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Abstract

Non-stationary parametric bandits have attracted
much attention recently. There are three princi-
pled ways to deal with non-stationarity, includ-
ing sliding-window, weighted, and restart strate-
gies. As many non-stationary environments ex-
hibit gradual drifting patterns, the weighted strat-
egy is commonly adopted in real-world appli-
cations. However, previous theoretical studies
show that its analysis is more involved and the
algorithms are either computationally less effi-
cient or statistically suboptimal. This paper re-
visits the weighted strategy for non-stationary
parametric bandits. In linear bandits (LB), we
discover that this undesirable feature is due to
an inadequate regret analysis, which results in an
overly complex algorithm design. We propose
a refined analysis framework, which simplifies
the derivation and importantly produces a sim-
pler weight-based algorithm that is as efficient as
window/restart-based algorithms while retaining
the same regret as previous studies. Furthermore,
our new framework can be used to improve re-
gret bounds of other parametric bandits, includ-
ing Generalized Linear Bandits (GLB) and Self-
Concordant Bandits (SCB). For example, we de-
velop a simple weighted GLB algorithm with
an Õ(k

5/4
µ c
−3/4
µ d

3/4P
1/4
T T

3/4) regret, improving
the Õ(k2

µc
−1
µ d

9/10P
1/5
T T

4/5) bound in prior work,
where kµ and cµ characterize the reward model’s
nonlinearity, PT measures the non-stationarity, d
and T denote the dimension and time horizon.

1 INTRODUCTION
Non-stationary parametric bandits model the sequential
decision-making problems where the reward distributions
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of each arm are structured with an unknown time-varying
parameter, which have been extensively studied in recent
years [Cheung et al., 2019, Russac et al., 2019, Zhao
et al., 2020, Russac et al., 2020, Faury et al., 2021, Rus-
sac et al., 2021, Wei and Luo, 2021, Deng et al., 2022, Liu
et al., 2022] due to its significance in many real-world non-
stationary online applications such as recommendation sys-
tems [Tomkins et al., 2021, Huleihel et al., 2021], as well as
tight connection with theoretical foundation of reinforce-
ment learning [Jin et al., 2020, Touati and Vincent, 2020].

Linear Bandits (LB) is a fundamental instance of paramet-
ric bandits, where the expected reward for pulling a cer-
tain arm at time t is the inner product between the arm’s
feature vector Xt and an unknown parameter θt, namely,
E[rt |Xt] = X>t θt. Moreover, Generalized Linear Bandits
(GLB) is introduced as a generalization of LB to model
a broader range of reward functions such as binary re-
wards, where the expected reward obeys a generalized lin-
ear model as E[rt | Xt] = µ(X>t θt) with µ(·) being an
inverse link function. Notably, the non-stationary models
allow the parameter θt in the above models to be time-
varying. There are two typical non-stationarity measures
to quantify the intensity of parameter changes: (i) in grad-
ually drifting cases, path length PT =

∑T
t=2 ‖θt−1 − θt‖2

is used to measure the cumulative variations of the under-
lying parameters; and (ii) in piecewise-stationary cases, ΓT
denotes the number of parameter changes in T rounds.

To deal with non-stationarity, there are three principled
ways: sliding-window, weighted, and restart strategies. For
the sliding-window strategy, the learner maintains a time
window that contains the most recent observed data to
discard the outdated data. For the weighted strategy, the
learner puts more weight on the most recent data and less
weight on the old data to gradually forget the outdated data.
For the restart strategy, the learner restarts the algorithm
according to a certain period to discard the outdated data.
The currently best-known result for non-stationary (gener-
alized) linear bandits is by Wei and Luo [2021], who devel-
oped an optimal algorithm consisting of a non-stationarity
detector and a base algorithm that performs well in near-
stationary environments. Whenever the detector examines
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Table 1: Comparisons of our dynamic regret bounds to previous best-known results for weight-based algorithms, under different non-
stationary parametric bandits. Below, kµ/cµ denotes the degree of non-linearity and becomes 1 in LB case; d is the dimension, path
length PT and change number ΓT are non-stationarity measures for drifting and piecewise-stationary cases, respectively.

