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Abstract

Machine learning under limited computational resources has
gained increasing attention recently. A common yet challeng-
ing scenario is managing multiple time-constrained learning
tasks with budgeted computational resources, known as Com-
putational Resource Efficient Learning (CoRE-Learning). To
this end, a recently proposed framework, Learning with Adap-
tive Resource Allocation (LARA), offers a preliminary solu-
tion. In this paper, we point out the limitations of LARA,
including its reliance on interpolation-based extrapolation
methods, the need for a fixed and long exploration phase,
and the use of high-frequency re-estimation and reallocation
strategies. To address these issues, we propose Look-ahead
and immediate Resource Allocation (LaiRA). Our approach
incorporates an efficient Dynamic Kalman Filtering (DKF) for
look-ahead feasibility check with limited data and a weighted
online estimator for immediate performance evaluation. For
resource allocation, LaiRA constructs an Upper Confidence
Bound (UCB) to enable adaptive exploration and introduces
an adaptive time-slicing method to reduce task switching costs.
Empirical studies validate the effectiveness of our approach.

Introduction

Machine learning (ML) under limited computational re-
sources has gained increasing attention due to its widespread
occurrence in real-world model training process, from large
language model training (Achiam et al. 2023) to tiny train-
ing devices (Lin et al. 2023). Previous efforts have made
significant progress in improving computational resource
usage efficiency (Dean et al. 2012; Li et al. 2014) and com-
pressing model sizes (Frankle and Carbin 2019; Mirzadeh
et al. 2020), primarily for single learning tasks. However, a
common resource-limited scenario is less explored: multiple
time-constrained learning tasks competing for insufficient
resources (Zhou 2024; Wang et al. 2024).

Such resource-limited scenarios are common in real-world
production environments, where learning models need to
be regularly retrained to meet specific performance goals
within strict deadlines for regular product releases (Wang,
Liu, and Shen 2020; Gao et al. 2021; Gu et al. 2023). For
instance, recommendation systems require daily fine-tuning
with fresh data to ensure real-time performance, while fi-
nancial risk management models must incorporate the latest
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market data to provide timely predictions and risk assess-
ments. In such scenarios, developers often face numerous
time-sensitive tasks with strict performance requirements but
lack sufficient computational resources to handle them all
simultaneously. Consequently, they typically adopt a first-
come, first-served (FCFS) strategy for resource allocation.
However, this approach can lead to inefficiencies: early tasks
may continue to occupy resources inefficiently, delaying crit-
ical tasks and affecting timely delivery.

To this end, Zhou (2024) proposed Computational Re-
source Efficient Learning (CoRE-Learning), which is the first
learning-theoretic framework that explicitly models the in-
fluence of computational resource on learning performance.
In addition to its theoretical importance, the CoRE-Learning
framework also introduces the scheduling of computational
resource into learning process, enabling a time-sharing usage
of computational facilities. Thus, it can guide the design of
time-sharing schedules of multiple time-constrained learning
tasks with budgeted computational resources. This schedul-
ing process involves real-time evaluation of the learning
progress of each task and adaptive resource allocation. In this
line of research, a key challenge is that effective allocation re-
lies on accurate evaluation of learning progress, which itself
consumes resources. Consequently, it is important to balance
accurate evaluation and effective allocation over budgeted
resources, similar to the exploration-exploitation dilemma in
bandit problems (Lattimore and Szepesvari 2020).

Under the CoRE-Learning paradigm, Wang et al. (2024)
made the first attempt by introducing Learning with Adap-
tive Resource Allocation (LARA) approach. LARA predicts
the resource requirements for each task and models alloca-
tion as an optimization problem based on these predictions,
then employs an exploration-then-exploitation strategy to bal-
ance prediction and allocation. However, LARA faces two
critical limitations: (i) its heavy reliance on prediction ac-
curacy necessitates an extensive exploration phase, which
potentially reduces the time available for effective resource
allocation; (ii) to compensate for prediction errors, LARA
requires high-frequency re-estimation and reallocation, re-
sulting in excessive task switches, which is impractical and
inefficient in the real world.

To tackle the challenges of CoRE-Learning and overcome
LARA’s limitations, we propose the Look-ahead and immedi-
ate Resource Allocation (LaiRA) approach. LaiRA combines



look-ahead and immediate performance evaluation to en-
hance accuracy, reduces task switching frequency through
adaptive time slicing, and eliminates the need for a fixed
exploration phase with an adaptive exploration strategy. It
comprises three key components: (i) Look-ahead feasibil-
ity check: this component employs our proposed efficient
Dynamic Kalman Filtering (DKF) method, effectively identi-
fying infeasible tasks with limited observed loss data; (ii) Im-
mediate performance evaluation: this component employs a
PD control mechanism to adaptively adjust allocation periods
based on immediate prediction accuracy, along with an effi-
cient weighted estimator to track immediate loss convergence
progress; and (iii) Resource allocation with exploration: this
component leverages a UCB-based adaptive exploration strat-
egy to dynamically guide resource allocation decisions. Ex-
perimental results demonstrate that LaiRA achieves better
resource utilization efficiency while reducing task-switching
frequency in the CoRE-Learning paradigm.

Preliminary

In this section, we present CoRE-Learning framework and
review recent progress (Wang et al. 2024).

