
Vol.:(0123456789)

Machine Learning (2024) 113:1839–1860
https://doi.org/10.1007/s10994-022-06245-1

1 3

Towards enabling learnware to handle heterogeneous
feature spaces

Peng Tan1 · Zhi‑Hao Tan1 · Yuan Jiang1 · Zhi‑Hua Zhou1

Received: 9 June 2022 / Revised: 12 August 2022 / Accepted: 12 September 2022 /
Published online: 28 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
The learnware paradigm was recently proposed by Zhou (2016) with the wish of develop-
ing the learnware market to help users build models more efficiently by reusing existing
well-performed models rather than starting from scratch. Specifically, a learnware in the
learnware market is a well-performed pre-trained model with a specification describing its
specialty and utility, and the market identifies helpful learnware(s) for the user’s task based
on the specification. Recent studies have attempted to realize a homogeneous prototype
learnware market initially through Reduced Kernel Mean Embedding (RKME) specifica-
tion, which requires all models in the market to share the same feature space. However, this
limits the application scope of the learnware paradigm because various pre-trained models
are often obtained from different feature spaces in real-world scenarios. In this paper, we
make the first attempt to enable the learnware to handle heterogeneous feature spaces. We
propose a more powerful specification to manage heterogeneous learnwares by integrating
subspace learning in the specification design, along with a practical approach for identify-
ing and reusing helpful learnwares for the user’s task. Empirical studies on both synthetic
data and real-world tasks validate the efficacy of our approach.

Keywords  Learnware · Heterogeneous feature spaces · Model reuse · Subspace learning

Editors: Yu-Feng Li and Prateek Jain.

 *	 Zhi‑Hua Zhou
	 zhouzh@lamda.nju.edu.cn; zhouzh@nju.edu.cn

	 Peng Tan
	 tanp@lamda.nju.edu.cn

	 Zhi‑Hao Tan
	 tanzh@lamda.nju.edu.cn

	 Yuan Jiang
	 jiangy@lamda.nju.edu.cn

1	 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06245-1&domain=pdf

1840	 Machine Learning (2024) 113:1839–1860

1 3

1  Introduction

Machine learning techniques have achieved great success in many real-world applica-
tions (Butler et al., 2018; Jumper et al., 2021; LeCun et al., 2015). However, except for
experienced machine learning experts, most ordinary people can hardly produce well-
performed models if starting from scratch, due to a lack of proficient skills or abundant
high-quality training data. In addition, although there are numerous powerful pre-trained
models, due to data privacy concerns, it is generally difficult for ordinary people to identify
beneficial models and apply them to their tasks.

To address these issues simultaneously, Zhou (2016) proposed to develop a learnware
market, in which a learnware is a pre-trained model combined with a specification used to
describe the specialty and utility of the model. As described in Zhou and Tan (2022), all
developers could submit their trained models from various tasks into the market spon-
taneously. Once the submitted model is accepted, the market will assign it a specifica-
tion. When the user wants to tackle her learning tasks, instead of starting from scratch, she
can figure out her requirement to the market, and the market will identify and recommend
helpful learnwares whose specifications match the user’s requirement. Then the user can
apply these recommended learnwares to her task directly or polish them with minor labeled
data.

In the learnware paradigm, the specification plays a pivotal role in identifying which
models are helpful for the user’s current task, which leads to specification design as a fun-
damental problem. Recently, Wu et al. (2021) proposed the Reduced Kernel Mean Embed-
ding (RKME) as the specification, based on which several efforts have initially attempted
to realize a homogeneous prototype learnware market. The RKME specification makes a
good approximation for the distribution of training data used by the model without reveal-
ing the raw data. This specification maps the data set to an element in the reproducing
kernel Hilbert space (RKHS) which is also called specification space. The learnware mar-
ket can then search helpful learnwares in this space upon the user’s request. However, the
requirement that all pre-trained models in the market are obtained from the same feature
space limits the scope of the learnware market for helping users identify and reuse models
on their tasks.

In real-world scenarios, it is more common that the learnware market comprises models
from different feature spaces. We take a medical scenario illustrated by Fig. 1 for example.
The blue models and orange models are provided by hospitals, using the blood routine
features and computed tomography (CT) features respectively for the diagnosis of com-
mon diseases. Carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) features are
used by green models provided by laboratories for cancer-related tasks. For described more
practical learnware market, one appealing question comes that is it possible to identify and
reuse helpful models across all models from different feature spaces, not only models shar-
ing totally the same feature space with the user’s task. For example, it is eagerly hoped that
the market could recommend helpful learnwares from all heterogeneous learnwares (#1-#6)
and that the clinic could receive and reuse recommended learnwares (#1, #5) from two fea-
ture spaces for its task.

This paper makes the first attempt to handle learnwares from heterogeneous feature
spaces, making the learnware paradigm viable in broader applications. The most notable
difference compared with the homogeneous learnware studied before (Wu et al., 2021)
is the mismatch of feature spaces between different learnwares and between learnwares
and the user’s task, which results in harder learnware search and reuse. In this paper,

1841Machine Learning (2024) 113:1839–1860	

1 3

we consider a fundamental heterogeneous scenario that the overall feature space can
be divided into several disjoint parts. For example, the newly-built clinic as the medical
learnware market user may collect multiple groups of features (e.g. both blood routine
features and CT features) of patients with different machines as illustrated in Fig. 1. In
order to realize the heterogeneous learnware search and reuse, it is essential to design
a more powerful specification to manage learnwares from different feature spaces. This
paper provides a solution by generating the RKME specification on a subspace learned
from heterogeneous feature spaces, so as to provide a unified specification space for
identifying learnwares matching the user’s requirement.

The main contributions of this work can be summarized as follows:

•	 We give the first formulation for the heterogeneous learnware problem where the over-
all feature space can be divided into several disjoint parts.

•	 We propose a more powerful specification that provides a unified specification space
for learnwares from heterogeneous feature spaces, where the market identifies helpful
learnwares matching user’s requirement effectively.

•	 We provide a detailed procedure for the construction and the usage of the heterogene-
ous prototype learnware market based on the new specification. Promising experimen-
tal results reported on both synthetic and real-world tasks validate the efficacy of the
proposed specification and procedure.

The remaining part of the paper proceeds as follows. We briefly review preliminary tech-
niques in Sect. 2. Then, the heterogeneous learnware problem is formulated in Sect. 3, fol-
lowed by a novel specification design with corresponding procedure for learnware usage in
Sect. 4. Next, Sect. 5 provides empirical studies on both synthetic and real-world tasks and
Sect. 6 is concerned with related works. Finally, we conclude in Sect. 7.

Fig. 1   An example of the learnware market in a medical scenario. A learnware consists of a well-performed
pre-trained model and a specification describing its ability. The market is naturally composed of learnwares
from different feature spaces and different tasks. The market can help the user identify and reuse helpful
learnwares upon the user’s requirement

1842	 Machine Learning (2024) 113:1839–1860

1 3

2 � Preliminary

In this section, we first review a specification designed for homogeneous learnwares, which is
based on the kernel mean embedding (Smola et al., 2007). Then we review a subspace learn-
ing method based on the matrix factorization, which can be extended to finding the unified
subspace of heterogeneous feature spaces.

Kernel mean embedding (KME) KME describes the probability distribution in a concise
way without information loss and supports convenient operations like mean calculation.
It maps a probability distribution P defined over X to an element in a reproducing kernel
Hilbert space (RKHS) as �k(P) ∶= ∫

X
k(x, ⋅)dP(x) , where k ∶ X × X → ℝ is a symmetric

and positive definite kernel function (Schölkopf & Smola, 2002) with associated RKHS
H and feature map � ∶ X → H . The embedding �k(P) exists and belongs to H when
�x∼P[

√
k(x, x)] < ∞ . When equipped with characteristic kernels such as Gaussian kernel,

no information about the distribution P will be lost (Sriperumbudur et al., 2011). In reality,
we can only access to a data set

{
xn

}N

n=1
 sampled from P , the empirical approximation for

KME �k(P) is 𝜇̂k(P) ∶=
1

N

∑N

n=1
k
�
xn, ⋅

�
 with O(1∕

√
N) convergence (Smola et al., 2007).