Parametric Bandit Models Previous Work Our Results

Drifting LB Õ
(
d
7/8P

1/4
T T

3/4
)

[Russac et al., 2019] Õ
(
d
3/4P

1/4
T T

3/4
)

[Theorem 1]

Drifting GLB Õ
(
k2µ
cµ

d
9/10P

1/5
T T

4/5
)

[Faury et al., 2021] Õ
(
k
5/4
µ

c
3/4
µ

d
3/4P

1/4
T T

3/4
)

[Theorem 2]

Drifting SCB Õ
(
k2µ
cµ

d
9/10P

1/5
T T

4/5
)

[Faury et al., 2021] Õ
(
k
5/4
µ

c
1/2
µ

d
3/4P

1/4
T T

3/4
)

[Theorem 3]

Piecewise Stationary SCB Õ
(

1

c
1/3
µ

d
2/3Γ

1/3
T T

2/3
)

[Russac et al., 2021] Õ
(
d
2/3Γ

1/3
T T

2/3
)

[Theorem 4]

that the non-stationarity exceeds a certain limit, the algo-
rithm will restart itself to resist the non-stationarity. In
this sense, their algorithm can be regarded as an adaptive
restart-based algorithm. Building on the RestartUCB al-
gorithm [Zhao et al., 2020] and a carefully designed non-
stationarity detector with multi-scale explorations, their al-
gorithm can achieve an Õ(min{

√
ΓTT , P

1/3
T T

2/3}) opti-
mal dynamic regret for both LB and GLB.

In real-world scenarios, the distribution change of environ-
ments often exhibits gradually drifting patterns [Crammer
et al., 2010, Chiang et al., 2013, Gama et al., 2014], in
such cases, a soft weighted strategy can be (empirically)
more advantageous than a hard restart strategy to deal with
the non-stationarity, as can be observed in bandits learn-
ing [Russac et al., 2019, Zhao et al., 2020, Deng et al.,
2022], classification with concept drift [Anagnostopoulos
et al., 2012, Zhao et al., 2021a], and adaptive system iden-
tification [Guo et al., 1993, Chu and Mak, 2017]. As a
result, it will be highly attractive to design an adaptive
weight-based algorithm for non-stationary parametric ban-
dits, which imposes weights to discount the importance
of past data, and the weights are set adaptively according
to environments. Towards this end, we examine existing
methods for non-stationary parametric bandits based on the
weighted strategy, and (surprisingly) find that current re-
sults exhibit unnatural gaps compared to the other strate-
gies, such as restart-based algorithms, as well as unnatural
regret analysis transitions from GLB to LB.

Those unnatural phenomena motivate us to revisit the al-
gorithm design and regret analysis of the weighted strategy
for non-stationary parametric bandits [Russac et al., 2019,
2021, Faury et al., 2021]. Indeed, the key ingredient is the
estimation error analysis for the weight-based estimator,
which is usually decomposed into two parts — one is the
bias part due to the parameter drift, and the other is the
variance part due to the stochastic noise. Generally, the
bias part is controlled by non-stationary strategies, and the
variance part is handled by carefully designed concentra-
tion. Russac et al. [2019] provided the first analysis of the
weight-based algorithm for LB, where they introduced a

virtual window size in the analysis to control the bias in or-
der to mimic the analysis of sliding-window strategy [Che-
ung et al., 2019]. Consequently, they have to use different
local norms to control bias and variance parts, resulting in
unexpected inefficiencies and complications. For LB, this
leads to an algorithm D-LinUCB [Russac et al., 2019] re-
quiring to maintain an extra covariance matrix, which is
less efficient than the window-based and restart-based al-
gorithms [Cheung et al., 2019, Zhao et al., 2020].

This analysis framework for weighted strategy introduces
more severe issues in GLB, due to its more enriched and
complicated structure. Specifically, Faury et al. [2021]
studied the drifting GLB and designed a highly complex
projection operation to control bias and variance parts fol-
lowing the way of Russac et al. [2019] to mimic sliding-
window analysis, and finally attained an Õ(d

9/10P
1/5
T T

4/5)
dynamic regret. Unfortunately, this cannot recover the
Õ(d

7/8P
1/4
T T

3/4) bound enjoyed by the weight-based al-
gorithm for drifting LB (a special case of GLB) [Russac
et al., 2019]. Subsequently, Russac et al. [2021] investi-
gated the non-stationary Self-Concordant Bandits (SCB), a
subclass of GLB with many attractive structures. They can
only conduct analysis under the piecewise-stationary set-
ting, whereas failed in the more challenging drifting set-
ting, due to technical difficulties in bounding bias using
conventional analysis. As such, two open questions are
proposed in their papers: (i) how to extend weight-based
algorithms to drifting SCB; and (ii) how to replicate recent
progress in stationary SCB [Abeille et al., 2021] to improve
dependence on cµ in non-stationary SCB.

