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Abstract
The learnware paradigm was recently proposed by Zhou (2016) with the wish of develop-
ing the learnware market to help users build models more efficiently by reusing existing 
well-performed models rather than starting from scratch. Specifically, a learnware in the 
learnware market is a well-performed pre-trained model with a specification describing its 
specialty and utility, and the market identifies helpful learnware(s) for the user’s task based 
on the specification. Recent studies have attempted to realize a homogeneous  prototype 
learnware market initially through Reduced Kernel Mean Embedding (RKME) specifica-
tion, which requires all models in the market to share the same feature space. However, this 
limits the application scope of the learnware paradigm because various pre-trained models 
are often obtained from different feature spaces in real-world scenarios. In this paper, we 
make the first attempt to enable the learnware to handle heterogeneous feature spaces. We 
propose a more powerful specification to manage heterogeneous learnwares by integrating 
subspace learning in the specification design, along with a practical approach for identify-
ing and reusing helpful learnwares for the user’s task. Empirical studies on both synthetic 
data and real-world tasks validate the efficacy of our approach.
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1  Introduction

Machine learning techniques have achieved great success in many real-world applica-
tions  (Butler et  al., 2018; Jumper et  al., 2021; LeCun et  al., 2015). However, except for 
experienced machine learning experts, most ordinary people can hardly produce well-
performed models if starting from scratch, due to a lack of proficient skills or abundant 
high-quality training data. In addition, although there are numerous powerful pre-trained 
models, due to data privacy concerns, it is generally difficult for ordinary people to identify 
beneficial models and apply them to their tasks.

To address these issues simultaneously, Zhou (2016) proposed to develop a learnware 
market, in which a learnware is a pre-trained model combined with a specification used to 
describe the specialty and utility of the model. As described in Zhou and Tan (2022), all 
developers could submit their trained models from various tasks into the market spon-
taneously. Once the submitted model is accepted, the market will assign it a specifica-
tion. When the user wants to tackle her learning tasks, instead of starting from scratch, she 
can figure out her requirement to the market, and the market will identify and recommend 
helpful learnwares whose specifications match the user’s requirement. Then the user can 
apply these recommended learnwares to her task directly or polish them with minor labeled 
data.

In the  learnware paradigm, the specification plays a pivotal role in identifying which 
models are helpful for the user’s current task, which leads to specification design as a fun-
damental problem. Recently, Wu et al. (2021) proposed the Reduced Kernel Mean Embed-
ding (RKME) as the specification, based on which several efforts have initially attempted 
to realize a homogeneous prototype learnware market. The RKME specification makes a 
good approximation for the distribution of training data used by the model without reveal-
ing the raw data. This specification maps the data set to an element in the reproducing 
kernel Hilbert space (RKHS) which is also called specification space. The learnware mar-
ket can then search helpful learnwares in this space upon the user’s request. However, the 
requirement that all pre-trained models in the market are obtained from the same feature 
space limits the scope of the learnware market for helping users identify and reuse models 
on their tasks.

In real-world scenarios, it is more common that the learnware market comprises models 
from different feature spaces. We take a medical scenario illustrated by Fig. 1 for example. 
The blue models and orange models are provided by hospitals, using the blood routine 
features and computed tomography (CT) features respectively for the diagnosis of com-
mon diseases. Carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) features are 
used by green models provided by laboratories for cancer-related tasks. For described more 
practical learnware market, one appealing question comes that is it possible to identify and 
reuse helpful models across all models from different feature spaces, not only models shar-
ing totally the same feature space with the user’s task. For example, it is eagerly hoped that 
the market could recommend helpful learnwares from all heterogeneous learnwares (#1-#6) 
and that the clinic could receive and reuse recommended learnwares (#1, #5) from two fea-
ture spaces for its task.

This paper makes the first attempt to handle learnwares from heterogeneous feature 
spaces, making the learnware paradigm viable in broader applications. The most notable 
difference compared with the homogeneous learnware studied before (Wu et al., 2021) 
is the mismatch of feature spaces between different learnwares and between learnwares 
and the user’s task, which results in harder learnware search and reuse. In this paper, 
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we consider a fundamental heterogeneous scenario that the overall feature space can 
be divided into several disjoint parts. For example, the newly-built clinic as the medical 
learnware market user may collect multiple groups of features (e.g. both blood routine 
features and CT features) of patients with different machines as illustrated in Fig. 1. In 
order to realize the heterogeneous learnware search and reuse, it is essential to design 
a more powerful specification to manage learnwares from different feature spaces. This 
paper provides a solution by generating the RKME specification on a subspace learned 
from heterogeneous feature spaces, so as to provide a unified specification space for 
identifying learnwares matching the user’s requirement.

The main contributions of this work can be summarized as follows:

•	 We give the first formulation for the heterogeneous learnware problem where the over-
all feature space can be divided into several disjoint parts.

•	 We propose a more powerful specification that provides a unified specification space 
for learnwares from heterogeneous feature spaces, where the market identifies helpful 
learnwares matching user’s requirement effectively.

•	 We provide a detailed procedure for the construction and the usage of the heterogene-
ous prototype learnware market based on the new specification. Promising experimen-
tal results reported on both synthetic and real-world tasks validate the efficacy of the 
proposed specification and procedure.

The remaining part of the paper proceeds as follows. We briefly review preliminary tech-
niques in Sect. 2. Then, the heterogeneous learnware problem is formulated in Sect. 3, fol-
lowed by a novel specification design with corresponding procedure for learnware usage in 
Sect. 4. Next, Sect. 5 provides empirical studies on both synthetic and real-world tasks and 
Sect. 6 is concerned with related works. Finally, we conclude in Sect. 7.

Fig. 1   An example of the learnware market in a medical scenario. A learnware consists of a well-performed 
pre-trained model and a specification describing its ability. The market is naturally composed of learnwares 
from different feature spaces and different tasks. The market can help the user identify and reuse helpful 
learnwares upon the user’s requirement
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2 � Preliminary

In this section, we first review a specification designed for homogeneous learnwares, which is 
based on the kernel mean embedding (Smola et al., 2007). Then we review a subspace learn-
ing method based on the matrix factorization, which can be extended to finding the unified 
subspace of heterogeneous feature spaces.

Kernel mean embedding (KME) KME describes the probability distribution in a concise 
way without information loss and supports convenient operations like mean calculation. 
It maps a probability distribution P defined over X  to an element in a reproducing kernel 
Hilbert space (RKHS) as �k(P) ∶= ∫

X
k(x, ⋅)dP(x) , where k ∶ X × X → ℝ is a symmetric 

and positive definite kernel function  (Schölkopf & Smola, 2002) with associated RKHS 
H and feature map � ∶ X → H . The embedding �k(P) exists and belongs to H when 
�x∼P[

√
k(x, x)] < ∞ . When equipped with characteristic kernels such as Gaussian kernel, 

no information about the distribution P will be lost (Sriperumbudur et al., 2011). In reality, 
we can only access to a data set 

{
xn

}N

n=1
 sampled from P , the empirical approximation for 

KME �k(P) is 𝜇̂k(P) ∶=
1

N

∑N

n=1
k
�
xn, ⋅

�
 with O(1∕

√
N) convergence (Smola et al., 2007).