Reduced kernel mean embedding (RKME) The favorable properties of KME make it a
potential specification, however, the dependence on the raw data violates the privacy pro-
tection that the learnware paradigm needs. To tackle this issue, Wu et al. (2021) proposed
the RKME by using a reduced set

{(
�m, zm

)}M

m=1
 to approximate the empirical KME of the

original data set
{
xn

}N

n=1
 via the following minimization problem:

where zm is the element in the reduced set and �m is the corresponding coefficient. The
RKME 𝜇̃k(P) satisfies a linear convergence rate O(e−M) to the empirical KME of original
data set 𝜇̂k(P).

Subspace learning Subspace learning aims to find a subspace which can better describe
the inherent structure of the data compared with the original feature space, and the meth-
ods (Lee & Seung, 2001; Zhu et al., 2022) based on the matrix factorization are commonly
used. In this part, we review a wildly used technique called concept factorization (CF) (Xu
& Gong, 2004). The idea of CF is to represent each concept as a linear combination of
instances and reconstruct each instance as a linear combination of concepts. Given a data
matrix � = [x1,⋯ , xN] ∈ ℝ

d×N and the number of concepts k, CF aims to find a new rep-
resentation in the subspace of � as �⊤ ∈ ℝ

k×N by minimizing the reconstruction error via

where � ∶= �� = [c1,⋯ , ck] ∈ ℝ
d×k is the concept matrix, � is the reconstruction coef-

ficient matrix and can also be explained as the projection of the input matrix in the sub-
space, �,� ≥ 0 means all elements of �,� is non-negative. The performance of CF can
be improved by local structure maintenance (Cai et al., 2010; Wang et al., 2016).

(1)min
�,�

‖‖‖‖‖‖
1

N

N∑
n=1

k
(
xn, ⋅

)
−

M∑
m=1

�mk
(
zm, ⋅

)‖‖‖‖‖‖

2

H

,

min
�,�

‖� − ���⊤‖2
F
, s.t. �,� ≥ 0.

1843Machine Learning (2024) 113:1839–1860	

1 3

3 � Problem formulation

The learnware paradigm generally consists of the submitting stage and the deploying stage.
In the submitting stage, the developers submit their models to the market, and the market
will assign the specification for accepted high-quality learnwares and accommodate them
in the market. In the deploying stage, the market identifies and returns learnwares matching
the user’s requirement and the user reuses them directly or polishes them with the user’s
data. For the heterogeneous learnware problem, since the relationship of various feature
spaces needs to be mined first by exploiting some aligned data, we simplify the submitting
stage as an establishing stage where the market uses several owned models for initializa-
tion, and thus, the market is accessible to the raw data of the models which help connect
different feature spaces better. Note that the raw data of the models in establishing stage is
still invisible to users, matching the data privacy concern of the learnware paradigm. The
two-staged formulation is illustrated in Fig. 2 and described as follows.

In the establishing stage, the market accommodating well-trained models generated
from different feature spaces will assign specifications in a shared space for models. This
shared specification space makes it possible and effective to match the user’s requirements
in the next deploying stage. We first assume that the overall feature space X can be split
into k disjoint parts, i.e., X1,⋯ ,Xk . Supposing that the market has R models {fi}Ri=1 and
the i-th model is trained on the local data set Di ∶= {(xi,n, yi,n)}

Ni

n=1
 whose feature space is

Xvi
, vi ∈ [k] . Temporarily, each local data set only provides information of single feature

space and no relationship between different feature spaces can be uncovered, which makes
it impossible to find a shared specification space. To tackle this troublesome difficulty,
a few data across different feature spaces is necessary. In reality, auxiliary data crossing
different feature spaces is often accessible. For example, there are abundant multi-modal
data (Chen et al., 2015) on the web to connect the figures with texts. Another more detailed

task 1

task 2

...

task R

auxiliary
data

task 3

task 4

… pre-trained
models

12 3

4
...

Rgenerate specifications

identical specification space

Learnware Market

1

2

3

4

...

R

…

user
requirements

recommended
model(s)

Establishing Stage Deploying Stage

Fig. 2   An illustration for two-stage heterogeneous learnware problem formulation. To initialize the learn-
ware market, the market assigns specifications in the same space for models constructed from different fea-
ture spaces. In the establishing stage, auxiliary data across entire feature spaces is necessary to reveal the
relationship between different feature spaces. In the deploying stage, the user’s task is defined over the Car-
tesian product of some feature spaces and the user can reuse helpful learnwares from the market

1844	 Machine Learning (2024) 113:1839–1860

1 3

example is medical data from different organizations (hospital, clinic laboratory) serving as
different feature spaces which is generated from the same patients (Johnson et al., 2016).
After the market collects such unlabeled auxiliary data defined on the entire feature space
X from existing satisfied web data, the heterogeneous learnware market is constructed as
{(fi, si)}

R
i=1

 , where si is the specification of the model fi.
In the deploying stage, the user hopes to exploit heterogeneous market {(fi, si)}Ri=1 to

handle her own task. Specifically, we consider the scenario that the user hopes to make
a prediction on her unlabeled data set Du ∶= {xu,n}

Nu

n=1
 defined over a Cartesian product

of several feature spaces Xvu
∶= ×i∈vu⊆[k]

Xi . For example, the feature space of the user in
Fig. 2 composed of the 1st and k-th feature space is X{1,k}.

4 � Our approach

We first sketch the overall procedure. The specification design is discussed in the establishing
stage and the deploying stage shows how to use the specification to meet the requirements of
the user. In the establishing stage, the market assigns specifications in a union space based on
the subspace learning and RKME for models from different feature spaces to construct the
learnware market. In the deploying stage, the user generates her requirement in the subspace
with the projection tool provided by the market and the market identifies highly-relevant learn-
wares. After that, the user reuses learnwares via dynamic classifier selection. The main idea of
our approach is to find a subspace to bridge different feature spaces with the shared specifica-
tion space (RKHS).

4.1 � Establishing stage

In this stage, in order to build a union specification space, the market first constructs a union
subspace for local tasks from different feature spaces. When the i-th task data set is mapped to
the subspace, we generate RKME for such mapped data set as the i-th model’s specification
�i . Meanwhile, we hope the procedure of subspace generation can provide applicable tools to
map the user data in the following deploying stage.

Subspace generation In this step, the market finds a common subspace for different fea-
ture spaces based on the local data sets each defined on a single feature space and extra
auxiliary data across the entire feature space. We denote by �i ∈ ℝ

di×Ni the feature of the
i-th local data set Di(i ∈ [R]) , and further denote by �̂(i) ∈ ℝ

di×N
(i) the concatenation of all

data sets in the i-th feature space, in above, di is the dimension of i-th feature space Xi and
N(i) is the total number of samples for all data sets in the i-th feature space. The extra aux-
iliary data is denoted as �c = [�(1)

c
;⋯ ;�(k)

c
] ∈ ℝ

(d1+⋯+dk)×Nc where Nc is the size of aux-
iliary data. Then, the overall data containing the local tasks and auxiliary data in the i-th
feature space is �(i) = [�̂(i),�(i)

c
] ∈ ℝ

di×(N
(i)+Nc) . The problem of subspace generation using

local task data sets and extra auxiliary data is defined as

1845Machine Learning (2024) 113:1839–1860	

1 3

and the major notations are summarized in Table 1. The first item ‖�(i) − �(i)�(i)(�(i))⊤‖2
F

presents the reconstruction loss of concept factorization loss, where (�(i))⊤ ∈ ℝ
d×(N(i)+Nc)

is the new representation of �(i) in the subspace whose dimension is d. The second item
Tr((�(i))⊤�(i)�(i)) is a manifold regularizer used to maintain the local structure during the
mapping, forcing similar outputs when inputs are closed. In which, �(i) ∈ ℝ

(N(i)+Nc)×(N
(i)+Nc)

is the Laplacian matrix induced by �(i) . The last item ‖�(i)
c
− �∗

c
‖2
F
 reveals the internal con-

sensus between different feature spaces, punishing the inconsistency of different mapped
auxiliary data, where �(i)

c
 , a part of (�(i))⊤ = [(�̂(i))⊤, (�(i)

c
)⊤] , is the mapped auxiliary data

of i-th feature space, �∗
c
 is the final representation of the auxiliary data �c in the subspace.