Our Results. In this paper, we revisit the weighted strat-
egy for the non-stationary parametric bandits. We discover
that the earlier analysis framework may be inappropriate
due to mimicking the sliding-window analysis, which de-
mands bounding the bias and variance parts using differ-
ent local norms. We present a refined analysis framework
for the weighted strategy, in which a new analysis for the
bias part is presented such that it is now allowed to use the
same local norm to analyze both bias and variance parts.
This refined analysis framework not only simplifies the re-
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gret analysis but also brings many benefits in algorithm de-
signs, including improving efficiency for LB and resolv-
ing the projection problem brought by GLB and SCB. Ta-
ble 1 summarizes our main results compared to earlier best-
known results of weight-based algorithms. Specifically,
based on our refined analysis framework, we achieve the
following results: (i) for LB, our approach only needs to
maintain one covariance instead of two and still enjoys the
same regret as [Russac et al., 2019]; (ii) for GLB, our ap-
proach enjoys an Õ(k

5/4
µ c
−3/4
µ d

3/4P
1/4
T T

3/4) regret bound,
whose order of d, PT and T matches that in LB case; and
(iii) for SCB, we achieve an Õ(k

5/4
µ c
−1/2
µ d

3/4P
1/4
T T

3/4) re-
gret bound. In addition, for piecewise stationary SCB, our
approach achieves an Õ(d

2/3Γ
1/3
T T

2/3) regret bound that
can get rid of the influence of c−1

µ , resolving the second
open problem asked by Russac et al. [2021].

2 RELATED WORK

Linear Bandits. Non-stationary LB problem was first
studied by Cheung et al. [2019]. They established an
Ω(d

2/3P
1/3
T T

2/3) minimax lower bound and then proposed
SW-UCB algorithm based on the sliding-window strategy.
Then Russac et al. [2019] proposed the D-LinUCB algo-
rithm based on weighted strategy and Zhao et al. [2020]
proposed the RestartUCB algorithm based on restart strat-
egy. Note that the three works proved an Õ(d

2/3P
1/3
T T

2/3)
regret bound, but there exists a subtle technical gap in the
regret analysis as identified by Zhao and Zhang [2021]. Af-
ter fixing the technical gap, all three aforementioned algo-
rithms achieve an Õ(d

7/8P
1/4
T T

3/4) regret bound [Zhao and
Zhang, 2021, Zhao et al., 2021b]. However, to achieve
this result, all the three algorithms require the knowl-
edge of the path length PT as an input at the beginning
of algorithmic implementation, which is undesired. To
address so, Cheung et al. [2019] proposed the bandits-
over-bandits (BOB) strategy as a meta-algorithm to learn
the unknown parameter PT which can be combined with
the above algorithms to remove the requirement of this
prior knowledge. Afterward, Wei and Luo [2021] pro-
posed the MASTER algorithm with theoretically opti-
mal Õ(min{d

√
ΓTT , dP

1/3
T T

2/3}) regret bound, also with-
out requiring the non-stationarity level of environments
(that is, ΓT and PT ) in advance. Most recently, there also
has been some new progress in the non-stationary (linear)
bandits [Liu et al., 2022, Suk and Kpotufe, 2022, Abbasi-
Yadkori et al., 2022, Clerici et al., 2023].

Generalized Linear Bandits. GLB problem was first
introduced by Filippi et al. [2010]. They proposed
GLM-UCB algorithm, achieving an Õ(kµc

−1
µ d
√
T ) re-

gret bound where kµ, cµ are the problem-dependent
constants and kµ/cµ represents the nonlinearity of the
generalized linear model. Faury et al. [2021] extended
the stationary GLB to the drifting case, and proposed

BVD-GLM-UCB algorithm with Õ(k2
µc
−1
µ d

9/10P
1/5
T T

4/5)
regret bound. Faury et al. [2020] studied a specific instance
of GLB called Logistic Bandits (LogB), they first pointed
out that under GLB setting, the problem-dependent con-
stant 1/cµ could be very large in some cases like LogB,
then they proposed the Logistic-UCB-1 algorithm with an
Õ(c

−1/2
µ d

√
T ) regret bound and the Logistic-UCB-2 algo-

rithm with an Õ(d
√
T + c−1

µ ) regret bound. Subsequently,
Abeille et al. [2021] established an Ω(d

√
µ′(X>∗ θ∗)T )

regret lower bound for logistic bandits and provided an
optimal algorithm OFULog. Russac et al. [2021] gener-
alized the logistic bandits to self-concordant bandits and
considered the piecewise-stationary case, their algorithm
enjoys an Õ(c