Reduced kernel mean embedding (RKME) The favorable properties of KME make it a 
potential specification, however, the dependence on the raw data violates the privacy pro-
tection that the learnware paradigm needs. To tackle this issue, Wu et al. (2021) proposed 
the RKME by using a reduced set 

{(
�m, zm

)}M

m=1
 to approximate the empirical KME of the 

original data set 
{
xn

}N

n=1
 via the following minimization problem:

where zm is the element in the reduced set and �m is the corresponding coefficient. The 
RKME 𝜇̃k(P) satisfies a linear convergence rate O(e−M) to the empirical KME of original 
data set 𝜇̂k(P).

Subspace learning Subspace learning aims to find a subspace which can better describe 
the inherent structure of the data compared with the original feature space, and the meth-
ods (Lee & Seung, 2001; Zhu et al., 2022) based on the matrix factorization are commonly 
used. In this part, we review a wildly used technique called concept factorization (CF) (Xu 
& Gong, 2004). The idea of CF is to represent each concept as a linear combination of 
instances and reconstruct each instance as a linear combination of concepts. Given a data 
matrix � = [x1,⋯ , xN] ∈ ℝ

d×N and the number of concepts k, CF aims to find a new rep-
resentation in the subspace of � as �⊤ ∈ ℝ

k×N by minimizing the reconstruction error via

where � ∶= �� = [c1,⋯ , ck] ∈ ℝ
d×k is the concept matrix, � is the reconstruction coef-

ficient matrix and can also be explained as the projection of the input matrix in the sub-
space, �,� ≥ 0 means all elements of �,� is non-negative. The performance of CF can 
be improved by local structure maintenance (Cai et al., 2010; Wang et al., 2016).

(1)min
�,�

‖‖‖‖‖‖
1

N

N∑
n=1

k
(
xn, ⋅

)
−

M∑
m=1

�mk
(
zm, ⋅

)‖‖‖‖‖‖

2

H

,

min
�,�

‖� − ���⊤‖2
F
, s.t. �,� ≥ 0.
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3 � Problem formulation

The learnware paradigm generally consists of the submitting stage and the deploying stage. 
In the submitting stage, the developers submit their models to the market, and the market 
will assign the specification for accepted high-quality learnwares and accommodate them 
in the market. In the deploying stage, the market identifies and returns learnwares matching 
the user’s requirement and the user reuses them directly or polishes them with the user’s 
data. For the heterogeneous learnware problem, since the relationship of various feature 
spaces needs to be mined first by exploiting some aligned data, we simplify the submitting 
stage as an establishing stage where the market uses several owned models for initializa-
tion, and thus, the market is accessible to the raw data of the models which help connect 
different feature spaces better. Note that the raw data of the models in establishing stage is 
still invisible to users, matching the data privacy concern of the learnware paradigm. The 
two-staged formulation is illustrated in Fig. 2 and described as follows.

In the establishing stage, the market accommodating well-trained models generated 
from different feature spaces will assign specifications in a shared space for models. This 
shared specification space makes it possible and effective to match the user’s requirements 
in the next deploying stage. We first assume that the overall feature space X  can be split 
into k disjoint parts, i.e., X1,⋯ ,Xk . Supposing that the market has R models {fi}Ri=1 and 
the i-th model is trained on the local data set Di ∶= {(xi,n, yi,n)}

Ni

n=1
 whose feature space is 

Xvi
, vi ∈ [k] . Temporarily, each local data set only provides information of single feature 

space and no relationship between different feature spaces can be uncovered, which makes 
it impossible to find a shared specification space. To tackle this troublesome difficulty, 
a few data across different feature spaces is necessary. In reality, auxiliary data crossing 
different feature spaces is often accessible. For example, there are abundant multi-modal 
data (Chen et al., 2015) on the web to connect the figures with texts. Another more detailed 

task 1

task 2

...

task R

auxiliary 
data

task 3

task 4

… pre-trained
models

12 3

4
...

Rgenerate specifications

identical specification space

Learnware Market

# 1

# 2

# 3

# 4

...

# R

…

user
requirements

recommended
model(s)

Establishing Stage Deploying Stage

Fig. 2   An illustration for two-stage heterogeneous learnware problem formulation. To initialize the learn-
ware market, the market assigns specifications in the same space for models constructed from different fea-
ture spaces. In the establishing stage, auxiliary data across entire feature spaces is necessary to reveal the 
relationship between different feature spaces. In the deploying stage, the user’s task is defined over the Car-
tesian product of some feature spaces and the user can reuse helpful learnwares from the market
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example is medical data from different organizations (hospital, clinic laboratory) serving as 
different feature spaces which is generated from the same patients (Johnson et al., 2016). 
After the market collects such unlabeled auxiliary data defined on the entire feature space 
X  from existing satisfied web data, the heterogeneous learnware market is constructed as 
{(fi, si)}

R
i=1

 , where si is the specification of the model fi.
In the deploying stage, the user hopes to exploit heterogeneous market {(fi, si)}Ri=1 to 

handle her own task. Specifically, we consider the scenario that the user hopes to make 
a prediction on her unlabeled data set Du ∶= {xu,n}

Nu

n=1
 defined over a Cartesian product 

of several feature spaces Xvu
∶= ×i∈vu⊆[k]

Xi . For example, the feature space of the user in 
Fig. 2 composed of the 1st and k-th feature space is X{1,k}.

4 � Our approach

We first sketch the overall procedure. The specification design is discussed in the establishing 
stage and the deploying stage shows how to use the specification to meet the requirements of 
the user. In the establishing stage, the market assigns specifications in a union space based on 
the subspace learning and RKME for models from different feature spaces to construct the 
learnware market. In the deploying stage, the user generates her requirement in the subspace 
with the projection tool provided by the market and the market identifies highly-relevant learn-
wares. After that, the user reuses learnwares via dynamic classifier selection. The main idea of 
our approach is to find a subspace to bridge different feature spaces with the shared specifica-
tion space (RKHS).

4.1 � Establishing stage

In this stage, in order to build a union specification space, the market first constructs a union 
subspace for local tasks from different feature spaces. When the i-th task data set is mapped to 
the subspace, we generate RKME for such mapped data set as the i-th model’s specification 
�i . Meanwhile, we hope the procedure of subspace generation can provide applicable tools to 
map the user data in the following deploying stage.