Problem Formulation

The CoRE-Learning framework (Zhou 2024; Wang et al.
2024) considers a task bundle {75}, over time horizon
[T], where each task Ty, is characterized by: (i) a time con-
straint including the beginning time b, and the user-defined
deadline time dj, such that 1 < by < dj < T, (ii) the over-
all computational resource capability, characterized by the
data budget N;, which represents the upper limit of the data
amount that k-th task can learn within any unit time ¢ € [T].
At each time step ¢, the system maintains an active task set
Ay = {k | by <t < di, k € [K]} and has to determine
a resource allocation ratio 7y, , for each active task k € A,
where 7y, + IV}, represents the actual amount of data processed
for task k at time ¢. These allocation ratios must satisfy the
resource constraints such that Vt € [T'],Vk € Ay, ney > 0,
and ), A, Mkt < 1. At the beginning of next time step
t + 1, the system observes the last round training loss £ (s)
for each task, where s = Zf: b, Mk, Nk represents the cumu-
lative amount of data processed up to the time ¢. A task k
is considered successful if its loss reaches the target thresh-
old within its time constraint: Ek(Zbek Mkt Ni) < € and
will be removed from the active task set. The objective is
to maximize the number of successful tasks within [T']. The
CoRE-Learning problem can be formulated as follows:

dy.
max Z I |4 Z Mkt Nk | < €k
{nk,ttee(x),te(T) ke[K] M

t=by

s.t. Vte[T], Z Nk, < 1,Vk € [K], ne > 0.
k€A

Here, the loss function ¢}, is unknown, so real-time observa-
tions for each task are needed to update the estimation of #j,
before making the scheduling decisions.

Previous Effort

Under the CoRE-Learning framework, Wang et al. (2024)
proposed the Learning with Adaptive Resource Allocation
(LARA) approach. Since the loss curve /j, is unknown,
LARA uses weighted least squares (WLS) to extrapolate
the curve and estimate the resources each task needs to suc-
ceed. It then applies an adaptive search method to solve the
allocation problem based on the estimated curve. To ensure
effective allocation, LARA adopts an explore-then-exploit
strategy to improve prediction accuracy, combined with high-
frequency re-estimation and reallocation to mitigate com-
pounding errors from prediction and allocation.

However, their method faces a significant gap between re-
source prediction and allocation. The solution to problem (1)
relies on accurately estimating the minimum resource require-
ments for each task, making it highly dependent on prediction
accuracy. This dependence necessitates a long exploration
period to achieve accurate predictions, but the extended ex-
ploration phase can cause some tasks to fail due to insufficient
allocation. As a result, even though their allocation method is
theoretically optimal for the estimated loss curves, the overall
performance is still heavily limited by prediction accuracy.
Additionally, high-frequency re-estimation and reallocation
lead to extensive task switching and substantial computa-
tional costs, which is impractical for real-world scenarios.

Our Approach

In this section, we present the Look-ahead and immediate
Resource Allocation (LaiRA) approach for CoRE-Learning,
which operates in two phases: a look-ahead feasibility check
and an immediate performance evaluation for resource allo-
cation. In the look-ahead phase, LaiRA employs Dynamic
Kalman Filtering (DKF) method to identify and eliminate
infeasible tasks. In the immediate phase, it utilizes weighted
least squares with UCB strategy to guide resource allocation
among feasible tasks, and adaptively adjust the allocation
period based on immediate prediction accuracy.

Instead of scheduling at every unit time step ¢, LaiRA op-
erates on time slices indexed by 7. Time slice 7 corresponds
to the interval (t,,t,41] C [T], with length M, = ¢, —t,
and ¢; = 0. For notational simplicity, in the following we
index time by slices 7 (e.g., Nk, denotes the allocation to task
k in slice 7, and A is the corresponding active set), and we
let the cumulative data s have two indices: (i) s,, represents
the data volume at the n-th loss observation (reported every
B data points, i.e., s,, = n - B); (ii) s’ﬁ represents the data
volume of k-th task at the end of time slice 7.

Look-ahead Feasibility Check

In this part, we introduce our feasibility check method. This
process requires performing a look-ahead extrapolation of
the loss curve based on a small amount of observed loss
and corresponding cumulative data volumes. The goal is to
predict whether a task can succeed with all remaining time,
thereby identifying tasks that are impossible to complete.

Non-stationary Loss Model. Wang et al. (2024) models
the loss curve using a negative power function and applies a



logarithmic transformation to enable linear extrapolation via
regression. Motivated by empirical observations showing that
log-transformed loss curves exhibit gradual drift (detailed
discussion provided in a longer version), we model the loss
curve as a non-stationary process, where the power function
parameters evolve with cumulative data. Specifically, for the
k-th task T, we model the relationship between the loss
(x(s) and the cumulative data volume s as €1, (s) = ak s,
where unknown parameters a® and b* gradually change with
s. The training process outputs an averaged loss every B
data points, and after observing n-th data pairs {s,, £x(sn)}.
applying a logarithmic transformation yields a time-varying
linear regression model:

=X, 0F 4ok, @)

where 78 £ In 04, (s,,), Xn 2 Insp; 1], ok 20— bfn;ln afn],
and v¥ is the observation noise which is assumed to follow a

Gaussian distribution, i.e., v¥ ~ N(0, R).