−1/3
µ d

2/3Γ
1/3
T T

2/3) regret bound. To deal
with PT -unknown cases, Faury et al. [2021] proposed a
parameter-free algorithm by combining BVD-GLM-UCB
with BOB strategy, but the final result is still subopti-
mal. Meanwhile, the optimal black-box algorithm [Wei
and Luo, 2021] can also adaptively restart stationary algo-
rithm GLM-UCB [Filippi et al., 2010] and achieve an opti-
mal Õ(min{kµc−1

µ

√
ΓTT , k

4/3
µ c−1

µ dP
1/3
T T

2/3}) regret.

3 LINEAR BANDITS

In this section, we first introduce the problem setting of
non-stationary LB, and then describe our LB-WeightUCB
algorithm and its theoretical guarantee. Our algorithm has
the same regret bound as the best-known weight-based al-
gorithm [Russac et al., 2019] but is more efficient.

3.1 Problem Setting

At each round t, the learner chooses an arm Xt from a fea-
sible set X ⊆ Rd and receives a reward rt such that

rt = X>t θt + ηt, (1)

where θt ∈ Rd is the unknown time-varying parameter and
ηt is the R-sub-Gaussian noise. The goal of the learner is
to minimize the following (pseudo) dynamic regret:

RT =

T∑
t=1

max
x∈X

x>θt −
T∑
t=1

X>t θt, (2)

which is the cumulative regret against the optimal strategy
that has full information of the unknown parameter. Here
we consider the drifting case where we use path length
PT =

∑T
t=2 ‖θt−1 − θt‖2 as the non-stationarity measure.

We work under the following standard boundedness as-
sumption [Abbasi-Yadkori et al., 2011, Cheung et al., 2019,
Russac et al., 2019, Zhao et al., 2020].

Assumption 1. The feasible set and unknown parameters
are assumed to be bounded: ∀x ∈ X , ‖x‖2 ≤ L, and
θt ∈ Θ holds for all t ∈ [T ] where Θ , {θ | ‖θ‖2 ≤ S}.
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3.2 Algorithm and Regret Guarantee

We propose the LB-WeightUCB algorithm, which attains
the same guarantees as earlier methods while having higher
efficiency. We first give the employed estimator and then
derive its estimation error upper bound by our refined anal-
ysis framework, which is the key for algorithm design and
regret analysis. Based on the estimation error bound, we
propose our selection criterion and finally give the theoret-
ical guarantee on its dynamic regret.

Estimator. We adopt the weighted regularized least square
estimator same as D-LinUCB [Russac et al., 2019], the es-
timator θ̂t is the solution to the following problem,

min
θ

λ ‖θ‖22 +

t−1∑
s=1

γt−s−1
(
X>s θ − rs

)2
, (3)

where λ > 0 is the regularization coefficient and γ ∈ (0, 1)

is the discounted factor. Clearly, θ̂t admits a close-form
solution θ̂t = V −1

t−1(
∑t−1
s=1 γ

t−s−1rsXs), where Vt =

λId +
∑t
s=1 γ

t−sXsX
>
s , V0 = λId is the covariance ma-

trix. Note that this close-form solution can be further
transformed into a recursive formula [Haykin, 2002, Chap-
ter 10.3]. This allows it to be updated online without the
need to store historical data, which is another important
computational advantage of the weighted strategy com-
pared to the sliding-window strategy.

Upper Confidence Bounds. For estimator (3), we pro-
vide the following estimation error bound. Notably, this is
different from the previous result [Russac et al., 2019, Ap-
penidx B.3, second and third steps in Proof of Theorem 2],
which is the key component being a more efficient algo-
rithm and will be explained later.

Lemma 1. For any x ∈ X , γ ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1−δ, the following holds for all t ∈ [T ]∣∣∣x>(θ̂t − θt)

∣∣∣ ≤ L2

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2

+ βt−1 ‖x‖V −1
t−1

, (4)

where βt is the radius of confidence region set by

βt =
√
λS +R

√
2 log

1

δ
+ d log

(
1 +

L2(1− γ2t)

λd(1− γ2)

)
.