Subspace generation In this step, the market finds a common subspace for different fea-
ture spaces based on the local data sets each defined on a single feature space and extra 
auxiliary data across the entire feature space. We denote by �i ∈ ℝ

di×Ni the feature of the 
i-th local data set Di(i ∈ [R]) , and further denote by �̂(i) ∈ ℝ

di×N
(i) the concatenation of all 

data sets in the i-th feature space, in above, di is the dimension of i-th feature space Xi and 
N(i) is the total number of samples for all data sets in the i-th feature space. The extra aux-
iliary data is denoted as �c = [�(1)

c
;⋯ ;�(k)

c
] ∈ ℝ

(d1+⋯+dk)×Nc where Nc is the size of aux-
iliary data. Then, the overall data containing the local tasks and auxiliary data in the i-th 
feature space is �(i) = [�̂(i),�(i)

c
] ∈ ℝ

di×(N
(i)+Nc) . The problem of subspace generation using 

local task data sets and extra auxiliary data is defined as
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and the major notations are summarized in Table 1. The first item ‖�(i) − �(i)�(i)(�(i))⊤‖2
F
 

presents the reconstruction loss of concept factorization loss, where (�(i))⊤ ∈ ℝ
d×(N(i)+Nc) 

is the new representation of �(i) in the subspace whose dimension is d. The second item 
Tr((�(i))⊤�(i)�(i)) is a manifold regularizer used to maintain the local structure during the 
mapping, forcing similar outputs when inputs are closed. In which, �(i) ∈ ℝ

(N(i)+Nc)×(N
(i)+Nc) 

is the Laplacian matrix induced by �(i) . The last item ‖�(i)
c
− �∗

c
‖2
F
 reveals the internal con-

sensus between different feature spaces, punishing the inconsistency of different mapped 
auxiliary data, where �(i)

c
 , a part of (�(i))⊤ = [(�̂(i))⊤, (�(i)

c
)⊤] , is the mapped auxiliary data 

of i-th feature space, �∗
c
 is the final representation of the auxiliary data �c in the subspace.

Algorithm 1 Sketched optimization of subspace generation
1: Initialize W(i),V(i) and V∗

c with results of k-means.
2: while max iteration is not achieved do
3: for i = 1 to k do
4: Fix V(i),V∗

c , update W(i).
5: Fix W(i),V∗

c , update V(i) = [V(i)
c , V̂(i)] with decomposed tasks.

6: Cooperatively normalize W(i) and V(i).
7: end for
8: Fix W(i),V(i), i ∈ [k] and update V∗

c with closed-form solution.
9: end while

The objective function Eq. (2) of subspace generation is not convex over all variables 
�(i),�(i),�∗

c
 , which makes it unrealistic to find its global minimum. Therefore, we propose 

an alternative optimization algorithm based on the multiplicative updated rule similar to 
(Févotte & Idier, 2011; Xu & Gong, 2004) with local minimum achieved. We provide the 
sketched optimization as Algorithm 1 shows and details are presented in Appendix A.1.

Specification assignment Based on the subspace generation, we can eventually design 
more powerful specifications. With the help of auxiliary data, we connect different feature 

(2)

min
�(i) ,�(i),�∗

c

O =

k∑
i=1

{‖‖‖�
(i) − �(i)�(i)

(
�(i)

)⊤‖‖‖
2

F

+𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i)
c
− �∗

c

‖‖‖
2

F

}

s.t. �(i) ≥ 0, �̂(i) ≥ 0,�(i)
c
≥ 0,�∗

c
≥ 0,

Table 1   Main notations and corresponding definitions of the subspace generation

Notation Definition

�̂(i) ∈ ℝ
d
i
×N(i) The concatenation of all the locak task data sets in the i-th feature space X

i

�(i)
c

∈ ℝ
d
i
×N

c The sliced auxiliary data in the i-th feature space

�(i) = [�̂(i),�(i)
c
] The overall data in the i-th feature space X

i

(�̂(i))⊤ ∈ ℝ
d×N(i) The projection of local task data �̂(i) in the subspace

(�(i)
c
)⊤ ∈ ℝ

d×N
c The projection of sliced auxiliary data �(i)

c
 in the subspace

(�(i))⊤ = [(�̂(i))⊤, (�(i)
c
)⊤] The projection of �(i) in the subspace

(�∗
c
)⊤ ∈ ℝ

d×N
c The projection of the entire auxiliary data �

c
= [�(1)

c
;⋯ ;�(k)

c
] in the subspace
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spaces with a common subspace, and further develop specifications on such space. After 
subspace generation, the local data sets {�i}

R
i=1

 used by models {fi}Ri=1 are mapped to 
{�i}

R
i=1

 , which are achieved by splitting {�(i)}k
i=1

 . We generate RKME �i = {(�m,wm)}
M
m=1

 
for each �i ∶= {vn}

Ni

n=1
 as the specification for i-th model via

where M is the size of reduced set. The minimization problem Eq. (3) can be solved with 
stochastic gradient descent (Wu et al., 2021).

The proposed specification provides models from various feature spaces with a shared 
specification space (RKHS), which makes the learnwares identification upon the  user’s 
requirements concerning several feature spaces possible and effective. Furthermore, the speci-
fication can protect the original data set efficaciously. More specifically, the size of the specifi-
cation M can be much smaller than that of original data set Ni and it is impossible to utilize the 
specification �i = {(�m,wm)}

M
m=1

 to recover the mapped data set �i and the original data set �i.

4.2 � Deploying stage

In this stage, the user tries to exploit the market to tackle her prediction task while preserving 
data privacy. The user maps her data via the projection tool provided by the market and gener-
ates a reduced set accordingly served as user’s requirements. After receiving requirements, the 
market recommends highly-reusable learnwares to the user and the user reuses them on her task.

User data mapping In this step, the user produces requirements to the market for learn-
ware recommendation and protects privacy in the meanwhile. The market first passes the 
projection tool to help the user map her data and the projection tool {�(i)}k

i=1
 consists of 

base matrices of all feature space, which is generated from the byproduct �(i) of subspace 
learning via �(i) = �(i)�(i).

After receiving the projection tool {�(i)}k
i=1

 , the user can map her data into the same 
subspace. Without loss of generality, we assume that the user has data over top t feature 
spaces Xu = X1 ×⋯ × Xt (t ≤ k) , we denote by �u = [�(1)

u
;⋯ ;�(t)

u
] ∈ ℝ

(d1+⋯+dt)×Nu the 
user data, where Nu is the size of user data. The projection of user data is formulated as

where trade-off parameters 𝛼, 𝛽 > 0 are used to control the contribution of the manifold 
regularizer and the consensus loss between different feature spaces, �(i) is the Laplacian 
matrix induced by �(i)

u
 and �∗ is the final representation of user data in the subspace. This 

problem has a similar structure to Eq.  (2). One of major differences is that Eq.  (4) pos-
sesses the fixed base matrix �(i) while Eq.  (2) contains the learned base matrix �(i)�(i) . 
The optimization using the multiplicative updated rule is described in Appendix A.2.