Second-order Loss Dynamics. While the log-linear
model (2) enables extrapolation of the loss curve at each
step, it is not enough to capture the dynamics of parame-
ters. Empirical observations (provided in a longer version)
show that the slope and intercept of the log-transformed loss
curves change slowly with data volume, indicating that pa-
rameter changes are smooth enough to allow for first- and
second-order modeling. To improve prediction accuracy un-
der limited observations, we further model the evolution of
the parameter 6 using a second-order dynamic system. We
model the dynamics of 6% with state ©F 2 [9%: 9%, 6%] € RS,

n>ni'n
where 6% and 6% represent the first- and second-order changes
(i.e., velocity and acceleration) of the parameters over time,
respectively. This allows us to capture parameter drift using
the following linear dynamic system:

OF | =FOF +wk, rF=HTOF 4 (3)

where the observation matrix H,, £ [In s,,; 1;0; 0;0; 0] and
F € R%%6 is the state transition matrix defined as

L Apl, 1AL
F2 |0 I, ALy | . 4)
0 0 I

The term Ay, in (4) represents the step size, which controls
the impact of 6¥ and 6% to the parameter updates 6*. The
process noise wk € RG follows a Gaussian dlstrlbutlon
wk ~ N(0,Q), where Q € R5%6 is the covariance matrix.
The transition matrix F’ is designed to capture second-order
dynamics of the underlying parameter ©F, following a stan-
dard formulation commonly used in state-space models for

tracking evolving latent variables (Welch and Bishop 1995).

Dynamic Kalman Filtering. Based on dynamics (3), we
propose the Dynamic Kalman filtering (DKF) to estimate the
unknown non-stationary parameters ©F . Given the estimation

of state ©F and covariance P* £ E [(@’f OF)(ek —6k)T]

at step n, we can predict ©F 41 and Py, atstep n + 1 based
on the state transition (3),

éﬁ—&-l\n = F@lrcw ﬁlf—i—lm = FﬁrlfFT + Q (5)

7

Then we will update the prediction (5) based on the observed
data {r%_, | H, .} as follows,

Ok _ Ok k k T Ak
@n+1 - C_‘)n+1|n + Ln+1 (rnJrl - Hn+1@n+1|n)
Dk _ k T Dk

Pn+1 - (I6 - Ln+1Hn+1)Pn+1|n7

where LK 11 is the Kalman gain for minimizing the mean
squared error (Welch and Bishop 1995), as shown below:

(6)

Dk
Lk L= Pn+1|an+1 %
n+1 = .
R+ Hn+1Pn+1|an+1

After estimating the underlying parameter using Eq. (6) as
OF, we further predict whether allocating all remaining time
to task k£ would allow its loss at time dj, to reach €. Specif-
ically, at the beginning of time slice 7, if the remaining
time is fully allocated to task k, it can process Ny (dy — t;)
data volume. Since the training process typically outputs
an averaged loss every B data points, we need to predict
Dy, = | Ni(dy, — t,)/B] steps of loss. To achieve this, we
calculate the future parameter state as ©F, , = FP+Ok
and the cumulative data processed by that time would be
SntDp = Sn + Ni(dr — t;). The estimated loss at that point
is then given by:

~ Pk

U(3n4Dy) =T, SntDy PR, ®)

where @*  and 0%

b, $nip, are calculated by the first two

dimension of @,; +p, Finally at ¢-, we can maintain the
feasible task set: F, = {k | Zk(aner) <er, k€ A}

Immediate Performance Evaluation

After determining the feasible task set F.., we further evaluate
the immediate performance of each feasible task to guide
resource allocation. Specifically, we extrapolate the loss curve
for each task over the upcoming time slice 7 by Weighted
Least Squares (WLS), where the length M- is dynamically
adjusted. In partlcular, for the k-th task 7y, after observing
n data pairs {X;, rl »_, and adopting the linear model (2),

the estimator @fL is computed as follows:

61, = min X613 + Zlv”*i<X? 6 O
where v € (0, 1) is the discounted factor. Problem (9) ad-
mits a closed-form solution 6% = V=1 (X1, y*~irk X,),
where V,, £ A5 + Zi:l T ZXl-XiT is the covariance ma-
trix. Moreover, the closed-form solution can be reformulated
into an online update format (Haykin 2002, Chapter 10.3).
This new format processes each data only once, hence elim-

inating the need to store historical data and significantly
enhancing the efficiency of the estimation.

Prediction Error Analysis. For the estimator (9), we pro-
vide the following prediction error bound for immediate ex-
trapolation. Notably, unlike latest analysis of WLS (Russac,
Vernade, and Cappé 2019; Wang, Zhao, and Zhou 2023),
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Figure 1: Linearized loss curve.

which focus on interpolation estimation error, we consider
the prediction error between the estimation @fl based on n
data points and a future parameter Hﬁ, where n’ > n. This re-
quires additional analysis of the parameter’s future evolution.

Theorem 1. For any v € (0,1) and § € (0,1), with proba-
bility at least 1 — 0, the following holds foralln > 1,n’ > n

oF — ok,

P _9§+1H2

+ L,V?2 Z'y” i||gk, —

2+ﬂn7

where 3, = \F/\S‘FR\/Qlogé-&-Qlog (1+%>

L, £ || Xn ||, and S is the upper bound of unknown parame-
ter such thatVk € [K],n > 1, ||05LH2 <&S.

The proof of Theorem 1 is provided in a longer version.
In above prediction error bound, the first term reflects the
effects of past parameter drift, controlled by a discount factor
v that downweights older changes. The second term cap-
tures the impact of future parameter changes, which cannot
be adaptively handled by WLS, leading to degraded perfor-
mance as the prediction horizon increases. The ﬁnal term,
(., accounts for the effect of observation noise v . Based
on this result, we construct a lower confidence bound in the
Resource Allocation section to support adaptive exploration.