(5)

The proof of Lemma 1 is in Appendix A.2. Based on
Lemma 1, we can specify the arm selection criterion as

Xt = arg max
x∈X

{
〈x, θ̂t〉+ βt−1 ‖x‖V −1

t−1

}
. (6)

The overall algorithm is summarized in Algorithm 1. From
the update procedure in Line 5 of Algorithm 1, we can ob-
serve that our algorithm needs to maintain a single covari-
ance matrix Vt−1 ∈ Rd×d. By contrast, the selection crite-

Algorithm 1 LB-WeightUCB
Input: time horizon T , discounted factor γ, confidence δ,

regularizer λ, parameters S, L and R
1: Set V0 = λId, θ̂1 = 0 and compute β0 by (5)
2: for t = 1, 2, ..., T do
3: Select Xt = arg maxx∈X {〈x, θ̂t〉+βt−1 ‖x‖V −1

t−1
}

4: Receive the reward rt
5: Update Vt = γVt−1 +XtX

>
t + (1− γ)λId

6: Compute θ̂t+1 by (3) and βt by (5)
7: end for

rion of algorithm proposed in Russac et al. [2019] is like

Xt = arg max
x∈X

{
〈x, θ̂t〉+ βt−1 ‖x‖V −1

t−1Ṽt−1V
−1
t−1

}
, where βt−1, V −1

t−1 are identical with those in our selection
criterion (6) and Ṽt−1 = λId +

∑t−1
s=1 γ

2(t−s−1)XsX
>
s ∈

Rd×d is an extra covariance matrix. Thus, our algorithm
is more efficient than their algorithm since it only needs to
maintain one covariance matrix instead of two. This owes
to the fact that our analysis of Lemma 1 only uses V −1

t−1

as the local norm to analyze both bias and variance parts,
but the algorithm of Russac et al. [2019] requires to use l2-
norm and V −1

t−1Ṽt−1V
−1
t−1-norm to control bias and variance

parts, respectively. In Section 6, we provide a sketch of
the analysis framework for Lemma 1 and a more detailed
discussion is presented in Appendix A.1. Furthermore, we
prove that our algorithm enjoys the same (even slightly bet-
ter in d) regret as the algorithm of Russac et al. [2019].

Theorem 1. For all γ ∈ (1/T, 1), λ = d, the dynamic re-
gret of LB-WeightUCB (Algorithm 1) is bounded with prob-
ability at least 1− 1/T , by

RT ≤ Õ
(

1

(1− γ)3/2
PT + d(1− γ)

1/2T

)
.

Furthermore, by setting the discounted factor optimally as
γ = 1−max{1/T,

√
PT /(dT )}, LB-WeightUCB ensures

RT ≤


Õ
(
d

3/4P
1/4
T T

3/4
)

when PT ≥ d/T,

Õ
(
d
√
T
)

when PT < d/T.

Compared to previous works [Cheung et al., 2019, Russac
et al., 2019, Zhao et al., 2020], our approach improves from
Õ(d

7/8P
1/4
T T

3/4) to Õ(d
3/4P

1/4
T T

3/4) when PT ≥ d/T . We
remark that this improved dimensional dependence is sim-
ply owing to the more refined tuning of the discounted fac-
tor than the one used by [Russac et al., 2019], who did not
take the dimension into the tuning. Their algorithm and re-
gret bound can also benefit from the refined tuning. The
proof of Theorem 1 is in Appendix A.3.

Further, notice that the optimal choice of discounted factor
γ requires knowing PT in advance. To achieve a parameter-
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free result for unknown PT case, our algorithm can be
combined with the BOB strategy [Cheung et al., 2019] and
achieves an Õ(d

3/4P
1/4
T T

3/4) bound. However, this bound
is not optimal, and it is possible to design an adaptive
weight-based algorithm based on our result, in the spirit
of Wei and Luo [2021], to further achieve an optimal dy-
namic regret without prior knowledge of PT . This is very
challenging since that at each round t ∈ [T ], we can only
receive one data pair (Xt, rt), which is not adequate for
the learner to real-time update the discounted factor γt. At
the same time, MASTER algorithm [Wei and Luo, 2021]
can be considered as a special case of the adaptive weight-
based algorithm since it only includes two circumstances:
setting γt = 0 to restart at time t and setting γt = 1 to
keep going. But for the adaptive weight-based algorithm,
the choice of the discounted factor γt can be continuous in
[0, 1], which is more difficult than a binary decision. We
leave this as an important open question for future study.

4 GENERALIZED LINEAR BANDITS

In this section, we apply the weighted strategy to drifting
GLB. Compared to the best-known weight-based algorithm
for drifting GLB [Faury et al., 2021], our algorithm is sim-
pler and meanwhile has a better theoretical guarantee.