Algorithm 1 Sketched optimization of subspace generation
1: Initialize W(i),V(i) and V∗

c with results of k-means.
2: while max iteration is not achieved do
3: for i = 1 to k do
4: Fix V(i),V∗

c , update W(i).
5: Fix W(i),V∗

c , update V(i) = [V(i)
c , V̂(i)] with decomposed tasks.

6: Cooperatively normalize W(i) and V(i).
7: end for
8: Fix W(i),V(i), i ∈ [k] and update V∗

c with closed-form solution.
9: end while

The objective function Eq. (2) of subspace generation is not convex over all variables
�(i),�(i),�∗

c
 , which makes it unrealistic to find its global minimum. Therefore, we propose

an alternative optimization algorithm based on the multiplicative updated rule similar to
(Févotte & Idier, 2011; Xu & Gong, 2004) with local minimum achieved. We provide the
sketched optimization as Algorithm 1 shows and details are presented in Appendix A.1.

Specification assignment Based on the subspace generation, we can eventually design
more powerful specifications. With the help of auxiliary data, we connect different feature

(2)

min
�(i) ,�(i),�∗

c

O =

k∑
i=1

{‖‖‖�
(i) − �(i)�(i)

(
�(i)

)⊤‖‖‖
2

F

+𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i)
c
− �∗

c

‖‖‖
2

F

}

s.t. �(i) ≥ 0, �̂(i) ≥ 0,�(i)
c
≥ 0,�∗

c
≥ 0,

Table 1   Main notations and corresponding definitions of the subspace generation

Notation Definition

�̂(i) ∈ ℝ
d
i
×N(i) The concatenation of all the locak task data sets in the i-th feature space X

i

�(i)
c

∈ ℝ
d
i
×N

c The sliced auxiliary data in the i-th feature space

�(i) = [�̂(i),�(i)
c
] The overall data in the i-th feature space X

i

(�̂(i))⊤ ∈ ℝ
d×N(i) The projection of local task data �̂(i) in the subspace

(�(i)
c
)⊤ ∈ ℝ

d×N
c The projection of sliced auxiliary data �(i)

c
 in the subspace

(�(i))⊤ = [(�̂(i))⊤, (�(i)
c
)⊤] The projection of �(i) in the subspace

(�∗
c
)⊤ ∈ ℝ

d×N
c The projection of the entire auxiliary data �

c
= [�(1)

c
;⋯ ;�(k)

c
] in the subspace

1846	 Machine Learning (2024) 113:1839–1860

1 3

spaces with a common subspace, and further develop specifications on such space. After
subspace generation, the local data sets {�i}

R
i=1

 used by models {fi}Ri=1 are mapped to
{�i}

R
i=1

 , which are achieved by splitting {�(i)}k
i=1

 . We generate RKME �i = {(�m,wm)}
M
m=1

for each �i ∶= {vn}

Ni

n=1
 as the specification for i-th model via

where M is the size of reduced set. The minimization problem Eq. (3) can be solved with
stochastic gradient descent (Wu et al., 2021).

The proposed specification provides models from various feature spaces with a shared
specification space (RKHS), which makes the learnwares identification upon the user’s
requirements concerning several feature spaces possible and effective. Furthermore, the speci-
fication can protect the original data set efficaciously. More specifically, the size of the specifi-
cation M can be much smaller than that of original data set Ni and it is impossible to utilize the
specification �i = {(�m,wm)}

M
m=1

 to recover the mapped data set �i and the original data set �i.

4.2 � Deploying stage

In this stage, the user tries to exploit the market to tackle her prediction task while preserving
data privacy. The user maps her data via the projection tool provided by the market and gener-
ates a reduced set accordingly served as user’s requirements. After receiving requirements, the
market recommends highly-reusable learnwares to the user and the user reuses them on her task.

User data mapping In this step, the user produces requirements to the market for learn-
ware recommendation and protects privacy in the meanwhile. The market first passes the
projection tool to help the user map her data and the projection tool {�(i)}k

i=1
 consists of

base matrices of all feature space, which is generated from the byproduct �(i) of subspace
learning via �(i) = �(i)�(i).

After receiving the projection tool {�(i)}k
i=1

 , the user can map her data into the same
subspace. Without loss of generality, we assume that the user has data over top t feature
spaces Xu = X1 ×⋯ × Xt (t ≤ k) , we denote by �u = [�(1)

u
;⋯ ;�(t)

u
] ∈ ℝ

(d1+⋯+dt)×Nu the
user data, where Nu is the size of user data. The projection of user data is formulated as

where trade-off parameters 𝛼, 𝛽 > 0 are used to control the contribution of the manifold
regularizer and the consensus loss between different feature spaces, �(i) is the Laplacian
matrix induced by �(i)

u
 and �∗ is the final representation of user data in the subspace. This

problem has a similar structure to Eq. (2). One of major differences is that Eq. (4) pos-
sesses the fixed base matrix �(i) while Eq. (2) contains the learned base matrix �(i)�(i) .
The optimization using the multiplicative updated rule is described in Appendix A.2.

In order to keep the data privacy, the user only passes the reduced set ru ∶= {�u,m, �u,m}
Mu

m=1

constructed from mapped data set V∗ ∶= {�n}
Nu

n=1
 via Eq. (1) as requirements to the market,

(3)min
�,�

‖‖‖‖‖‖
1

N

Ni∑
n=1

k
(
vn, ⋅

)
−

M∑
m=1

�mk
(
wm, ⋅

)‖‖‖‖‖‖

2

H

,

(4)

min
�(i),�∗

Ou =

t∑
i=1

{‖‖‖�
(i)
u
− �(i)

(
�(i)

)⊤‖‖‖
2

F

+ 𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i) − �∗‖‖‖

2

F

}

s.t. �(i) ≥ 0,�∗ ≥ 0,

1847Machine Learning (2024) 113:1839–1860	

1 3

where Mu is the size of user’s reduced set and can be much smaller than the original data set
size Nu . Meanwhile, such minor information can still guarantee the performance of learnware
recommendation.

Learnware recommendation In this step, the market identifies useful learnwares for
the user. After receiving the user’s requirement �u = {�u,m, zu,m}

Mu

m=1
 , the learnware mar-

ket estimates the reusability score wi of each learnware via according specifications
{�i ∶= {�i,m, zi,m}

Mi

m=1
}R
i=1

 . The reusability score is estimated by the following problem:

where Φu(⋅) =
∑Mu

m=1
�u,mk(zu,m, ⋅) is the KME of user’s requirements, Φi(⋅) =

∑Mu

m=1
�i,mk(zi,m, ⋅)

represents the specification of the i-th model. This problem can be solved by quadratic program-
ming (Smola et al., 2007). After reusability score estimation, the market delivers highly reusable
learnwares whose reusability score �i is no less than the pre-defined threshold L to the user. This
step makes the user only access to highly relevant learnwares, heavily reducing the exchanged
information between the market and the user when the market possesses plentiful learnwares.

User data prediction After the learnware market returns highly-related learnwares
{(fi, �i)|wi ≥ L} , the user can take full advantage of these well-performed models for her
problem. The specification based on the subspace can help the user to identify which model
should be used for each instance. More specifically, the kernel herding technique (Chen
et al., 2012) can be employed to sample mimic data set D̄i = {�n}

N̄i

n=1
 from the specification

�i on the subspace, and then, a selector can be trained based on these data to predict which
learnware should each unlabeled instance use. For example, the projection of one instance
is classified by using the #1-learnware, then the user can reuse such learnware defined on
the original feature space to predict on the instance. Above all, the user predicts unlabeled
data via returned learnwares and trained selector.

4.3 � Overall procedure and discussion

This part first summarizes the establishing stage for the heterogeneous learnware mar-
ket construction and deploying stage for learnwares search and reuse. In the establishing
stage, the market needs to specify the specification in an identical space for heterogeneous
learnwares, which is implemented by using a subspace to bridge the heterogeneous feature
spaces and the identical specification space. More specifically, specifications are generated
via RKME on the mapped local task data obtained by the CF-based method. In the deploy-
ing stage, the user generates the subspace-based requirement, which is a reduced set built
on the mapped user data generated by the projection tool (base matrices of different feature
spaces) provided by the market. The overall procedure is illustrated by Fig. 3.