Adaptive Time Slicing. At the beginning of time slice 7,
we need to determine the length M,. For 7 < 4, we fix
M, = M; with given initial slice length. For 7 > 4, we
use the following adaptive time slicing mechanism. Let s*
denote the cumulative data of task & up to ¢.. We can observe
the actual loss reduction for each task durmg last time slice
T—las Aly 1 = le(s®_ ) — £(s"). We then compute
the average prediction error across all tasks for the 7 — 1:

1

o (Alkr1 = Abr |, (10)

keFr_1

€r—1 =

where A?;m,l represents the predicted loss reduction for
task 7 based on the immediate prediction (9) at ¢,_;. To

set M, we first compute a temporary M, by a proportional-
derivative (PD) control mechanism:

M‘r = MT—1+KP(6T—1 —87—_2)+Kd(€7-_1—267—_2—|—67—_3),

Algorithm 1: LaiRA

Input: Task bundle {7;}X_,, initial slice length M, PD
parameters K, K,

1: Ag + 0, Fo 0

2: forr=1,2,... do

3:  Update active set A; set F, «+ A,

4. fork e A, do

5: Update DKF state ©F by Eq. (6), predict
@’fH_D — FP:@F, and Ek(sn+Dk) by Eq. (8); if
Ek(5n+Dk) > ¢, then F,. + F, \ {]f}

6: end for

7. M, < M, if T < 4, else update M. by PD control

8: fork e F,do

9: Update WLS estimator by Eq. (9), compute p* by

Eq. (11) and /’)\f by Eq. (12)
10:  end for
I ke ¢ argmaxger pr/phsset e, » = 1k, =0
for k # k,; learn ny, M, Ny, data for task k.,
12: end for

where K, and K are the proportional and derivative gains,

and then let M, = max(1, [M,]) to ensure that the time
slice is at least 1 time unit and is an integer. This control
mechanism adapts the time slice length based on predic-
tion accuracy: when predictions are accurate (low e, _1), the
time slice length increases to reduce task switching over-
head; when predictions are less accurate (high e,_1), the
time slice length decreases to enable more frequent adjust-
ments to changing conditions.

Resource Allocation

After determining the length of time slice M, we allocate
this time slice to the task with the highest priority score
with UCB. Specifically, we first calculate the minimum re-
quired rate of loss reduction for task success. We observe
the linearized loss In ¢;,(s¥), as well as the target log-loss
In €. Based on these observations, we define the minimum
required rate of loss reduction on the linearized loss curve as
a fundamental feasibility criterion for task success:

ko In ;. (s%) — Iney
Pr In(sk + (dy, — t;) - N) —In sk’

(1D

where the denominator represents the logarithmic increase
in resource amount from the current already used s¥ to the
maximum available resource s¥ + (di, — t,) - Ny.

Next, we use the WLS (9) to evaluate the task’s immediate
performance over current time slice M. We let n* = s*/B
denote the number of observed loss data pairs for task &, then
Xk = [In(s® + M, - Ni,); 1] denote the predicted resource

amount, and @C'IL « 1s the estimated parameter. To encourage

exploration, we construct the immediate predicted reduction
rate with a lower confidence bound (LCB) 7% 1 for the loss of
each task, which is derived from the noise part of Theorem 1,
by using the LCB 7 11, We can construct a heuristic upper
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Figure 2: The success number of different methods.

confidence bound (UCB) for the predicted reduction rate ﬁf_

N _ In (. (s}) — ?ﬁ+1
T k . _ k
lnA(ST +AJ714T Ni) 11157 (12)
?ﬁﬂ = <Xf+1a9nf;> - 6n’;‘ Xerlefl :
k

ni

As shown in Figure 1, if the predicted reduction rate (12)
exceeds the required minimum (11), the task is feasible; oth-
erwise, it is unlikely to succeed with the available resources.
We then adopt a priority-based strategy: for time slice 7, all
resources go to the task with the highest score,

1 if k = argmax pr/pk,
Ner = ‘ g keF, pT/pT (13)
0 otherwise.

A higher predicted reduction rate p¥ indicates more efficient
resource usage, while a higher required reduction rate p*
reflects a more difficult task. Thus, the ratio p* /p* captures
both efficiency and difficulty, making it a suitable priority
score for resource allocation. Notably, this allocation strategy
inherently supports adaptive exploration through the use of
lower confidence bounds in calculating p¥, such that high
p¥ value indicates either rapid loss reduction or high uncer-
tainty, naturally balancing exploitation and exploration. The
complete LaiRA algorithm is shown in Algorithm 1.

Experiments

This section presents experimental results, covering evalua-
tions on pure&mixed task bundle, scalability tests, extrapola-
tion evaluation, and an ablation study of key components.

Pure & Mixed Task Bundle Experiment

In this experiment, we evaluate our algorithms using two task
bundles: (i) the pure task bundle, where all tasks use the same
dataset; and (ii) the mixed task bundle, where different mod-
els are trained on separate datasets. This allows us to validate
both the effectiveness and robustness of our algorithms.

Num Model dk €k Nk
1 ViT 1560 1.23 224
2 LSTM 1000 0.23 247
3 CNN 1680 041 274
4 ResNet-18 1600 0.38 122
5 ResNet-34 1560 028 72
6 VGG 1550 044 58
7 EffNet 1590 048 90
8 Squiz 1250 1.08 111
9 LeNet 1200 0.27 580

10 DenseNet 1400 0.48 22

Table 1: The setting of pure task bundle.