4.1 Problem Setting

GLB assumes an inverse link function µ : R → R such
that rt = µ(X>t θt) + ηt, where θt ∈ Rd is the unknown
parameter and can change over time. Similar to LB, we
define dynamic regret for GLB as follows:

RT =

T∑
t=1

(
max
x∈X

µ(x>θt)− µ(X>t θt)

)
. (7)

Under the GLB setting, we make the same assumptions as
those of LB, which include R-sub-Gaussian noise, bound-
edness of feasible set and unknown regression parameters
(Assumption 1). In addition, we work under the standard
boundedness assumption of the inverse link function [Fil-
ippi et al., 2010, Li et al., 2017, Faury et al., 2021].

Assumption 2. The inverse link function µ : R → R is
kµ-Lipschitz, and continuously differentiable with

cµ , inf
{θ∈Θ,x∈X}

µ′(θ>x) > 0, Θ = {θ | ‖θ‖2 ≤ S}.

Previous works [Zhao et al., 2020, Cheung et al., 2022] de-
fine a similar parameter c̃µ , inf{θ∈Rd,x∈X} µ

′(θ>x) > 0
and obtain regret upper bound scaling with 1/c̃µ. Clearly,
that c̃µ is smaller than our defined cµ (and can be much
smaller) as cµ is defined on Θ while c̃µ is defined on R.
Therefore, c̃µ is less attractive to appear in the upper bound.

Algorithm 2 GLB-WeightUCB
Input: time horizon T , discounted factor γ, confidence δ,

regularizer λ, inverse link function µ, parameters S, L
and R

1: Set V0 = λId, θ̂1 = 0 and compute kµ and cµ
2: for t = 1, 2, ..., T do
3: if ‖θ̂t‖2 ≤ S then
4: let θ̃t = θ̂t
5: else
6: Do the projection and get θ̃t by (9)
7: end if
8: Compute β̄t−1 by (11)
9: Select Xt by (12)

10: Receive the reward rt
11: Update Vt = γVt−1 +XtX

>
t + (1− γ)λId

12: Compute θ̂t+1 according to (8)
13: end for

4.2 Algorithm and Regret Guarantee

We propose GLB-WeightUCB, which is a simpler algo-
rithm with better theoretical guarantee compared to previ-
ous weight-based algorithm [Faury et al., 2021]. The key
improvement is owing to our refined analysis framework,
which is compatible with a simple projection step.

Estimator. At iteration t, we first adopt the quasi-
maximum likelihood estimator (QMLE) without consider-
ing the projection onto the feasible domain. Specifically,
the estimator θ̂t is the solution of the following weighted
regularized estimation equation:

λcµθ +

t−1∑
s=1

γt−s−1
(
µ(X>s θ)− rs

)
Xs = 0. (8)

Given that θ̂t may not belong to the feasible set Θ and cµ is
defined over the parameter θ ∈ Θ, we need to perform the
following projection step

θ̃t = arg min
θ∈Θ

‖gt(θ̂t)− gt(θ)‖V −1
t−1
, (9)

where Vt = λId +
∑t
s=1 γ

t−sXsX
>
s and gt(θ) is

gt(θ) , λcµθ +

t−1∑
s=1

γt−s−1µ(X>s θ)Xs. (10)

However, previous work [Faury et al., 2021] cannot con-
duct the same simple projection in the drifting case as sta-
tionary GLB or piecewise-stationary GLB, since they use
different local norms to measure the bias and variance parts
separately for estimation error analysis. Consequently, they
have to design a complicated projection to ensure that the
bias and variance parts could be measured by different lo-
cal norms (see [Faury et al., 2021, Section 4.1], and our
restatements in Appendix B.1).
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Our refined analysis framework is compatible with this pro-
jection operation, thanks to our analysis framework utiliz-
ing the same local norm for the bias and variance parts.

Upper Confidence Bounds. For estimator (8) with pro-
jection (9), we construct following estimation error bound.

Lemma 2. For any x ∈ X , γ ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1−δ, the following holds for all t ∈ [T ]∣∣∣µ(x>θ̃t)− µ(x>θt)

∣∣∣
≤2kµ
cµ

(
t−1∑
p=1

C(p) ‖θp − θp+1‖2 + β̄t−1 ‖x‖V −1
t−1

)
,

where C(p) = kµL
2
√

d
λγ

t−1
2

√
γ−p−1

1−γ , and β̄t is the ra-
dius of confidence region set by

β̄t =
√
λcµS +R

√
2 log

1

δ
+ d log

(
1 +

L2(1− γ2t)

λd(1− γ2)

)
.