In order to keep the data privacy, the user only passes the reduced set ru ∶= {�u,m, �u,m}
Mu

m=1
 

constructed from mapped data set V∗ ∶= {�n}
Nu

n=1
 via Eq. (1) as requirements to the market, 

(3)min
�,�

‖‖‖‖‖‖
1

N

Ni∑
n=1

k
(
vn, ⋅

)
−

M∑
m=1

�mk
(
wm, ⋅

)‖‖‖‖‖‖

2

H

,

(4)

min
�(i),�∗

Ou =

t∑
i=1

{‖‖‖�
(i)
u
− �(i)

(
�(i)

)⊤‖‖‖
2

F

+ 𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i) − �∗‖‖‖

2

F

}

s.t. �(i) ≥ 0,�∗ ≥ 0,
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where Mu is the size of user’s reduced set and can be much smaller than the original data set 
size Nu . Meanwhile, such minor information can still guarantee the performance of learnware 
recommendation.

Learnware recommendation  In this step, the market identifies useful learnwares for 
the user. After receiving the user’s requirement �u = {�u,m, zu,m}

Mu

m=1
 , the learnware mar-

ket estimates the reusability score wi of each learnware via according specifications 
{�i ∶= {�i,m, zi,m}

Mi

m=1
}R
i=1

 . The reusability score is estimated by the following problem:

where Φu(⋅) =
∑Mu

m=1
�u,mk(zu,m, ⋅) is the KME of user’s requirements, Φi(⋅) =

∑Mu

m=1
�i,mk(zi,m, ⋅) 

represents the specification of the i-th model. This problem can be solved by quadratic program-
ming (Smola et al., 2007). After reusability score estimation, the market delivers highly reusable 
learnwares whose reusability score �i is no less than the pre-defined threshold L to the user. This 
step makes the user only access to highly relevant learnwares, heavily reducing the exchanged 
information between the market and the user when the market possesses plentiful learnwares.

User data prediction  After the learnware market returns highly-related learnwares 
{(fi, �i)|wi ≥ L} , the user can take full advantage of these well-performed models for her 
problem. The specification based on the subspace can help the user to identify which model 
should be used for each instance. More specifically, the kernel herding technique  (Chen 
et al., 2012) can be employed to sample mimic data set D̄i = {�n}

N̄i

n=1
 from the specification 

�i on the subspace, and then, a selector can be trained based on these data to predict which 
learnware should each unlabeled instance use. For example, the projection of one instance 
is classified by using the #1-learnware, then the user can reuse such learnware defined on 
the original feature space to predict on the instance. Above all, the user predicts unlabeled 
data via returned learnwares and trained selector.

4.3 � Overall procedure and discussion

This part first summarizes the establishing stage for the heterogeneous learnware mar-
ket construction and deploying stage for learnwares search and reuse. In the establishing 
stage, the market needs to specify the specification in an identical space for heterogeneous 
learnwares, which is implemented by using a subspace to bridge the heterogeneous feature 
spaces and the identical specification space. More specifically, specifications are generated 
via RKME on the mapped local task data obtained by the CF-based method. In the deploy-
ing stage, the user generates the subspace-based requirement, which is a reduced set built 
on the mapped user data generated by the projection tool (base matrices of different feature 
spaces) provided by the market. The overall procedure is illustrated by Fig. 3.

Afterwards, we give a preliminary discussion on the performance of the two-stage pro-
cedure. When the user’s task is covered by the market, the proposed method can make the 
user well assisted by the learnware market on her task. More specifically, considering 
learnwares whose feature space Xvi

 is a subset of the user’s feature space Xvu
 , if the distri-

bution of the user’s task Pu is a mixture of task distribution of aforementioned learnwares, 
i.e., Pu =

∑
i∶Xvi

⊆Xvu

𝜉iPi , then our procedure can make the market select out learnwares 
with large �i and accurately tell the user for each instance which learnware should be used. 
Besides this basic scenario, our methods can be extended to solve more complicated 

min
w

‖‖‖‖‖‖
Φu(⋅) −

R∑
i=1

�iΦi(⋅)

‖‖‖‖‖‖

2

H

, s.t. �i ≥ 0,

R∑
i=1

�i = 1,
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scenarios. For example, the user’s task may have a part that isn’t covered by the market. 
For the homogeneous case where all learnwares and the user’s task share the same feature 
space, (Zhang et al., 2021) uses the mixture proportion estimation (MPE) technique (Zhang 
et al., 2020; Ramaswamy et al., 2016) to help identify such a unseen part and this technique 
can be further adapted to the heterogeneous case.

5 � Experiments

This section demonstrates the effectiveness of our methods. We illustrate our methods by 
a synthetic task and show the performance on real-world tasks compared with contenders.

5.1 � Synthetic task

We first illustrate the two stages of the heterogeneous learnware market workflow through 
a synthetic task.

In the beginning, we develop four tasks defined on the Cartesian product of two feature 
spaces plotted by four colors (red, blue, green and orange) illustrated by Fig. 4a and b, each 
task is a binary classification problem and is generated from the Gaussian distribution. 
These tasks will be used to generate four local task data sets (Fig. 5a and b), the auxiliary 
data (Fig. 4c and d) and the test user data (Fig. 6a and b) of our heterogeneous learnware 
problem.

The unlabeled auxiliary data is sampled from four tasks with a size of 20 as shown in 
Fig. 4c and d. Each local task is sampled from one task and reserves the data of a single 
feature space. Each task has 200 samples, and positive samples are plotted in yellow while 
negative samples are plotted in blue. All tasks are shown in Fig. 5a and b. Figure 6a and b 

various task 
data sets
unlabeled 

auxiliary data

CF-based 
subspace 
learning

mapped
data sets specifications

projection
tool

unlabeled
user data

mapped
user data

RKME 
generation

Establishing Stage

Deploying Stage

user’s
requirements

predict via model reuse

RKME 
generation

user data 
projection

recommended 
learnware(s)

learnware(s) 
recommendation

mapped
auxiliary data

Fig. 3   An illustration of the proposed heterogeneous learnware procedure. In the establishing stage, various 
task data sets from heterogeneous feature spaces are mapped to a common subspace and specifications are 
built accordingly. In the deploying stage, the user passes requirements with the help of the projection tool to 
the market and gets helpful learnwares
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illustrate the test user data containing 100 samples, which is a mixture of task 2 and task 3 
with sampling ratios of 0.3 and 0.7 accordingly.