Num | Task Model dy. €k Ny,
1 CcvV ViT 500 045 227
2 CV ResNet-18 975 0.11 113
3 (% ResNet-34 1250 0.42 71
4 CV CNN 1400 0.10 328
5 RL RL_Net 980  0.0012 61
6 NLP RNN 1360 0.01 578
7 NLP MLP 1200  0.08 1265
8 NLP GRU 1380 0.12 826
9 Audio  Audio.TSFM 1120 0.0024 33
10 Audio LSTM 1120  0.0015 210

Table 2: The setting of mixed task bundle.

Setting. The pure task bundle experiment focuses different
model training tasks on the CIFAR-10 dataset (Krizhevsky,
Hinton et al. 2009), while the mixed task bundle experiment
covers a range of diverse machine learning tasks. In each
experiment, 10 models are trained simultaneously, beginning
at time zero. Detailed configurations including model type,
deadline dj, success threshold ¢, and data budget Ny, are
provided in Table 1 for the pure task bundle and Table 2
for the mixed task bundle. More details about the task and
parameter settings are provided in a longer version.

We compare our LaiRA method with several classical
scheduling strategies and recent advancements: (a) Uniform
Allocation (UA), which evenly distributes resources among
all active tasks; (b) Shortest Task First (STF), which pri-
oritizes tasks with the closest deadlines; (c) LARA (Wang
et al. 2024), an adaptive resource scheduling strategy; (d)
Short Term Allocation (STA), a variant of LaiRA without
look-ahead feasibility check; (e¢) Round Robin (RR), which
allocates resources to tasks in a round-robin manner; and
(f) Successive Halving (SH) (Karnin, Koren, and Somekh
2013), a classical hyper-parameter optimization strategy that
allocates resources to the most promising tasks.

Results. Figure 2(a) shows the number of successful tasks
in the pure task bundle experiment. STF over-allocates to
infeasible short tasks (2, 9), while UA wastes resources on
infeasible long tasks (5,6), leading to poor performance.
LARA identifies hard tasks but spends excessive time on the
exploration phase. STA explores adaptively but still wastes
effort on infeasible ones, completing only three. RR com-
pletes two tasks but lacks adaptiveness. Although SH also
considers scheduling based on observed loss curves of mul-
tiple training tasks, its goal is to select a single best model,
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Figure 4: Scalability experiments.

rather than maximizing overall success. LaiRA quickly filters
out infeasible tasks and focuses on feasible ones, achiev-
ing the best result. Figure 2(b) reports results for the mixed
task bundle. STF over-commits to one short task; UA finishes
three under tight deadlines. LARA completes only three tasks
and again wastes early opportunities (9, 10). STA finishes
only two after misallocating to infeasible ones (2,6, 7). RR
remains stable at three. SH still completes only one due to
its mismatch with the scheduling goal. LaiRA completes six
tasks which is the best overall. We provide allocation process
in a longer version to validate our explanation.

Loss Curve Extrapolation Evaluation

In this part, we evaluate the performance of our extrapolation
methods on pure&mixed task bundles.

Setting. We compare our Dynamic Kalman Filter (DKF)
with four baseline extrapolation methods: (i) Least Squares
(LS), (i) Weighted Least Squares (WLS), (iii) standard
Kalman Filter (KF) without transition modeling, and (iv) the
My estimator (Alabdulmohsin, Neyshabur, and Zhai 2022).
Evaluation is based on two metrics: (a) average prediction
error |{, — x| /Ly, where £, is the predicted loss and ¢, the
actual loss; and (b) computational efficiency, measured by
average time per prediction. We predict the 500th point on

each task’s loss curve, using 1% to 20% of the data as input.

Results. Figure 3(a) shows that for the pure task bundle,
prediction error decreases as more data becomes available.
DKEF consistently outperforms other methods, especially with
limited data. When data exceeds 20%, WLS performs well,
but DKF and WLS still outperform LS and KF. A similar
trend appears in Figure 3(b) for the mixed task bundle, with
DKF leading under data-scarce conditions. Figure 3(c) com-
pares computational efficiency. DKF is about 8x slower than
other one-pass baselines due to matrix operations, but still
about 800x faster than offline M 4 estimator. This shows DKF
offers a acceptable trade-off between accuracy and efficiency.

Scalability Experiment

We conducted a scalability experiment to evaluate our ap-
proach as the number of tasks increases.

Setting. In this experiment, we evaluate both the perfor-
mance of our methods and the task switches number ranging
from 10 to 100 tasks. Each task involves training an LSTM
on CIFAR-10, with varying deadlines and success thresh-
olds. Task bundles follow a 2 : 6 : 2 ratio of short-, mid-, and
long-term tasks to reflect different urgency levels. To increase
difficulty, we tighten deadline gaps among mid-term tasks
and randomly select at least 10% of them to have harder €.

Results. Figure 4(a) shows that, as the number of tasks
increases, LaiRA consistently outperforms all other meth-
ods. UA and STF perform the worst, while LARA and STA
benefit from exploration, but differ in adaptability. LARA
lags slightly due to its fixed exploration phase, while STA
performs better with adaptive exploration. LaiRA achieves
the best results by using a look-ahead feasibility check to
exclude infeasible tasks early, enabling efficient allocation
to feasible ones. Figure 4(b) compares task-switching counts
between LaiRA and LARA, showing that LaiRA requires sig-
nificantly fewer switches, confirming its better performance
with lower switching overhead.

Ablation Study

In this experiment, we evaluate the effectiveness of the key
components in LaiRA: the Look-Ahead Feasibility check
based on DKEF, the adaptive time slicing strategy based on
PD, and the adaptive exploration strategy based on UCB.
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Figure 5: Ablation study on different components of LaiRA.