(11)

The proof of Lemma 2 is in Appendix B.2. Then, based on
Lemma 2, we can specify the arm selection criterion as

Xt = arg max
x∈X

{
µ(x>θ̃t) +

2kµ
cµ

β̄t−1 ‖x‖V −1
t−1

}
. (12)

The overall algorithm is summarized in Algorithm 2.

Notice that the estimation equation (8) and the confidence
radius (11) are the same as those used in Algorithm 1
of Faury et al. [2021]. But importantly, the final (projected)
estimators of the two approaches are significantly different.
With a simpler projection operation and our refined analy-
sis framework, we can immediately attain an improved re-
gret guarantee for weight-based algorithm.

Theorem 2. For all γ ∈ (1/T, 1), λ = d/c2µ, the regret of
GLB-WeightUCB (Algorithm 2) is bounded with probabil-
ity at least 1− 1/T , by

RT ≤ Õ
(
k2
µ

1

(1− γ)3/2
PT +

kµ
cµ
d(1− γ)

1/2T

)
.

By optimally setting γ = 1−max{1/T,
√
kµcµPT /(dT )},

GLB-WeightUCB achieves the following dynamic regret,

RT ≤


Õ
(
k5/4µ

c
3/4
µ

d
3/4P

1/4
T T

3/4

)
when PT ≥ d

kµcµT
,

Õ
(
kµ
cµ
d
√
T
)

when 0 ≤ PT < d
kµcµT

.

Compared to BVD-GLM-UCB (the best-known weight-
based algorithm for drifting GLB) [Faury et al., 2021], fo-
cusing on the dependence on d, PT , and T , we can see that
our approach improves the regret from Õ(d

9/10P
1/5
T T

4/5)

to Õ(d
3/4P

1/4
T T

3/4). Furthermore, our result also improves
their result upon the cµ dependence from c−1

µ to c−
3/4

µ .

5 SELF-CONCORDANT BANDITS

This section studies Self-Concordant Bandits (SCB), an
important subclass of GLB with many attractive structures.

5.1 Problem Setting

For SCB, the reward’s distribution belongs to a canonical
exponential family: Pθ [r | x] = exp(rx>θ − b(x>θ) +
c(r)) where b(·) is a twice continuously differentiable func-
tion and c(·) is a real-valued function. Owing to the be-
nign properties of exponential families, we have E [r | x] =
b′(x>θ) and Var [r | x] = b′′(x>θ) where b′ denotes the
first derivative of the function b, and b′′ denotes its second
derivative. Then, we can introduce the (inverse) link func-
tion µ(·) , b′(·) such that at t ∈ [T ] the following holds

E [rt |Xt] = µ(X>t θt),Var [rt |Xt] = µ′(X>t θt). (13)

SCB requires the link function satisfy |µ′′| ≤ µ′, usually
referred to general self-concordant property. We further in-
troduce the notation ηt = rt−µ(X>t θt) to denote the noise.
SCB successfully models many important real-world ap-
plications and captures the reward structure. For example,
choosing µ(x) = (1 + e−x)−1 yields the Logistic Ban-
dits (LogB), which is often adopted to model the binary-
feedback reward in recommendation system [Zhang et al.,
2016, Jun et al., 2017, Dong et al., 2019].

We make several standard assumptions same as LB and
GLB, including boundedness of feasible set and unknown
regression parameters (Assumption 1), and non-linearity
measure on link function (Assumption 2). In addition, sim-
ilar to Russac et al. [2021], we need assumptions on bound-
edness of reward, and for the convenience of analysis we let
L = 1 which means ‖x‖2 ≤ 1 for all x ∈ X .

Assumption 3. The reward received at each round satisfies
0 ≤ rt ≤ m for all t ∈ [T ] and some constant m > 0.

5.2 Algorithm and Regret Guarantee

We propose the SCB-WeightUCB algorithm. Compared to
GLB, we use a new local norm for projection and regret
analysis which is the key to improving the order of c−1

µ .