Figure  5 illustrates the establishing stage. The market accommodates SVMs trained 
on four heterogeneous data sets from two feature spaces (Fig. 5a and b), the accuracy of 
SVMs is 0.967 ± 0.015 . To assign the specification for each model, the market collects 
minor unlabeled auxiliary data across the entire feature space, which can build the con-
nection of different feature spaces. With the help of the auxiliary data, four local data sets 
from two feature spaces can be mapped to a common subspace as illustrated in Fig. 5(c). 
Figure 5(d) shows the specification assigned for each SVM via RKME using mapped task 
data. The size of specification is M = 5 < ⌊ln 200⌋ , which is much smaller than the size 

(a) Feature space 1 (b) Feature space 2 (c) Feature space 1 (d) Feature space 2

Fig. 4   Basic data source: a and b present four tasks on two feature spaces, c and d present the sampled aux-
iliary data implying the connection of two feature spaces

(a) Feature space 1 (b) Feature space 2 (c) Joint subspace (d) Joint subspace

Fig. 5   Establishing stage: a and b present four tasks generated from aforementioned four tasks, which are 
used for building learnwares (#1-#4), c illustrates the subspace learned by four task data sets and auxiliary 
data, d illustrates specifications in the subspace

(a) Feature space 1 (b) Feature space 2 (c) Joint subspace (d) Joint subspace

Fig. 6   Deploying stage: a and b present the user data generated from task 2 and 3, c illustrates the mimic 
data generated from two learnwares (#2 and #3) delivered from the market, d illustrates the model selector 
(red line shows the classified boundary.) trained on the mimic data, providing which learnware should each 
sample use (#2 or #3)
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of the original data set. The specifications can effectively protect the privacy of each local 
task.

Figure 6 illustrates the deploying stage. After the learnware market was constructed, the 
user can exploit it for her own task (Fig. 6a and b). Although the user only possesses the 
unlabeled data, she can still make a valid and satisfying prediction with the help of learn-
ware markets under some mild assumptions. Using projection tools provided by the market, 
the user gets her mapped data (Fig. 6d) and generates the reduced set with a size of Mu = 5 
to the market. The reduced set can keep user data privacy and provide helpful informa-
tion for market identifying helpful learnwares in the meanwhile. Based on specifications, 
the market calculates reusability of four learnwares: [0.001, 0.399, 0.559, 0.042]. With the 
preset threshold L = 0.1 , the market delivers learnware #2 and #3 to the user. Upon receiv-
ing the helpful learnwares, the user takes advantage of specifications of two learnwares to 
generate some mimic data (Fig. 6(c)) and trains a model selector that tells for each sample 
what learnware should be used (Fig. 6(d)), More specifically, learnware #2 is chosen for the 
lower samples and learnware #3 is chosen for the upper samples. With prediction on the 
original feature spaces using learnware #2 and #3, the accuracy on user data is 0.987.

5.2 � Real‑world tasks

We further verify the superior performance of the proposed specification and the proce-
dure designed for the heterogeneous learnware problem on practical tasks.

Data sets The evaluation is conducted on four real world tasks: MFEAT (van Breukelen 
et al., 1998), AWA (Lampert et al., 2009), KDDCUP99 (Lippmann et al., 2000) and COV-
TYPE (Blackard & Dean, 1999). MFEAT is a digit data set containing 10 classes over six 
feature spaces: Fourier coefficients (fou.), profile correlations (fac.), Karhunen-Love coef-
ficients (kar.), pixel averages (pix.), Zernike moments (zer.) and morphological features 
(mor.). Each class contains 200 samples and the dimensions of feature spaces are 76, 216, 
64, 240, 47, 6. AwA is a large-scale animal data set, we randomly select 10 classes with 
totally 2000 samples over six feature spaces: color histogram features (cq.), local self-sim-
ilarity features (lss.), PyramidHOG features (phog.), SIFT features (sift.), colorSIFT fea-
tures (rgsift.) and SURF features (surf.). The dimensions of feature spaces are 2688, 2000, 
252, 2000, 2000, 2000. KDDCUP99 is a unbalanced network intrusion detection dataset, 
we sample a balanced subset containing 8 classes and each class contains 1000 samples. 
COVTYPE is used for classifying the cover type (the dominant species of trees) of the 
patches of forest in the United States. We sample a balanced dataset containing 6 classes 
and each class has 1500 samples.

Data set configuration For MFEAT and AWA defined over six feature spaces, we choose 
two feature spaces to simulate the learnware scenario and generate totally six heterogene-
ous learnware tasks: MFEAT_fac_kar, MFEAT_pix_zer, MFEAT_fou_mor, AWA_cq_lss, 
AWA_phog_rgsift and AWA_sift_surf. For KDDCUP99 and COVTYPE, we randomly 
divide the entire feature space into two parts to simulate the heterogeneous learnware 
problem. For each task, we randomly split instances into three or four tasks based on their 
labels, each task has two or three classes. The mechanism of generating local data sets, the 
auxiliary data, and the test user data is similar to the synthetic task. The test user data is a 
mixture of several tasks. The number of mixed tasks ranges from 2 to 4.
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Contenders As the heterogeneous learnware problem is new, we first compare it with 
two naive baselines. In these two methods, heterogeneous models are assigned with blank 
specifications.

•	 Random: The market randomly selects a learnware for the user and the user reuses it to 
make a prediction directly.

•	 Ensemble: The market returns all learnwares to the user without filtering and the user 
reuses them via ensemble, i.e., using all learnwares to predict one test instance and tak-
ing out the most confident predicted class.

Observing that both two methods don’t consider the relevance between learnwares and the 
user’s task. We equip each heterogeneous model with specification via RKME using raw 
features, and followed by delivering the learnwares with minimum MMD distance under 
the same feature space case proposed by Wu et al. (2021), we propose two variants for the 
heterogeneous case. For both methods, the user will also generate the reduced set on her 
original feature space to the market. 

•	 MMD: The market calculates the MMD distance of each learnwares and returns the 
learnware with the minimum MMD to the user. The user reuses the single learnware to 
make a prediction.

•	 MMD+Ens: The market calculates the MMD distance of each learnwares and returns 
learnwares with the minimum MMD for each feature space. The user reuses learnwares 
via ensemble.

Experiment setup  For all RKME-based methods, we use the Gaussian kernel 
k(x, y) = exp(−�‖x − y‖2

2
) with � ∈ [0.1, 0.01, 0.001] for different tasks. The size of 

reduced set is 10 for specifications ( M = 10 ) and user’s requirements ( Mu = 10 ). We set 
the dimension of subspace as 10 for MFEAT-based tasks, KDDCUP99, COVTYPE and 
50 for AWA-based tasks, which are much smaller than the dimension of original feature 
spaces. The auxiliary data consists of 160 samples, less than the size of local tasks. The 
threshold is set as L = 0.1 . We use the linear SVM for the MFEAT-based tasks, KDD-
CUP99 and COVTYPE. We use random forest for the AWA-based tasks. All experiments 
are repeated 10 times.

Performance on user data Table 2 presents the prediction accuracy over the true labels 
on the user data. Our method outperforms other contenders, it achieves the best on the 22 
over 23 cases, and it behaves significantly better than others in most cases, especially for 
MFEAT-based tasks and KDDCUP99 task. The Random performs poorly with low mean 
accuracy and large variance mainly due to selecting models aimlessly. Ensemble per-
forms better than other three contenders because of making the user access all learnwares, 
however, this leaks information of irrelevant learnwares. Furthermore, when the market has 
abundant learnwares, it causes heavy burden on passing the learnware information and heav-
ily expands the complexity of reusing learnwares. Compared with Ensemble, our method 
can make the user only access to the highly irrelevant learnwares. MMD and MMD+Ens per-
forms well than Random in more than half of cases. With the help of distribution matching 
via RKME, MMD and MMD+Ens identify more reliable learnwares for the user. However, due 
to a lack of considering the relationship of different feature spaces, it’s still hard to identify 
truly helpful learnwares and performs much poorly than our methods except for one case.