Setting. We compare LaiRA with three simplified variants:
(i) LaiRA-UCB: removes the UCB strategy and directly al-
locates based on the predicted loss; (ii) LaiRA-PD: disables
adaptive time slicing by using a fixed time slice interval; (iii)
LaiRA-DKEF: disables the long-term feasibility check.

Results. We evaluate LaiRA and its three simplified vari-
ants under both pure and mixed task bundles. Figure 5(a)
shows that removing UCB or the DKF reduces performance,
while removing the adaptive time slicing does not. This is be-
cause the adaptive time slicing mainly reduces task switching
without affecting estimation accuracy or decision-making.
Figure 5(b) shows that removing UCB, PD or the DKF in-
creases the number of switches. Without UCB, direct alloca-
tion based on predictions causes frequent updates of priority
queue, whereas UCB stabilizes the priority queue, we provide
more details to validate this in a longer version. Removing
the DKF eliminates the initial uniform allocation, leading
to higher uncertainty and more frequent switching due to
UCB’s exploration strategy. These results demonstrate that
each LaiRA component is essential for achieving strong per-
formance and efficient task switching.

Related Topics

In this section, we review topics related to resource allocation
in machine learning and discuss their differences with the
CoRE-Learning framework studied in this work.

Machine Learning Clusters. Research in ML clusters has
explored resource scheduling across multiple tasks, focus-
ing on minimizing job completion time (JCT) (Zhang et al.
2017; Peng et al. 2018; Li et al. 2023) or guaranteeing dead-
lines (Wang, Liu, and Shen 2020; Gao et al. 2021; Gu et al.
2023). While sharing similar goals, our problem differs funda-
mentally in three aspects. First, JCT-focused methods rely on
pre-trained models to predict loss curves, while we address
unknown tasks requiring online learning progress evaluation.
Second, deadline-focused methods define success by train-
ing iterations, whereas we target loss thresholds. Third, we

explicitly account for the cost of progress evaluation itself,
introducing an exploration-exploitation trade-off absent in
prior work. These distinctions make existing cluster schedul-
ing methods unsuitable for our setting. See (Ye et al. 2024)
for a comprehensive survey.

Distributed Machine Learning. Distributed ML (Dean
et al. 2012; Li et al. 2014) accelerate single large-scale model
training through parallelization strategies (e.g., data/model
parallelism) and load balancing, typically assuming sufficient
resources. In contrast, our work addresses multiple tasks
competing for limited resources, requiring real-time progress
evaluation and strategic prioritization to maximize overall
success rather than individual task efficiency.

Tiny Machine Learning. Tiny/Edge ML (Lin et al. 2023)
manages learning on resource-constrained devices. Recent
work (Wang et al. 2020a,b; Zhou et al. 2021) has studied
concurrent task execution under power constraints. However,
these approaches assume access to pre-trained models or
predetermined learning trajectories, eliminating the need for
online progress evaluation. Our work tackles the harder prob-
lem of simultaneous learning and allocation without such pri-
ors, necessitating real-time prediction under computational
constraints and an explicit exploration-exploitation balance.

Conclusion and Future Work

This paper focuses on the Computational Resource Efficient
Learning (CoRE-Learning) problem, which involves manag-
ing multiple time-constrained tasks under limited computa-
tional resources. We identify key limitations in the existing
LARA algorithm. First, LARA uses WLS for long-term loss
curve extrapolation, which relies on a long exploration phase
to ensure accuracy shortens the resource allocation phase,
causing some tasks to fail. Additionally, LARA’s resource
allocation requires frequent re-estimations and reallocations,
leading to high task-switching costs. To address these issues,
we propose LaiRA, a novel approach with two phases. In the
look-ahead phase, LaiRA uses a non-stationary model and
Kalman Filtering to predict loss curves and account for future
parameter changes. In the immediate phase, LaiRA employs
WLS with a UCB-based adaptive exploration strategy for
dynamic resource allocation and an adaptive time-slicing
strategy to minimize switching costs. Through experiments,
we demonstrate LaiRA’s effectiveness in managing multiple
tasks under resource constraints.

In LaiRA, we propose a novel non-stationary loss curve ex-
trapolation model that incorporates future parameter changes,
leveraging our proposed Dynamic Kalman Filtering method
for more accurate loss curve prediction. In the adaptive explo-
ration component of LaiRA, the current UCB construction
relies only on the degree of sampling, without fully account-
ing for the potential impact of parameter changes. Future
research could focus on improving the construction of con-
fidence bounds by explicitly incorporating parameter drift
components. These advancements could lead to more robust
and efficient resource allocation strategies in CoRE-Learning.
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Figure 6: Log-transformed loss curves, slope, and intercept across tasks in Table 1.

Empirical Observations on Non-stationary Loss Dynamics

In this section, we provide detailed empirical observations that motivate our non-stationary loss model and second-order dynamic
system design in Section .

Observation on Non-stationary Loss Curves

Prior work (Wang et al. 2024) models the loss curve using a negative power function and applies a logarithmic transformation to
enable linear extrapolation via regression, assuming the log-transformed loss curves are strictly linear. However, our empirical
observations reveal a different picture.

As shown in Figure 6(a), the log-transformed loss curves are not strictly linear but exhibit gradual drift over the course of
training. This phenomenon suggests that the underlying parameters of the power function vary during training, rather than
remaining constant as assumed in previous work. This observation motivates us to model the loss curve as a non-stationary
process, where the power function parameters a* and b* evolve with cumulative data s, capturing the non-stationary nature of
the loss curve.