Afterwards, we give a preliminary discussion on the performance of the two-stage pro-
cedure. When the user’s task is covered by the market, the proposed method can make the
user well assisted by the learnware market on her task. More specifically, considering
learnwares whose feature space Xvi

 is a subset of the user’s feature space Xvu
 , if the distri-

bution of the user’s task Pu is a mixture of task distribution of aforementioned learnwares,
i.e., Pu =

∑
i∶Xvi

⊆Xvu

𝜉iPi , then our procedure can make the market select out learnwares
with large �i and accurately tell the user for each instance which learnware should be used.
Besides this basic scenario, our methods can be extended to solve more complicated

min
w

‖‖‖‖‖‖
Φu(⋅) −

R∑
i=1

�iΦi(⋅)

‖‖‖‖‖‖

2

H

, s.t. �i ≥ 0,

R∑
i=1

�i = 1,

1848	 Machine Learning (2024) 113:1839–1860

1 3

scenarios. For example, the user’s task may have a part that isn’t covered by the market.
For the homogeneous case where all learnwares and the user’s task share the same feature
space, (Zhang et al., 2021) uses the mixture proportion estimation (MPE) technique (Zhang
et al., 2020; Ramaswamy et al., 2016) to help identify such a unseen part and this technique
can be further adapted to the heterogeneous case.

5 � Experiments

This section demonstrates the effectiveness of our methods. We illustrate our methods by
a synthetic task and show the performance on real-world tasks compared with contenders.

5.1 � Synthetic task

We first illustrate the two stages of the heterogeneous learnware market workflow through
a synthetic task.

In the beginning, we develop four tasks defined on the Cartesian product of two feature
spaces plotted by four colors (red, blue, green and orange) illustrated by Fig. 4a and b, each
task is a binary classification problem and is generated from the Gaussian distribution.
These tasks will be used to generate four local task data sets (Fig. 5a and b), the auxiliary
data (Fig. 4c and d) and the test user data (Fig. 6a and b) of our heterogeneous learnware
problem.

The unlabeled auxiliary data is sampled from four tasks with a size of 20 as shown in
Fig. 4c and d. Each local task is sampled from one task and reserves the data of a single
feature space. Each task has 200 samples, and positive samples are plotted in yellow while
negative samples are plotted in blue. All tasks are shown in Fig. 5a and b. Figure 6a and b

various task
data sets
unlabeled

auxiliary data

CF-based
subspace
learning

mapped
data sets specifications

projection
tool

unlabeled
user data

mapped
user data

RKME
generation

Establishing Stage

Deploying Stage

user’s
requirements

predict via model reuse

RKME
generation

user data
projection

recommended
learnware(s)

learnware(s)
recommendation

mapped
auxiliary data

Fig. 3   An illustration of the proposed heterogeneous learnware procedure. In the establishing stage, various
task data sets from heterogeneous feature spaces are mapped to a common subspace and specifications are
built accordingly. In the deploying stage, the user passes requirements with the help of the projection tool to
the market and gets helpful learnwares

1849Machine Learning (2024) 113:1839–1860	

1 3

illustrate the test user data containing 100 samples, which is a mixture of task 2 and task 3
with sampling ratios of 0.3 and 0.7 accordingly.

Figure 5 illustrates the establishing stage. The market accommodates SVMs trained
on four heterogeneous data sets from two feature spaces (Fig. 5a and b), the accuracy of
SVMs is 0.967 ± 0.015 . To assign the specification for each model, the market collects
minor unlabeled auxiliary data across the entire feature space, which can build the con-
nection of different feature spaces. With the help of the auxiliary data, four local data sets
from two feature spaces can be mapped to a common subspace as illustrated in Fig. 5(c).
Figure 5(d) shows the specification assigned for each SVM via RKME using mapped task
data. The size of specification is M = 5 < ⌊ln 200⌋ , which is much smaller than the size

(a) Feature space 1 (b) Feature space 2 (c) Feature space 1 (d) Feature space 2

Fig. 4   Basic data source: a and b present four tasks on two feature spaces, c and d present the sampled aux-
iliary data implying the connection of two feature spaces

(a) Feature space 1 (b) Feature space 2 (c) Joint subspace (d) Joint subspace

Fig. 5   Establishing stage: a and b present four tasks generated from aforementioned four tasks, which are
used for building learnwares (#1-#4), c illustrates the subspace learned by four task data sets and auxiliary
data, d illustrates specifications in the subspace

(a) Feature space 1 (b) Feature space 2 (c) Joint subspace (d) Joint subspace

Fig. 6   Deploying stage: a and b present the user data generated from task 2 and 3, c illustrates the mimic
data generated from two learnwares (#2 and #3) delivered from the market, d illustrates the model selector
(red line shows the classified boundary.) trained on the mimic data, providing which learnware should each
sample use (#2 or #3)

1850	 Machine Learning (2024) 113:1839–1860

1 3

of the original data set. The specifications can effectively protect the privacy of each local
task.

Figure 6 illustrates the deploying stage. After the learnware market was constructed, the
user can exploit it for her own task (Fig. 6a and b). Although the user only possesses the
unlabeled data, she can still make a valid and satisfying prediction with the help of learn-
ware markets under some mild assumptions. Using projection tools provided by the market,
the user gets her mapped data (Fig. 6d) and generates the reduced set with a size of Mu = 5
to the market. The reduced set can keep user data privacy and provide helpful informa-
tion for market identifying helpful learnwares in the meanwhile. Based on specifications,
the market calculates reusability of four learnwares: [0.001, 0.399, 0.559, 0.042]. With the
preset threshold L = 0.1 , the market delivers learnware #2 and #3 to the user. Upon receiv-
ing the helpful learnwares, the user takes advantage of specifications of two learnwares to
generate some mimic data (Fig. 6(c)) and trains a model selector that tells for each sample
what learnware should be used (Fig. 6(d)), More specifically, learnware #2 is chosen for the
lower samples and learnware #3 is chosen for the upper samples. With prediction on the
original feature spaces using learnware #2 and #3, the accuracy on user data is 0.987.

5.2 � Real‑world tasks

We further verify the superior performance of the proposed specification and the proce-
dure designed for the heterogeneous learnware problem on practical tasks.

Data sets The evaluation is conducted on four real world tasks: MFEAT (van Breukelen
et al., 1998), AWA (Lampert et al., 2009), KDDCUP99 (Lippmann et al., 2000) and COV-
TYPE (Blackard & Dean, 1999). MFEAT is a digit data set containing 10 classes over six
feature spaces: Fourier coefficients (fou.), profile correlations (fac.), Karhunen-Love coef-
ficients (kar.), pixel averages (pix.), Zernike moments (zer.) and morphological features
(mor.). Each class contains 200 samples and the dimensions of feature spaces are 76, 216,
64, 240, 47, 6. AwA is a large-scale animal data set, we randomly select 10 classes with
totally 2000 samples over six feature spaces: color histogram features (cq.), local self-sim-
ilarity features (lss.), PyramidHOG features (phog.), SIFT features (sift.), colorSIFT fea-
tures (rgsift.) and SURF features (surf.). The dimensions of feature spaces are 2688, 2000,
252, 2000, 2000, 2000. KDDCUP99 is a unbalanced network intrusion detection dataset,
we sample a balanced subset containing 8 classes and each class contains 1000 samples.
COVTYPE is used for classifying the cover type (the dominant species of trees) of the
patches of forest in the United States. We sample a balanced dataset containing 6 classes
and each class has 1500 samples.

Data set configuration For MFEAT and AWA defined over six feature spaces, we choose
two feature spaces to simulate the learnware scenario and generate totally six heterogene-
ous learnware tasks: MFEAT_fac_kar, MFEAT_pix_zer, MFEAT_fou_mor, AWA_cq_lss,
AWA_phog_rgsift and AWA_sift_surf. For KDDCUP99 and COVTYPE, we randomly
divide the entire feature space into two parts to simulate the heterogeneous learnware
problem. For each task, we randomly split instances into three or four tasks based on their
labels, each task has two or three classes. The mechanism of generating local data sets, the
auxiliary data, and the test user data is similar to the synthetic task. The test user data is a
mixture of several tasks. The number of mixed tasks ranges from 2 to 4.