Convergence analysis Figure 7 presents the convergence curve for the major optimization 
steps of our procedure, i.e., subspace learning and user data projection. The objective loss is 
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normalized to [0, 1] for different tasks. As shown in Fig. 7(a), the subspace generation of all 
tasks except KDDCUP99 can be converged within 300 iterations and the value of the objec-
tive function decreases remarkably in the first 100 iterations. For user data projection, all tasks 
except KDDCUP99 converge within 50 iterations and go down rapidly in the first 20 itera-
tions, which are shown in Fig. 7(b). For KDDCUP99, the subspace generation convergences at 
around 1000 iterations and the user task projection convergences within 50 iterations.

6 � Related work

The learnware paradigm (Zhou, 2016) aims to build a learnware market to help users solve 
their machine learning tasks more efficiently rather than starting from scratch. By helping 
users identify and reuse helpful well-performed models in the market for their tasks, this 
paradigm exploits the potential value of existing trained models and significantly reduces 

Table 2   Accuracy (mean ± std.) on true labels of the user data.

1 #Mix: The number of task’s distribution in the market used for generate the user’s task
The best method is emphasized in bold.

Task name #Mix1 Random Ensemble MMD MMD+Ens Ours

MFEAT_fac_
kar

2 29.91 ±24.43 58.72 ±11.75 49.60 ± 1.68 34.22 ± 22.47 78.20 ± 10.41

3 22.27 ± 14.58 62.53 ± 7.33 32.17 ± 0.39 41.77 ± 13.66 71.57 ± 6.67
4 24.00 ± 0.00 63.50 ± 0.00 24.00 ± 0.00 24.50 ± 0.00 75.50 ± 0.00

MFEAT_pix_
zer

2 30.53 ± 24.93 62.40 ± 9.45 37.19 ± 18.78 34.84 ± 22.85 84.73 ± 6.01

3 22.98 ± 15.04 63.48 ± 5.58 32.22 ± 0.74 42.22 ± 13.69 86.41 ± 1.71
4 24.50 ± 0.00 60.00 ± 0.00 24.50 ± 0.00 25.00 ± 0.00 84.00 ± 0.00

MFEAT_fou_
mor

2 29.60 ± 24.18 33.40 ± 14.54 28.96 ± 23.65 25.63 ± 24.48 47.21 ± 11.09

3 22.63 ± 14.81 38.74 ± 9.22 20.00 ± 16.33 36.72 ± 13.01 54.39 ± 4.48
4 24.00 ± 0.00 38.50 ± 0.00 25.00 ± 0.00 35.00 ± 0.00 49.50 ± 0.00

AWA_cq_lss 2 23.43 ± 19.14 24.96 ± 10.78 36.25 ± 3.50 26.30 ± 17.49 26.25 ± 4.98
3 22.27 ± 7.42 26.62 ± 4.75 23.84 ± 1.39 24.09 ± 1.97 28.84 ± 2.54
4 17.50 ± 0.00 23.00 ± 0.00 17.50 ± 0.00 17.50 ± 0.00 27.50 ± 0.00

AWA_phog_
rgsift

2 16.40 ± 16.41 18.30 ± 5.93 9.53 ± 14.56 13.51 ± 12.75 18.66 ± 5.57

3 18.18 ± 6.06 21.62 ± 4.16 17.37 ± 8.69 19.24 ± 6.63 23.03 ± 4.17
4 16.00 ± 0.00 23.00 ± 0.00 17.00 ± 0.00 19.50 ± 0.00 23.50 ± 0.00

AWA_sift_surf 2 22.82 ± 18.64 24.13 ± 8.42 21.67 ± 11.24 23.44 ± 17.76 27.25 ± 9.07
3 21.36 ± 7.12 28.94 ± 5.52 18.99 ± 2.78 27.68 ± 7.96 30.81 ± 3.96
4 17.50 ± 0.00 28.00 ± 0.00 12.00 ± 0.00 25.50 ± 0.00 30.00 ± 0.00

KDDCUP99 2 25.00 ± 25.00 43.42 ± 20.87 48.70 ± 1.06 43.70 ± 34.20 95.00 ± 1.72
3 20.00 ± 16.33 49.80 ± 14.09 31.97 ± 0.45 41.97 ± 15.18 86.36 ± 8.15
4 25.00 ± 0.00 49.50 ± 0.00 25.00 ± 0.00 49.00 ± 0.00 82.00 ± 0.00

COVTYPE 2 33.60 ± 22.00 38.85 ± 11.55 34.60 ± 10.53 34.80 ± 10.78 41.90 ± 5.71
3 31.82 ± 0.00 33.84 ± 0.00 31.31 ± 0.00 34.34 ± 0.00 41.92 ± 0.00

Ours: win/tie/loss 23/0/0 23/0/0 22/1/0 23/0/0 Rank first 22/23
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the needed resources for users, like computing resources, expert knowledge and labeled 
data.

As a novel branch of machine learning research, the learnware paradigm considers a 
general and realistic framework where a huge amount of models in the market are sub-
mitted spontaneously by developers from various tasks, and neither the original training 
data of developers nor the original data of users can be accessed. These bring grand chal-
lenges for users to identify and reuse helpful models in the market, and the specification 
is the original core component of the learnware paradigm to achieve this goal. Recently, 
there have been some efforts in this branch attempting to realize a simplified prototype 
framework. For instance, Wu et al. (2021) proposed the reduced kernel mean embedding 
(RKME) as the specification, which constructs the specification space by mapping the 
training data of models to an element of the reproducing kernel Hilbert space (RKHS). 
When the user’s task involves certain unseen parts not covered by the learnware market, 
based on RKME specification, Zhang et al. (2021) used the mixture proportion estimation 
(MPE) technique ( Ramaswamy et al., 2016; Zhang et al., 2020) to identify samples from 
the unseen parts while assigning the rest to proper models returned from the market. This 
paper provides a solution for learnwares from heterogeneous feature spaces by generating 
the RKME specification on a unified subspace.

Note that the techniques in transfer learning (Pan and Yang, 2009) and domain adapta-
tion (Ben-David et  al., 2007; Wang et  al., 2022), which hope to transfer the knowledge 
in the source domain to the target domain, typically assume the accessibility of raw data 
(Dai et al., 2007; Fernando et al., 2013; Huang et al., 2006; Pan et al., 2010), and thus do 
not satisfy the privacy concerns in learnware paradigm. Besides, hypothesis transfer learn-
ing (Kuzborskij and Orabona, 2013) and model reuse (Ding and Zhou, 2020; Zhao et al., 
2020) only apply to specific scenarios where the model to be adapted is helpful to the user 
task, and do not consider how to identify helpful models from a market without leaking 
raw data. There is limited study to reuse the model from different feature spaces without 
accessing raw data (Ye et al., 2018, 2020), but they also assume models are helpful for the 
current task. In this paper, we focus on a more comprehensive process comprising how to 
accommodate heterogeneous models in the market with appropriate specifications and how 
to identify and reuse helpful learnwares for the user’s current task.