Observation on Parameter Dynamics

To further understand the dynamics of these evolving parameters, we examine how the slope and intercept of the log-transformed
loss curves change with data volume. Figure 6(b) shows the evolution of the slope (corresponding to parameter —b*) across
different tasks, while Figure 6(c) shows the evolution of the intercept (corresponding to parameter In a¥).

From these figures, we can observe that both the slope and intercept change slowly and smoothly with data volume, rather
than remaining constant or changing abruptly. These findings indicate that the parameter changes are smooth enough to allow for
first- and second-order modeling. Specifically, the gradual nature of these changes suggests that modeling the velocity (6%) and
acceleration (6%) of parameter evolution can significantly improve prediction accuracy, especially when limited observations are
available.

These empirical observations form the foundation for our Dynamic Kalman Filtering (DKF) approach, which employs
a second-order dynamic system to capture the smooth evolution of loss curve parameters and enables accurate look-ahead
feasibility checks with limited data.

Prediction Error of Weighted Least Square
Proof of Theorem 1
Proof. Based on the close-form of estimator (9), the prediction error of WLS algorithm can be decomposed as
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where TERM (1) represents the impact of parameter variation, and TERM (2) represents the impact of observation noise v%.

Analysis of TERM (1). We first separate the interpolation and extrapolation components of parameter variation, as follows,
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where the interpolation part represents parameter variations before round ¢, and the extrapolation part represents parameter
variations after round ¢. For the interpolation part, we have

Sy XS (0F 0k ) = Z’y” XX (08 -0k L)
=1 Vn_l i=1

-1
Vn,
n

=3 ZXXTZ k—0F,)

1 _

= V'n, 1
n P
S et
p=11i=1 Vn_l
n p )
< Z Z’Yn_tXi 1Xills (165 — 6511,
p=1|li=1 Vn_l
<L) Y A" Xl 19y = Opaa s
p=1i=1

where the last inequality comes from the fact that s,, is the cumulative data volume and is monotonically increasing in n, and
X, = [Insy;1], we have || X;[[, < || X, ||, for all @ < n. Hence we can take L,, = || Xy, as a valid upper bound in the
self-normalized inequality. Term % | v"~* || X;||\,—1 can further derive an expression about discounted factor 7 as follows,
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where the last inequality is the same as the derivation of Eq. (16). Thus for TERM (1), we have
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We emphasize that the 17" is introduced into analysis only, which is actually not required in our algorithmic implementation.

From the weighted version maximal deviation inequality (Russac, Vernade, and Cappé 2019, Theorem 1), restated in Theorem 2,
we can get the bound for the first term || Y- | 7" ~"vF X;||;;-1 as below by justlet w; = "%, pp, = A\, d =2,
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Based on the inequality (15), inequality (17) and inequality (18), we have for any v € (0,1) and § € (0, 1), with probability
at least 1 — ¢, the following holds foralln > 1,n’ > n,
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where £, £ VS + R\/ 2log % + 2log (1 + %) is the confidence radius. Hence we complete the proof. O

Useful Lemmas

Theorem 2 (Weighted Version Self-Normalized Bound for Vector-Valued Martingales (Russac, Vernade, and Cappé 2019,
Theorem 1)). Let {F;}32, be a filtration, {n:}32, be a real-valued stochastic process such that 1, is F-measurable and 1, is
conditionally R-sub-Gaussian for some R > 0, such that
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Experimental Supplement

In this section, we provide supplementary information for our experiments. First we include further details about the implementa-
tion and parameter settings of training tasks and task bundle from Table 1 and Table 2. Then we describe the allocation process
for both pure and mixed task bundles. Third, we compare the priority based on prediction results with the priority based on UCB.
Finally, we present a sensitivity analysis for the parameter Ay, in the state transition model (3) and the discount factor +y in the
weighted least squares (9).

Detailed Settings for Task Bundle Generation

Training task generation. In generating training tasks, we select various types of machine learning tasks, including CV,
RL, NLP and Audio tasks, as shown in Table 1 and Table 2. For Table 1, task 1 uses a Vision Transformer (ViT) (Dosovitskiy
et al. 2021), implemented as a Simple ViT model (Wang 2020). Task 2 employs a Long Short-Term Memory (LSTM) network,
structured with two LSTM layers followed by three fully connected layers. Task 3 is a Convolutional Neural Network (CNN),
built with three convolutional layers, one pooling layer, and two fully connected layers. Tasks 4 and 5 use ResNet-18 and
ResNet-34, respectively (He et al. 2016). Task 6 employs a VGGNet, featuring sequential convolutional blocks with batch
normalization and two large dense layers. Task 7 utilizes EfficientNet, designed with MBConv blocks and scalable coefficients.
Task 8 is SqueezeNet, constructed with Fire modules and adaptive pooling for lightweight computation. Task 9 uses LeNet,
a classic architecture with convolutional and sigmoid-activated dense layers. Task 10 uses a Dense Convolutional Network
(DenseNet) (Huang et al. 2017).