1851Machine Learning (2024) 113:1839–1860	

1 3

Contenders As the heterogeneous learnware problem is new, we first compare it with
two naive baselines. In these two methods, heterogeneous models are assigned with blank
specifications.

•	 Random: The market randomly selects a learnware for the user and the user reuses it to
make a prediction directly.

•	 Ensemble: The market returns all learnwares to the user without filtering and the user
reuses them via ensemble, i.e., using all learnwares to predict one test instance and tak-
ing out the most confident predicted class.

Observing that both two methods don’t consider the relevance between learnwares and the
user’s task. We equip each heterogeneous model with specification via RKME using raw
features, and followed by delivering the learnwares with minimum MMD distance under
the same feature space case proposed by Wu et al. (2021), we propose two variants for the
heterogeneous case. For both methods, the user will also generate the reduced set on her
original feature space to the market.

•	 MMD: The market calculates the MMD distance of each learnwares and returns the
learnware with the minimum MMD to the user. The user reuses the single learnware to
make a prediction.

•	 MMD+Ens: The market calculates the MMD distance of each learnwares and returns
learnwares with the minimum MMD for each feature space. The user reuses learnwares
via ensemble.

Experiment setup For all RKME-based methods, we use the Gaussian kernel
k(x, y) = exp(−�‖x − y‖2

2
) with � ∈ [0.1, 0.01, 0.001] for different tasks. The size of

reduced set is 10 for specifications ( M = 10 ) and user’s requirements ( Mu = 10 ). We set
the dimension of subspace as 10 for MFEAT-based tasks, KDDCUP99, COVTYPE and
50 for AWA-based tasks, which are much smaller than the dimension of original feature
spaces. The auxiliary data consists of 160 samples, less than the size of local tasks. The
threshold is set as L = 0.1 . We use the linear SVM for the MFEAT-based tasks, KDD-
CUP99 and COVTYPE. We use random forest for the AWA-based tasks. All experiments
are repeated 10 times.

Performance on user data Table 2 presents the prediction accuracy over the true labels
on the user data. Our method outperforms other contenders, it achieves the best on the 22
over 23 cases, and it behaves significantly better than others in most cases, especially for
MFEAT-based tasks and KDDCUP99 task. The Random performs poorly with low mean
accuracy and large variance mainly due to selecting models aimlessly. Ensemble per-
forms better than other three contenders because of making the user access all learnwares,
however, this leaks information of irrelevant learnwares. Furthermore, when the market has
abundant learnwares, it causes heavy burden on passing the learnware information and heav-
ily expands the complexity of reusing learnwares. Compared with Ensemble, our method
can make the user only access to the highly irrelevant learnwares. MMD and MMD+Ens per-
forms well than Random in more than half of cases. With the help of distribution matching
via RKME, MMD and MMD+Ens identify more reliable learnwares for the user. However, due
to a lack of considering the relationship of different feature spaces, it’s still hard to identify
truly helpful learnwares and performs much poorly than our methods except for one case.

Convergence analysis Figure 7 presents the convergence curve for the major optimization
steps of our procedure, i.e., subspace learning and user data projection. The objective loss is

1852	 Machine Learning (2024) 113:1839–1860

1 3

normalized to [0, 1] for different tasks. As shown in Fig. 7(a), the subspace generation of all
tasks except KDDCUP99 can be converged within 300 iterations and the value of the objec-
tive function decreases remarkably in the first 100 iterations. For user data projection, all tasks
except KDDCUP99 converge within 50 iterations and go down rapidly in the first 20 itera-
tions, which are shown in Fig. 7(b). For KDDCUP99, the subspace generation convergences at
around 1000 iterations and the user task projection convergences within 50 iterations.

6 � Related work

The learnware paradigm (Zhou, 2016) aims to build a learnware market to help users solve
their machine learning tasks more efficiently rather than starting from scratch. By helping
users identify and reuse helpful well-performed models in the market for their tasks, this
paradigm exploits the potential value of existing trained models and significantly reduces

Table 2   Accuracy (mean ± std.) on true labels of the user data.

1 #Mix: The number of task’s distribution in the market used for generate the user’s task
The best method is emphasized in bold.

Task name #Mix1 Random Ensemble MMD MMD+Ens Ours

MFEAT_fac_
kar

2 29.91 ±24.43 58.72 ±11.75 49.60 ± 1.68 34.22 ± 22.47 78.20 ± 10.41

3 22.27 ± 14.58 62.53 ± 7.33 32.17 ± 0.39 41.77 ± 13.66 71.57 ± 6.67
4 24.00 ± 0.00 63.50 ± 0.00 24.00 ± 0.00 24.50 ± 0.00 75.50 ± 0.00

MFEAT_pix_
zer

2 30.53 ± 24.93 62.40 ± 9.45 37.19 ± 18.78 34.84 ± 22.85 84.73 ± 6.01

3 22.98 ± 15.04 63.48 ± 5.58 32.22 ± 0.74 42.22 ± 13.69 86.41 ± 1.71
4 24.50 ± 0.00 60.00 ± 0.00 24.50 ± 0.00 25.00 ± 0.00 84.00 ± 0.00

MFEAT_fou_
mor

2 29.60 ± 24.18 33.40 ± 14.54 28.96 ± 23.65 25.63 ± 24.48 47.21 ± 11.09

3 22.63 ± 14.81 38.74 ± 9.22 20.00 ± 16.33 36.72 ± 13.01 54.39 ± 4.48
4 24.00 ± 0.00 38.50 ± 0.00 25.00 ± 0.00 35.00 ± 0.00 49.50 ± 0.00

AWA_cq_lss 2 23.43 ± 19.14 24.96 ± 10.78 36.25 ± 3.50 26.30 ± 17.49 26.25 ± 4.98
3 22.27 ± 7.42 26.62 ± 4.75 23.84 ± 1.39 24.09 ± 1.97 28.84 ± 2.54
4 17.50 ± 0.00 23.00 ± 0.00 17.50 ± 0.00 17.50 ± 0.00 27.50 ± 0.00

AWA_phog_
rgsift

2 16.40 ± 16.41 18.30 ± 5.93 9.53 ± 14.56 13.51 ± 12.75 18.66 ± 5.57

3 18.18 ± 6.06 21.62 ± 4.16 17.37 ± 8.69 19.24 ± 6.63 23.03 ± 4.17
4 16.00 ± 0.00 23.00 ± 0.00 17.00 ± 0.00 19.50 ± 0.00 23.50 ± 0.00

AWA_sift_surf 2 22.82 ± 18.64 24.13 ± 8.42 21.67 ± 11.24 23.44 ± 17.76 27.25 ± 9.07
3 21.36 ± 7.12 28.94 ± 5.52 18.99 ± 2.78 27.68 ± 7.96 30.81 ± 3.96
4 17.50 ± 0.00 28.00 ± 0.00 12.00 ± 0.00 25.50 ± 0.00 30.00 ± 0.00

KDDCUP99 2 25.00 ± 25.00 43.42 ± 20.87 48.70 ± 1.06 43.70 ± 34.20 95.00 ± 1.72
3 20.00 ± 16.33 49.80 ± 14.09 31.97 ± 0.45 41.97 ± 15.18 86.36 ± 8.15
4 25.00 ± 0.00 49.50 ± 0.00 25.00 ± 0.00 49.00 ± 0.00 82.00 ± 0.00

COVTYPE 2 33.60 ± 22.00 38.85 ± 11.55 34.60 ± 10.53 34.80 ± 10.78 41.90 ± 5.71
3 31.82 ± 0.00 33.84 ± 0.00 31.31 ± 0.00 34.34 ± 0.00 41.92 ± 0.00

Ours: win/tie/loss 23/0/0 23/0/0 22/1/0 23/0/0 Rank first 22/23

1853Machine Learning (2024) 113:1839–1860	

1 3

the needed resources for users, like computing resources, expert knowledge and labeled
data.