(a) Subspace generation (b) User data mapping

Fig. 7   Convergence curves of subspace generation and user data mapping
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Besides, since the learnwares in the market are submitted spontaneously by develop-
ers from various tasks and are identified for arbitrary user tasks, the learnware paradigm 
are studied in the open environment (Zhou, 2022), and techniques for open-environ-
ment machine learning (Zhao et  al., 2021; Zhao and Zhou, 2021) may also bring some 
inspiration.

Recently, Zhou and Tan (2022) provided a brief overview of progress on learnware, 
which clarified the process of the learnware market and the design of the specification. It 
describes the prospects of the learnware paradigm and sheds light on future exploration.

7 � Conclusion

In this paper, we have proposed the first practical approach to handling learnwares from 
heterogeneous feature spaces, which makes the learnware paradigm viable in broader 
applications. We give a basic formulation for the heterogeneous learnware problem 
and propose a novel specification design strategy via integrating the subspace learning, 
along with a detailed procedure for establishing and reusing the heterogeneous learn-
ware market. Empirical studies on both synthetic data and real-world tasks substanti-
ate the effectiveness of our methods. Although our method is designed for the basic 
scenario that each learnware only comes from one of the disjoint feature spaces, it can 
be naturally extended to the more general scenario that the learnware comes from the 
Cartesian product of several disjoint feature spaces. To summarize, for the basic hetero-
geneous learnware scenario where the overall feature space can be divided into disjoint 
parts and the feature space of the user’s task and learnwares can be any combination 
of different parts, the learnware market can be well established and used. For future 
research, formalizing the heterogeneous learnware problem in a more general way and 
proposing an effective solution are interesting subjects.

Appendix A  Detailed optimization procedure

In this section, we provide the omitted details for the optimization procedures.

Detailed optimization of subspace generation

Firstly, we introduce the following proposition of the multiplicative update rule for non-
negative quadratic programming (Sha et al., 2007).

Proposition 1  The general nonnegative quadratic form is defined as

where x is an d-dimensional nonnegative vector, � is a symmetric positive definite matrix 
and b is an arbitrary d dimensional vector. Let �+and �−denote the nonnegative matrices 
with elements:

f (x) =
1

2
x
⊤�x + b

⊤
x,
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It is easily to observe that � = �+ − �− . Then, the solution x that minimizes f (x) can be 
obtained through the iterative update as

In this proposition, the crucial variables used for update are b , �+x and �−x . Instead of 
calculating the complicated second derivative of f (x) to get �− and �− (Cai et al., 2010; 
Xu & Gong, 2004), we can calculate � = ∇f (x)|x=0,�x = ∇f (x)|x=0 − � and decompose 
�x as �+x , �−x , which gives more concise computation and easier extension for matrix 
variable case.

The subspace generation problem is reviewed as

The objective function Eq.  (A1) of subspace generation is not convex over all variables 
�(i),�(i),�∗

c
 which makes it unrealistic to find its global minimum. We propose an alterna-

tive optimization algorithm based on the multiplicative updated rule like (Févotte & Idier, 
2011; Xu & Gong, 2004) with local minimum achieved. For the optimization of Eq. (A1), 
we initialize the variables with k-means, and then, we alternately optimize the variables.

(1) Initialization We initialize �(i) and �(i) = [�̂(i);�(i)
c
] with k-means clustering. Let 

�(i) = �(i) + 0.1�(i) , where �(i) denotes the cluster outcome of �(i) and �(i) denotes the 
matrix whose elements are all 1. We add �(i) in �(i) to avoid ineffective multiplicative 
update for those zero elements. We set �(i) = �(i)

(
�(i)

)−1 , where �(i) = diag(n1,⋯ , nk) 
and nk denotes the cardinality of the k-th cluster of �(i) . �∗

c
 is set as 

∑k

i=1
�(i)

c
∕k . The Lapla-

cian matrix is calculated as �(i) = �(i) − �(i) , where �(i) is the similarity matrix calculated 
with cosine similarity [�(i)]kj = cos(xk, xj) = ⟨xk, xj⟩∕

�‖xk‖‖xj‖
�
 on �(i) . �(i) is a diagonal 

matrix with [�(i)]kk =
∑

j[�
(i)]kj.

(2) Minimizing O over �(i) with �(i),�∗
c
 Fixed For the brevity, we ignore the super-

script of �(i),�(i),�(i) and abbreviate them as �,�,� where �(i) = (�(i))⊤�(i) . After fix-
ing irrelevant variables, the subproblem is

with � ≥ 0 . Using multiplicative updated rule (Xu & Gong, 2004), we get

�+
ij
=

{
�ij if �ij > 0,

0 otherwise,
�−

ij
=

{|||�ij
||| if �ij < 0,

0 otherwise.

xi ← xi

⎡
⎢⎢⎢⎣

−�i +
�

�2
i
+ 4(�+x)i(�

−x)i

2(�+x)i

⎤
⎥⎥⎥⎦
.

(A1)

min
�(i) ,�(i) ,�∗

c

O =

k∑
i=1

{‖‖‖�
(i) − �(i)�(i)

(
�(i)

)⊤‖‖‖
2

F

+𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i)
c
− �∗

c

‖‖‖
2

F

}

s.t. �(i) ≥0, �̂(i) ≥ 0,�(i)
c
≥ 0,�∗

c
≥ 0,

minO(�) = −2tr
(
�⊤��

)
+ tr

(
�⊤���⊤�

)
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where �+ = �+��⊤� , �− = �−��⊤�.
(3) Minimizing O over �(i) with �(i),�∗

c
 Fixed For simplicity of the notation, we abbreviate 

�(i) = [�̂(i),�(i)
c
] , �(i) = [�̂(i);�(i)

c
] , �(i) as � = [�̂,�c] , � = [�̂;�c] and � respectively. We 

present the Laplacian matrix as � = [�11,�12;�21,�22] = � − � = [�11,�12;�21,�22] − [�11, �12;�21, �22] 
and the kernel matrix as � = [�0;�1] based on the shape of � = [�̂;�c].

The subproblem is optimizing O(�) = ‖� − ���⊤‖2
F
+ 𝛼Tr(�⊤��) + 𝛽‖�c − �∗

c
‖2
F
 

with � = [�̂;�c] ≥ 0 . We rewrite the objective function as

We optimize � = [�̂;�c] in two steps, we first optimize �̂ with fixed �c and then optimize 
�c with fixed �̂.