For Table 2, Task 1 uses ViT, tasks 2 and 3 use ResNet-18, ResNet-34 respectively, and task 4 uses CNN, all of which follow
the implementation described in Table 1. Task 5 employs RL_Net, a custom CNN with five convolutional layers and three dense
layers for reinforcement learning tasks. Task 6 is a Recurrent Neural Network (RNN) with a single recurrent layer and a linear
output layer. Task 7 implements a Multi-Layer Perceptron (MLP) model with two fully connected layers. Task 8 employs a
Gated Recurrent Unit (GRU) model with a single GRU layer and a linear classifier. Task 9 uses a Transformer model with a
single encoder layer and mean pooling for sequence processing. Task 10 is an LSTM model with a single LSTM layer and a
linear output layer, designed for sequential data.

Task bundle generation. In generating task bundles based on these training tasks, we designed the parameters in Table 1 and
Table 2 to make the task bundles challenging and unsolvable by classical scheduling strategies. Specifically, Ny represents the
maximum amount of data that can be processed per second when task k is allocated all resources, measured and calculated at the
start of the experiment. Each data unit corresponds to a batch of 64 data points. For the deadline dj, and success threshold e,
tasks were initially designed to be completed in a short priority sequence. Later, some tasks were modified to include a mix of
short, challenging tasks (with small dy and small €;) and longer, simpler tasks. This design ensures that the task bundle cannot
be solved by simple uniform allocation or by prioritizing shorter tasks.

Parameter Sensitivity
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Figure 7: Sensitivity test

DKEF Step Size Aj. In this experiment, we investigate the sensitivity of the step size Ay, in Eq. (4), which reflects the extent of
linear accelerated motion modeled. When A = 0, the state parameters follow a random walk and the model in Eq. (3) will
recover to the linear model Eq. (2). We evaluate how different values of Ay affect the number of successful tasks of the algorithm.
Result: We test the number of successful tasks under different Ay values, both in the pure tasks scenario and the mixed tasks
scenario, as shown in Fig. 7(a). In both scenarios, a marked decline is observed at extreme A, values, and the results remain
stable within a specific range of Ay, values.



WLS Discount Factor v. In this experiment, we investigate the sensitivity of WLS discount factor v in Eq. (9), which reflects
the prediction weight of historical observed data. We evaluate how different values of v affect the number of successful tasks of
the algorithm. Result: We test the number of successful tasks under different  values, both in the pure tasks scenario and the
mixed tasks scenario, as shown in Fig. 7(b). In both scenarios, a marked decline is observed at large -y values, indicating that for
short-term prediction, overweighting older historical data is detrimental, supporting the non-stationary assumption. Since WLS
only predicts the training loss within time slice M. (usually a relatively small value), experimental results remain stable even
under a relatively small v value.

Allocation process

In this experiment, we demonstrate the execution process of LaiRA method in the pure and mixed task bundle scenario, focusing
on the data throughput 7, ; (defined in Problem Formulation section).
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Figure 8: Resource allocation process for pure task bundle

Pure task bundle. Figures 8 illustrate the allocation trajectories of 7, ; for both feasible and infeasible tasks. In particular,
Figure 8(b) demonstrates that LaiRA is able to accurately identify infeasible tasks, such as those assigned to Tasks 2, 5, 6, and 9,
shortly after the initial exploration phase. Once these tasks are recognized as infeasible, LaiRA promptly reduces their allocated
computing resources to a minimum.

Mixed task bundle. Figure 9 presents the allocation trajectories of 7, ¢ for both feasible and infeasible tasks. As illustrated in
Figure 9(b), LaiRA is able to promptly identify infeasible tasks, specifically those handled by Tasks 1, 2, 6, and 7, shortly after
the initial exploration phase. Once these tasks are recognized as infeasible, LaiRA allocates only minimal computing resources
to them for the remainder of the process.

Tracking the Switch Count of LaiRA and LaiRA without UCB

In this section, we provide the real-time priority score changes of LaiRA and LaiRA without UCB, to verify that LaiRA is more
stable than LaiRA without UCB, and support our claim in Ablation Study section.

Settings: Specifically, LaiRA using the score in (12) and LaiRA without UCB using a variant score from (12), such that
directly using (In 5 (s%) — (X%, ,, o* ))/(In(s¥ + M, - Ni,) — In(s¥)) as the score and remove the term with 3,,.

nk
Results: Figure 10 and 11 illustrate the real-time priority score dynamics of LaiRA and LaiRA without UCB under pure and
mixed task bundle scenarios, respectively. As shown in Figure 10(a), the priority computed by LaiRA remains highly stable over
time, with very few changes in the highest-priority task. In contrast, Figure 10(b) demonstrates that LaiRA without UCB results
in highly unstable priority estimations, frequent switches in the top-priority task occur, especially during the early exploration
phase. This difference is further quantified in Figure 10(c), which compares the number of switches in the top-priority task
between the two methods. LaiRA without UCB exhibits significantly more switches than LaiRA, indicating that the absence
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(c) Switch count of highest priority task

Figure 10: UCB comparison for pure task bundle
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(c) Switch count of highest priority task

Figure 11: UCB comparison for mixed task bundle

of UCB leads to less consistent decision-making during scheduling. Figure 11 shows similar results for the mixed task bundle
scenario. Note that the priority scores for LaiRA without UCB become negative in both pure and mixed task bundle scenarios.
This occurs because the true linearized loss curve is concave, bending downward over time as shown in Figure 6(a), and the
prediction based on historical data is linear and thus lies above the actual curve, leading to consistently higher predicted losses
and consequently negative priority scores. However, this does not affect the final scheduling performance, as the algorithm relies
on the relative ordering of the scores rather than their absolute values. Overall, these results validate our explanation in Ablation
Study section, confirming that UCB not only improves performance but also has the ability to reduce the switching cost.