As a novel branch of machine learning research, the learnware paradigm considers a
general and realistic framework where a huge amount of models in the market are sub-
mitted spontaneously by developers from various tasks, and neither the original training
data of developers nor the original data of users can be accessed. These bring grand chal-
lenges for users to identify and reuse helpful models in the market, and the specification
is the original core component of the learnware paradigm to achieve this goal. Recently,
there have been some efforts in this branch attempting to realize a simplified prototype
framework. For instance, Wu et al. (2021) proposed the reduced kernel mean embedding
(RKME) as the specification, which constructs the specification space by mapping the
training data of models to an element of the reproducing kernel Hilbert space (RKHS).
When the user’s task involves certain unseen parts not covered by the learnware market,
based on RKME specification, Zhang et al. (2021) used the mixture proportion estimation
(MPE) technique (Ramaswamy et al., 2016; Zhang et al., 2020) to identify samples from
the unseen parts while assigning the rest to proper models returned from the market. This
paper provides a solution for learnwares from heterogeneous feature spaces by generating
the RKME specification on a unified subspace.

Note that the techniques in transfer learning (Pan and Yang, 2009) and domain adapta-
tion (Ben-David et al., 2007; Wang et al., 2022), which hope to transfer the knowledge
in the source domain to the target domain, typically assume the accessibility of raw data
(Dai et al., 2007; Fernando et al., 2013; Huang et al., 2006; Pan et al., 2010), and thus do
not satisfy the privacy concerns in learnware paradigm. Besides, hypothesis transfer learn-
ing (Kuzborskij and Orabona, 2013) and model reuse (Ding and Zhou, 2020; Zhao et al.,
2020) only apply to specific scenarios where the model to be adapted is helpful to the user
task, and do not consider how to identify helpful models from a market without leaking
raw data. There is limited study to reuse the model from different feature spaces without
accessing raw data (Ye et al., 2018, 2020), but they also assume models are helpful for the
current task. In this paper, we focus on a more comprehensive process comprising how to
accommodate heterogeneous models in the market with appropriate specifications and how
to identify and reuse helpful learnwares for the user’s current task.

(a) Subspace generation (b) User data mapping

Fig. 7   Convergence curves of subspace generation and user data mapping

1854	 Machine Learning (2024) 113:1839–1860

1 3

Besides, since the learnwares in the market are submitted spontaneously by develop-
ers from various tasks and are identified for arbitrary user tasks, the learnware paradigm
are studied in the open environment (Zhou, 2022), and techniques for open-environ-
ment machine learning (Zhao et al., 2021; Zhao and Zhou, 2021) may also bring some
inspiration.

Recently, Zhou and Tan (2022) provided a brief overview of progress on learnware,
which clarified the process of the learnware market and the design of the specification. It
describes the prospects of the learnware paradigm and sheds light on future exploration.

7 � Conclusion

In this paper, we have proposed the first practical approach to handling learnwares from
heterogeneous feature spaces, which makes the learnware paradigm viable in broader
applications. We give a basic formulation for the heterogeneous learnware problem
and propose a novel specification design strategy via integrating the subspace learning,
along with a detailed procedure for establishing and reusing the heterogeneous learn-
ware market. Empirical studies on both synthetic data and real-world tasks substanti-
ate the effectiveness of our methods. Although our method is designed for the basic
scenario that each learnware only comes from one of the disjoint feature spaces, it can
be naturally extended to the more general scenario that the learnware comes from the
Cartesian product of several disjoint feature spaces. To summarize, for the basic hetero-
geneous learnware scenario where the overall feature space can be divided into disjoint
parts and the feature space of the user’s task and learnwares can be any combination
of different parts, the learnware market can be well established and used. For future
research, formalizing the heterogeneous learnware problem in a more general way and
proposing an effective solution are interesting subjects.

Appendix A Detailed optimization procedure

In this section, we provide the omitted details for the optimization procedures.

Detailed optimization of subspace generation

Firstly, we introduce the following proposition of the multiplicative update rule for non-
negative quadratic programming (Sha et al., 2007).

Proposition 1  The general nonnegative quadratic form is defined as

where x is an d-dimensional nonnegative vector, � is a symmetric positive definite matrix
and b is an arbitrary d dimensional vector. Let �+and �−denote the nonnegative matrices
with elements:

f (x) =
1

2
x
⊤�x + b

⊤
x,

1855Machine Learning (2024) 113:1839–1860	

1 3

It is easily to observe that � = �+ − �− . Then, the solution x that minimizes f (x) can be
obtained through the iterative update as

In this proposition, the crucial variables used for update are b , �+x and �−x . Instead of
calculating the complicated second derivative of f (x) to get �− and �− (Cai et al., 2010;
Xu & Gong, 2004), we can calculate � = ∇f (x)|x=0,�x = ∇f (x)|x=0 − � and decompose
�x as �+x , �−x , which gives more concise computation and easier extension for matrix
variable case.

The subspace generation problem is reviewed as

The objective function Eq. (A1) of subspace generation is not convex over all variables
�(i),�(i),�∗

c
 which makes it unrealistic to find its global minimum. We propose an alterna-

tive optimization algorithm based on the multiplicative updated rule like (Févotte & Idier,
2011; Xu & Gong, 2004) with local minimum achieved. For the optimization of Eq. (A1),
we initialize the variables with k-means, and then, we alternately optimize the variables.

(1) Initialization We initialize �(i) and �(i) = [�̂(i);�(i)
c
] with k-means clustering. Let

�(i) = �(i) + 0.1�(i) , where �(i) denotes the cluster outcome of �(i) and �(i) denotes the
matrix whose elements are all 1. We add �(i) in �(i) to avoid ineffective multiplicative
update for those zero elements. We set �(i) = �(i)

(
�(i)

)−1 , where �(i) = diag(n1,⋯ , nk)
and nk denotes the cardinality of the k-th cluster of �(i) . �∗

c
 is set as

∑k

i=1
�(i)

c
∕k . The Lapla-

cian matrix is calculated as �(i) = �(i) − �(i) , where �(i) is the similarity matrix calculated
with cosine similarity [�(i)]kj = cos(xk, xj) = ⟨xk, xj⟩∕

�‖xk‖‖xj‖
�
 on �(i) . �(i) is a diagonal

matrix with [�(i)]kk =
∑

j[�
(i)]kj.

(2) Minimizing O over �(i) with �(i),�∗
c
 Fixed For the brevity, we ignore the super-

script of �(i),�(i),�(i) and abbreviate them as �,�,� where �(i) = (�(i))⊤�(i) . After fix-
ing irrelevant variables, the subproblem is

with � ≥ 0 . Using multiplicative updated rule (Xu & Gong, 2004), we get

�+
ij
=

{
�ij if �ij > 0,

0 otherwise,
�−

ij
=

{|||�ij
||| if �ij < 0,

0 otherwise.

xi ← xi

⎡
⎢⎢⎢⎣

−�i +
�

�2
i
+ 4(�+x)i(�

−x)i

2(�+x)i

⎤
⎥⎥⎥⎦
.

(A1)

min
�(i) ,�(i) ,�∗

c

O =

k∑
i=1

{‖‖‖�
(i) − �(i)�(i)

(
�(i)

)⊤‖‖‖
2

F

+𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i)
c
− �∗

c

‖‖‖
2

F

}

s.t. �(i) ≥0, �̂(i) ≥ 0,�(i)
c
≥ 0,�∗

c
≥ 0,

minO(�) = −2tr
(
�⊤��

)
+ tr

(
�⊤���⊤�

)

1856	 Machine Learning (2024) 113:1839–1860

1 3

where �+ = �+��⊤� , �− = �−��⊤�.
(3) Minimizing O over �(i) with �(i),�∗

c
 Fixed For simplicity of the notation, we abbreviate

�(i) = [�̂(i),�(i)
c
] , �(i) = [�̂(i);�(i)

c
] , �(i) as � = [�̂,�c] , � = [�̂;�c] and � respectively. We

present the Laplacian matrix as � = [�11,�12;�21,�22] = � − � = [�11,�12;�21,�22] − [�11, �12;�21, �22]
and the kernel matrix as � = [�0;�1] based on the shape of � = [�̂;�c].

The subproblem is optimizing O(�) = ‖� − ���⊤‖2
F
+ 𝛼Tr(�⊤��) + 𝛽‖�c − �∗

c
‖2
F

with � = [�̂;�c] ≥ 0 . We rewrite the objective function as

We optimize � = [�̂;�c] in two steps, we first optimize �̂ with fixed �c and then optimize
�c with fixed �̂.