The subproblem for �̂ is optimizing O(�̂) = ‖�̂ − ���̂⊤‖2
F
+ 𝛼Tr(�̂⊤�11�̂)+

2𝛼Tr(�⊤
c
�21�̂) with �̂ ≥ 0 . By taking the first order derivative, we get ∇O(�̂) = −2�0�+

2�̂�⊤�� + 2𝛼�11�̂ + 2𝛼�12�c
 and thus ∇O(�̂)|�̂=0 = −2�0� + 2𝛼�12�c , ∇O(�̂)−

∇O(�̂)|�̂=0 = 2�̂�⊤�� + 2𝛼�11�̂ = (2�̂�⊤�+� + 2𝛼�11�̂) − (2�̂�⊤�−� + 2𝛼�11�̂) . 
According to the proposition (1), we get the updated rules as

where �̂ = �0� − 𝛼�12�c , �̂+ = �̂�⊤�+� + 𝛼�11�̂ , �̂− = �̂�⊤�−� + 𝛼�11�̂.
The subproblem for �c is optimizing O(�

c
) = ‖�

c
− ���⊤

c
‖2
F
+ 𝛽‖�

c
− �∗

c
‖2
F
+

𝛼Tr(�⊤
c
�22�c

) + 2𝛼Tr(�⊤
c
�21�̂) with �c ≥ 0 . By taking the first order derivative, we get 

∇O(�c) = −2�1� − 2𝛽�∗
c
+ 2�c�

⊤�� + 2𝛽�c + 2𝛼�22�c + 2𝛼�21�̂ . By decompose 
the derivative similarly and use the proposition (1), we get the updated rule as

where �c = �1� + 𝛽�c − 𝛼�21�̂ , �+
c
= �c�

⊤�+� + 𝛽�c + 𝛼�22�c , �−
c
= �

c
�⊤�−�+

��22�c
.

(4) Cooperative Normalization This step imposed on �(i) = [�̂(i);�(i)
c
] and �(i) aims to 

make the consistency loss expressed by ‖�(i)
c
− �∗

c
‖2
F
 reasonable. It is obvious to check that 

(A2)�ij ← �ij

⎡
⎢⎢⎢⎣

(��)ij +
�

(��)2
ij
+ 4�+

ij
�−
ij

2�+
ij

,

⎤
⎥⎥⎥⎦

(A3)

O(�) =
����̂ − ���̂⊤���

2

F
+
����c − ���⊤

c

���
2

F

+ 𝛼

�
Tr(�̂⊤�11�̂) + 2Tr(�⊤

c
�21�̂)

+ Tr(�⊤
c
�22�c)

�
+ 𝛽‖�c − �∗

c
‖2
F
.

(A4)(�̂)ij ← (�̂)ij

⎛⎜⎜⎜⎝

�̂ij +
�

�̂2
ij
+ 4�̂+

ij
�̂−

ij

2�̂+
ij

⎞⎟⎟⎟⎠
,

(A5)(�c)ij ← (�c)ij

⎡⎢⎢⎢⎣

(�c)ij +
�

(�c)
2
ij
+ 4(�+

c
)ij(�

−
c
)ij

2(�+
c
)ij

⎤⎥⎥⎥⎦
,
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when �(i) and �(i) are solutions of concept factorization, �(i)�(i) and �(i)(�(i))−1 also form 
another solutions for any diagonal matrix �(i) with positive diagonal elements. In order to 
keep the uniqueness of solution and suitable comparison of different �(i)

c
 , we restrict the �1

-norm of each column of �(i)
c

 as 1 by

where �(i) = diag
�∑

j[�
(i)
c
]j,1,⋯ ,

∑
j[�

(i)
c
]j,d

�
 and d is the dimension of subspace.

(5) Minimizing O over �∗
c
 with �(i),�(i) Fixed The sub problem is given as min�∗

c

∑k

i=1
‖�(i)

c − �∗
c
‖2
F
 

with �∗
c
≥ 0 , which gives the closed-form solution as

The proposed optimization updates the variables �(i),�(i) = [�(i)
c
, �̂(i)] and �∗

c
 alternately. 

The whole algorithm is showed in Algorithm 2.

Algorithm 2 Optimization of subspace generation
Input: local data sets {X1,X2, · · · ,XR} from different feature spaces, feature
space indicators {v1, · · · , vR}, auxiliary data across entire feature space Xc =
[X(1)

c ; · · · ; X(k)
c ].

Parameter: Trade-off parameters {α, β}, number of nearest neighbors p for
manifold regularizer, the dimension of subspace d, max iteration T .
Output: New representation of data matrix in subspace {V1,V2, · · · ,VR},
projection tools {B(1),B(2), · · · ,B(k)} used for the user data projection.
1: For each feature space Xi, i ∈ [k], concatenate the corresponding data

matrix Xj satisfying vj = i and get {X(1), · · · ,X(k)}.
2: Initialize the W(i),V(i) and V∗

c with the results of k-means.
3: while max iteration is not achieved do
4: for i = 1 to k do
5: Fix V(i),V∗

c , update W(i) by the rule (A2).
6: Fix W(i),V∗

c , update V(i) = [V(i)
c , V̂(i)] by the rules (A4) and (A5).

7: Cooperatively normalize W(i) and V(i) by Eq. (A6).
8: end for
9: Fix W(i),V(i), i ∈ [k] and update V∗

c by Eq. (A7).
10: end while
11: Decompose each concatenated mapped data matrix {V(1), · · · ,V(k)} as

single elements {V1,V2, · · · ,VR} and V∗
c .

12: Calculate the base matrices of all feature space via B(i) = X(i)W(i), i ∈[k].
13: return mapped data matrices {V1,V2, · · · ,VR} and projection tools of

overall feature space {B(1),B(2), · · · ,B(k)}.

(A6)
�(i)

← �(i)
(
�(i)

)−1
�(i)

← �(i)�(i),

(A7)�∗
c
=

1

k

k∑
i=1

�(i)
c
.
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Detailed optimization for user data mapping

The problem is reviewed as Eq. (A8) and can be optimized similarly as Appendix A.1 via 
alternately optimizing �(i) and �∗.

First, we discuss the subproblem of �(i) . We mark �(i)
u
,�(i),�(i),�(i) as �,�,�,� in short. 

The subproblem is optimizing O(�) = ‖� − ��⊤‖2
F
+ 𝛼Tr(�⊤��) + 𝛽‖� − �∗‖2

F
 with 

� ≥ 0 . Thus, ∇O(�) = −2�⊤� + 2�� + 2𝛼�� + 2𝛽(� − �∗) where � = �⊤� . The 
updated rule goes similarly as

where � = �⊤� + 𝛽�∗,�+ = ��+ + 𝛼�� + 𝛽� and �− = ��− + ���.
Second, we discuss the update of �∗ , the subproblem of �∗ is min�∗

∑t

i=1
‖�(i) − �∗‖2

F
 

with �∗ ≥ 0 , which results in �∗ =
1

t

∑t

i=1
�(i).
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