016.
Norouzi, M.; Punjani, A.; and Fleet, D. J. 2014. Fast Exact
Search in Hamming Space With Multi-Index Hashing. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
36(6): 1107–1119.
Reiss, A.; Indlekofer, I.; Schmidt, P.; and Laerhoven, K. V.
2019. Deep PPG: Large-Scale Heart Rate Estimation with
Convolutional Neural Networks. Sensors, 19(14): 3079.
Schubert, E.; and Rousseeuw, P. J. 2021. Fast and eager k-
medoids clustering: O(k) runtime improvement of the PAM,
CLARA, and CLARANS algorithms. Information Systems,
101: 101804.
Smola, A. J.; Gretton, A.; Song, L.; and Schölkopf, B. 2007.
A Hilbert Space Embedding for Distributions. In Proceed-
ings of the 18th International Conference on Algorithmic
Learning Theory, 13–31.
Sriperumbudur, B. K.; Fukumizu, K.; and Lanckriet, G.
R. G. 2011. Universality, Characteristic Kernels and RKHS
Embedding of Measures. Journal of Machine Learning Re-
search, 12(70): 2389–2410.
Tan, P.; Tan, Z.-H.; Jiang, Y.; and Zhou, Z.-H. 2022. Towards
enabling learnware to handle heterogeneous feature spaces.
Machine Learning, 1–22.
Tan, P.; Tan, Z.-H.; Jiang, Y.; and Zhou, Z.-H. 2023. Han-
dling Learnwares Developed from Heterogeneous Feature
Spaces without Auxiliary Data. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence,
4235–4243.
Wagner, D.; Heider, D.; and Hattab, G. 2021. Mushroom
data creation, curation, and simulation to support classifica-
tion tasks. Scientific Reports, 11(1): 1–12.
Wu, X.-Z.; Xu, W.; Liu, S.; and Zhou, Z.-H. 2023. Model
Reuse With Reduced Kernel Mean Embedding Specifica-
tion. IEEE Transactions on Knowledge and Data Engineer-
ing, 35(1): 699–710.
Xie, Y.; Tan, Z.-H.; Jiang, Y.; and Zhou, Z.-H. 2023. Iden-
tifying Helpful Learnwares Without Examining the Whole
Market. In Proceedings of the 26th European Conference
on Artificial Intelligence, 2752–2759.
Zhang, Y.-J.; Yan, Y.-H.; Zhao, P.; and Zhou, Z.-H. 2021.
Towards Enabling Learnware to Handle Unseen Jobs. In
Proceedings of the 35th AAAI Conference on Artificial In-
telligence, 10964–10972.
Zhou, Z.-H. 2012. Ensemble Methods: Foundations and Al-
gorithms. CRC press.

Zhou, Z.-H. 2016. Learnware: on the future of machine
learning. Frontiers of Computer Science, 10(4): 589–590.
Zhou, Z.-H.; and Tan, Z.-H. 2024. Learnware: Small Models
Do Big. SCIENCE CHINA Information Sciences, 67(1): 1–
12.