The subproblem for �̂ is optimizing O(�̂) = ‖�̂ − ���̂⊤‖2
F
+ 𝛼Tr(�̂⊤�11�̂)+

2𝛼Tr(�⊤
c
�21�̂) with �̂ ≥ 0 . By taking the first order derivative, we get ∇O(�̂) = −2�0�+

2�̂�⊤�� + 2𝛼�11�̂ + 2𝛼�12�c
 and thus ∇O(�̂)|�̂=0 = −2�0� + 2𝛼�12�c , ∇O(�̂)−

∇O(�̂)|�̂=0 = 2�̂�⊤�� + 2𝛼�11�̂ = (2�̂�⊤�+� + 2𝛼�11�̂) − (2�̂�⊤�−� + 2𝛼�11�̂) .
According to the proposition (1), we get the updated rules as

where �̂ = �0� − 𝛼�12�c , �̂+ = �̂�⊤�+� + 𝛼�11�̂ , �̂− = �̂�⊤�−� + 𝛼�11�̂.
The subproblem for �c is optimizing O(�

c
) = ‖�

c
− ���⊤

c
‖2
F
+ 𝛽‖�

c
− �∗

c
‖2
F
+

𝛼Tr(�⊤
c
�22�c

) + 2𝛼Tr(�⊤
c
�21�̂) with �c ≥ 0 . By taking the first order derivative, we get

∇O(�c) = −2�1� − 2𝛽�∗
c
+ 2�c�

⊤�� + 2𝛽�c + 2𝛼�22�c + 2𝛼�21�̂ . By decompose
the derivative similarly and use the proposition (1), we get the updated rule as

where �c = �1� + 𝛽�c − 𝛼�21�̂ , �+
c
= �c�

⊤�+� + 𝛽�c + 𝛼�22�c , �−
c
= �

c
�⊤�−�+

��22�c
.

(4) Cooperative Normalization This step imposed on �(i) = [�̂(i);�(i)
c
] and �(i) aims to

make the consistency loss expressed by ‖�(i)
c
− �∗

c
‖2
F
 reasonable. It is obvious to check that

(A2)�ij ← �ij

⎡
⎢⎢⎢⎣

(��)ij +
�

(��)2
ij
+ 4�+

ij
�−
ij

2�+
ij

,

⎤
⎥⎥⎥⎦

(A3)

O(�) =
����̂ − ���̂⊤���

2

F
+
����c − ���⊤

c

���
2

F

+ 𝛼

�
Tr(�̂⊤�11�̂) + 2Tr(�⊤

c
�21�̂)

+ Tr(�⊤
c
�22�c)

�
+ 𝛽‖�c − �∗

c
‖2
F
.

(A4)(�̂)ij ← (�̂)ij

⎛⎜⎜⎜⎝

�̂ij +
�

�̂2
ij
+ 4�̂+

ij
�̂−

ij

2�̂+
ij

⎞⎟⎟⎟⎠
,

(A5)(�c)ij ← (�c)ij

⎡⎢⎢⎢⎣

(�c)ij +
�

(�c)
2
ij
+ 4(�+

c
)ij(�

−
c
)ij

2(�+
c
)ij

⎤⎥⎥⎥⎦
,

1857Machine Learning (2024) 113:1839–1860	

1 3

when �(i) and �(i) are solutions of concept factorization, �(i)�(i) and �(i)(�(i))−1 also form
another solutions for any diagonal matrix �(i) with positive diagonal elements. In order to
keep the uniqueness of solution and suitable comparison of different �(i)

c
 , we restrict the �1

-norm of each column of �(i)
c

 as 1 by

where �(i) = diag
�∑

j[�
(i)
c
]j,1,⋯ ,

∑
j[�

(i)
c
]j,d

�
 and d is the dimension of subspace.

(5) Minimizing O over �∗
c
 with �(i),�(i) Fixed The sub problem is given as min�∗

c

∑k

i=1
‖�(i)

c − �∗
c
‖2
F

with �∗
c
≥ 0 , which gives the closed-form solution as

The proposed optimization updates the variables �(i),�(i) = [�(i)
c
, �̂(i)] and �∗

c
 alternately.

The whole algorithm is showed in Algorithm 2.

Algorithm 2 Optimization of subspace generation
Input: local data sets {X1,X2, · · · ,XR} from different feature spaces, feature
space indicators {v1, · · · , vR}, auxiliary data across entire feature space Xc =
[X(1)

c ; · · · ; X(k)
c].

Parameter: Trade-off parameters {α, β}, number of nearest neighbors p for
manifold regularizer, the dimension of subspace d, max iteration T .
Output: New representation of data matrix in subspace {V1,V2, · · · ,VR},
projection tools {B(1),B(2), · · · ,B(k)} used for the user data projection.
1: For each feature space Xi, i ∈ [k], concatenate the corresponding data

matrix Xj satisfying vj = i and get {X(1), · · · ,X(k)}.
2: Initialize the W(i),V(i) and V∗

c with the results of k-means.
3: while max iteration is not achieved do
4: for i = 1 to k do
5: Fix V(i),V∗

c , update W(i) by the rule (A2).
6: Fix W(i),V∗

c , update V(i) = [V(i)
c , V̂(i)] by the rules (A4) and (A5).

7: Cooperatively normalize W(i) and V(i) by Eq. (A6).
8: end for
9: Fix W(i),V(i), i ∈ [k] and update V∗

c by Eq. (A7).
10: end while
11: Decompose each concatenated mapped data matrix {V(1), · · · ,V(k)} as

single elements {V1,V2, · · · ,VR} and V∗
c .

12: Calculate the base matrices of all feature space via B(i) = X(i)W(i), i ∈[k].
13: return mapped data matrices {V1,V2, · · · ,VR} and projection tools of

overall feature space {B(1),B(2), · · · ,B(k)}.

(A6)
�(i)

← �(i)
(
�(i)

)−1
�(i)

← �(i)�(i),

(A7)�∗
c
=

1

k

k∑
i=1

�(i)
c
.

1858	 Machine Learning (2024) 113:1839–1860

1 3

Detailed optimization for user data mapping

The problem is reviewed as Eq. (A8) and can be optimized similarly as Appendix A.1 via
alternately optimizing �(i) and �∗.

First, we discuss the subproblem of �(i) . We mark �(i)
u
,�(i),�(i),�(i) as �,�,�,� in short.

The subproblem is optimizing O(�) = ‖� − ��⊤‖2
F
+ 𝛼Tr(�⊤��) + 𝛽‖� − �∗‖2

F
 with

� ≥ 0 . Thus, ∇O(�) = −2�⊤� + 2�� + 2𝛼�� + 2𝛽(� − �∗) where � = �⊤� . The
updated rule goes similarly as

where � = �⊤� + 𝛽�∗,�+ = ��+ + 𝛼�� + 𝛽� and �− = ��− + ���.
Second, we discuss the update of �∗ , the subproblem of �∗ is min�∗

∑t

i=1
‖�(i) − �∗‖2

F

with �∗ ≥ 0 , which results in �∗ =
1

t

∑t

i=1
�(i).

Acknowledgements  This research was supported by the National Key Research and Development Program
of China (2020AAA0109401), the National Science Foundation of China (62176116, 61921006), the Col-
laborative Innovation Center of Novel Software Technology and Industrialization, and Nanjing University-
Huawei Joint Research Program. The authors would like to thank Peng Zhao for valuable suggestions. We
are also grateful to the anonymous reviewers for their constructive comments.

Author contributions  Peng Tan conceived and developed the procedure, performed the experiments and
wrote the draft manuscript. Zhi-Hao Tan helped shape the procedure and analysis, and revised the manu-
script. Zhi-Hua Zhou and Yuan Jiang conceived the study and were in charge of overall direction and plan-
ning. All authors discussed the results and contributed to the final manuscript. All authors approved the final
version of the manuscript.

Code availability  The code is available at https://​www.​lamda.​nju.​edu.​cn/​code_​RKME_​heter​ogene​ous.​ashx.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

(A8)

min
�(i),�∗

Ou =

t∑
i=1

{‖‖‖�
(i)
u
− �(i)

(
�(i)

)⊤‖‖‖
2

F

+𝛼Tr
((

�(i)
)⊤
�(i)�(i)

)
+ 𝛽

‖‖‖�
(i) − �∗‖‖‖

2

F

}

s.t. �(i) ≥ 0,�∗ ≥ 0,

(A9)�ij ← �ij

⎛⎜⎜⎜⎝

�ij +
�

�2
ij
+ 4�+

ij
4�−

ij

2�+
ij

⎞⎟⎟⎟⎠
,

https://www.lamda.nju.edu.cn/code_RKME_heterogeneous.ashx

1859Machine Learning (2024) 113:1839–1860	

1 3

References

Ben-David, S., Blitzer, J., Crammer, K. et al. (2007) Analysis of representations for domain adaptation. In
Advances in Neural Information Processing Systems 19.

Blackard, J. A., & Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 24, 131–151.

Butler, K. T., Davies, D. W., Cartwright, H., et al. (2018). Machine learning for molecular and materials sci-
ence. Nature, 559(7715), 547–555.

Cai, D., He, X., & Han, J. (2010). Locally consistent concept factorization for document clustering. IEEE
Transactions on Knowledge & Data Engineering, 23(6), 902–913.

Chen, X., Fang, H., Lin, TY., et al. (2015). Microsoft coco captions: Data collection and evaluation server.
arXiv:​1504.​00325.

Chen, Y., Welling, M., & Smola, A. (2012). Super-samples from kernel herding. arXiv:​1203.​3472.
Dai, W., Yang, Q., Xue, G., et al. (2007). Boosting for transfer learning. In Proceedings of the 24th Inter-

national Conference on Machine Learning, pp 193–200.
Ding, Y. X., & Zhou, Z. H. (2020). Boosting-based reliable model reuse. In Proceedings of the 12th

Asian Conference on Machine Learning, pp 145–160.
Fernando, B., Habrard, A., Sebban, M. et al. (2013). Unsupervised visual domain adaptation using sub-

space alignment. In Proceedings of the IEEE International Conference on Computer Vision, pp
2960–2967.

Févotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the �-divergence.
Neural Computation, 23(9), 2421–2456.

Huang, J., Gretton, A., Borgwardt, K. et al. (2006). Correcting sample selection bias by unlabeled data.
In Advances in Neural Information Processing Systems 19.

Johnson, A. E., Pollard, T. J., Shen, L., et al. (2016). MIMIC-III, a freely accessible critical care data-
base. Scientific Data, 3(1), 1–9.

Jumper, J., Evans, R., Pritzel, A., et al. (2021). Highly accurate protein structure prediction with Alpha-
Fold. Nature, 596(7873), 583–589.

Kuzborskij, I., & Orabona, F. (2013). Stability and hypothesis transfer learning. In Proceedings of the
30th International Conference on Machine Learning, pp 942–950.

Lampert, CH., Nickisch, H., & Harmeling, S. (2009). Learning to detect unseen object classes by
between-class attribute transfer. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 951–958.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in

Neural Information Processing Systems 13. pp 556–562.
Lippmann, R., Haines, JW., Fried, DJ. et al. (2000). Analysis and results of the 1999 darpa off-line intru-

sion detection evaluation. In International Workshop on Recent Advances in Intrusion Detection,
pp 162–182.

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on Knowledge & Data
Engineering, 22(10), 1345–1359.

Pan, S. J., Tsang, I. W., Kwok, J. T., et al. (2010). Domain adaptation via transfer component analysis.
IEEE Transactions on Neural Networks, 22(2), 199–210.

Ramaswamy, H., Scott, C., & Tewari, A. (2016). Mixture proportion estimation via kernel embeddings
of distributions. In Proceedings of the 33rd International Conference on Machine Learning, pp
2052–2060.

Schölkopf, B., & Smola, AJ. (2002). Learning with kernels: Support vector machines, regularization,
optimization, and beyond. MIT press.

Sha, F., Lin, Y., Saul, L. K., et al. (2007). Multiplicative updates for nonnegative quadratic program-
ming. Neural Computation, 19(8), 2004–2031.

Smola, A., Gretton, A., Song, L. et al. (2007). A Hilbert space embedding for distributions. In Proceed-
ings of the 18th International Conference on Algorithmic Learning Theory, pp 13–31.

Sriperumbudur, B. K., Fukumizu, K., & Lanckriet, G. R. G. (2011). Universality, characteristic kernels
and RKHS embedding of measures. Journal of Machine Learning Research, 12(7), 2389–2410.

van Breukelen, M., Duin, R. P., Tax, D. M., et al. (1998). Handwritten digit recognition by combined classi-
fiers. Kybernetika, 34(4), 381–386.

Wang, H., Yang, Y., & Li, T. (2016). Multi-view clustering via concept factorization with local manifold
regularization. In Proceedings of the 16th International Conference on Data Mining, pp 1245–1250.

http://arxiv.org/abs/1504.00325
http://arxiv.org/abs/1203.3472

1860	 Machine Learning (2024) 113:1839–1860

1 3

Wang, Y., Wang, C., Xue, H., et al. (2022). Self-corrected unsupervised domain adaptation. Frontiers of
Computer Science, 16(5), 1–9.

Wu, X. Z., Xu, W., Liu, S., et al. (2021). Model reuse with reduced kernel mean embedding specification.
IEEE Transactions on Knowledge & Data Engineering. https://​doi.​org/​10.​1109/​TKDE.​2021.​30866​19.

Xu, W., & Gong, Y. (2004). Document clustering by concept factorization. In Proceedings of the 27th
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp 202–209.

Ye, H. J., Zhan, D. C., Jiang, Y. et al. (2018). Rectify heterogeneous models with semantic mapping. In
Proceedings of the 37th International Conference on Machine Learning, pp 5630–5639.

Ye, H. J., Zhan, D. C., Jiang, Y., et al. (2020). Heterogeneous few-shot model rectification with semantic
mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11), 3878–3891.

Zhang, Y. J., Yan, Y. H., Zhao, P. et al. (2021). Towards enabling learnware to handle unseen jobs. In Pro-
ceedings of the 35th AAAI Conference on Artificial Intelligence, pp 10,964–10,972.

Zhang, Y. J., Zhao, P., Ma, L., et al. (2020). An unbiased risk estimator for learning with augmented classes.
In Advances in Neural Information Processing Systems 33. pp 10,247–10,258.

Zhao, P., & Zhou, Z. H. (2021). Learning from distribution-changing data streams via decision tree model
reuse. Scientia Sinica Informationis, 51(1), 1–12.

Zhao, P., Cai, L. W., & Zhou, Z. H. (2020). Handling concept drift via model reuse. Machine Learning,
109(3), 533–568.

Zhao, P., Zhang, Y. J., & Zhou, Z. H. (2021). Exploratory machine learning with unknown unknowns. In
Proceedings of the 35th AAAI Conference on Artificial Intelligence, pp 10,999–11,006.

Zhou, Z. H. (2016). Learnware: On the future of machine learning. Frontiers of Computer Science, 10(4),
589–590.

Zhou, Z. H. (2022). Open-environment machine learning. National Science Review, 9(8), nwac123.
Zhou, Z. H., & Tan, Z. H. (2022). Learnware: Small models do big. arXiv:​2210.​03647.
Zhu, G. W. Z., Fan, R. D., Luo, Y. J., et al. (2022). Incomplete multi-view clustering via independent self-

representation learning. Scientia Sinica Informationis, 52(7), 1186–1203.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

https://doi.org/10.1109/TKDE.2021.3086619
http://arxiv.org/abs/2210.03647

	Towards enabling learnware to handle heterogeneous feature spaces
	Abstract
	1 Introduction
	2 Preliminary
	3 Problem formulation
	4 Our approach
	4.1 Establishing stage
	4.2 Deploying stage
	4.3 Overall procedure and discussion

	5 Experiments
	5.1 Synthetic task
	5.2 Real-world tasks

	6 Related work
	7 Conclusion
	Appendix A Detailed optimization procedure
	Detailed optimization of subspace generation
	Detailed optimization for user data mapping

	Acknowledgements
	References