Estimator. At iteration t, we first adopt the same maxi-
mum likelihood estimator as GLB which is defined in (8).
Different from GLB, here we use a new local norm to per-
form the projection onto the feasible set Θ,

θ̃t = arg min
θ∈Θ

∥∥∥gt(θ̂t)− gt(θ)∥∥∥
H−1
t (θ)

, (14)

where gt(θ) is the same as (10) while Ht(θ) is defined as

Ht(θ) , λcµId +

t−1∑
s=1

γt−s−1µ′(X>s θ)XsX
>
s . (15)

Notably, compared to Vt, Ht(θ) depends on the function
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curvature along the dynamics and thus can capture more
local information. Combining this projection step with the
weighted version self-normalized concentration as restated
in Theorem 6 will remove a constant c−

1/2
µ in regret bound.

Upper Confidence Bound. For estimator (8) with projec-
tion (14), we construct following estimation error bound.

Lemma 3. For any x ∈ X , γ ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1−δ, the following holds for all t ∈ [T ]∣∣∣µ(x>θ̃t)− µ(x>θt)

∣∣∣
≤
√

4 + 8Skµ√
cµ

( t−1∑
p=1

C(p) ‖θp − θp+1‖2 + β̃t−1‖x‖V −1
t−1

)
,

where C(p) = L2
√

d
λ
kµ√
cµ
γ
t−1
2

√
γ−p−1

1−γ , and β̃t is the ra-
dius of confidence region set by

β̃t =

√
λcµ

2m
+

2m√
λcµ

(
log

1

δ
+ d log 2

)
+

dm√
λcµ

log

(
1 +

L2kµ(1− γ2t)

λcµd(1− γ2)

)
+
√
λcµS.

(16)

The proof of Lemma 3 is in Appendix C.1. Based on
Lemma 3, we can specify the arm selection criterion as

Xt = arg max
x∈X

{
µ(x>θ̃t) + 2

√
1 + 2S

kµ√
cµ
β̃t−1‖x‖V −1

t−1

}
.

(17)

Our algorithm for SCB (named SCB-WeightUCB) follows
the same procedure of Algorithm 2, and the difference is
that θ̃t is computed by (14), β̃t−1 is computed by (16) and
Xt is computed by (17). Further, we have the following
guarantee for SCB-WeightUCB algorithm.

Theorem 3. For all γ ∈ (1/T, 1), λ = d log(T )/cµ, the
dynamic regret of SCB-WeightUCB is bounded with proba-
bility at least 1− 1/T , by

RT ≤ Õ

(
k2
µ√
cµ

1

(1− γ)3/2
PT +

kµ√
cµ
d(1− γ)

1/2T

)
.

By setting γ = 1−max{1/T,
√
kµPT /(dT )}, we achieve

RT ≤


Õ
(
k5/4µ

c
1/2
µ

d
3/4P

1/4
T T

3/4

)
when PT ≥ d

kµT
,

Õ
(

kµ

c
1/2
µ

d
√
T

)
when 0 ≤ PT < d

kµT
.

Compared to GLB, we improve the order of cµ from c−1
µ to

c
−1/2
µ by exploiting the self-concordant properties. At the

same time, in near-stationary environments (PT is small
enough), our result can recover to the performance of
LogUCB1 algorithm [Faury et al., 2020]. The proof of The-
orem 3 is presented in Appendix C.2.

In addition, for the piecewise-stationary SCB, we propose

SCB-PW-WeightUCB algorithm that gets rid of influence
of cµ and thus directly improves upon [Russac et al., 2021].

Theorem 4. For all γ ∈ (1/2, 1), D = log(T )/ log(1/γ)
and λ = d log(T )/cµ, the regret of SCB-PW-WeightUCB
is bounded with probability at least 1− 1/T , by

RT ≤ Õ
(

1

1− γ
ΓT +

1√
1− γ

+ d
√

(1− γ)T

)
.

By setting γ = 1−max{1/T, (ΓT /(dT ))
2/3}, we achieve

RT ≤


Õ
(
d

2/3Γ
1/3
T T

2/3
)

when ΓT ≥ d/
√
T ,

Õ
(
d
√
T
)

when 0 ≤ ΓT < d/
√
T .

The overall algorithm and analysis are in Appendix D.

6 REFINED ANALYSIS FRAMEWORK

This section presents a proof sketch for Lemma 1 (estima-
tion error analysis for weighted linear bandits), which also
serves as a description of our proposed analysis framework.

Proof Sketch. From the model assumption (1) and the esti-
mator (3), the estimation error can be split into two parts,

θ̂t − θt = V −1
t−1

(
t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

)
︸ ︷︷ ︸

bias part

+ V −1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)
︸ ︷︷ ︸

variance part

,

where the bias part is caused by the parameter drifting, and
the variance part is due to the stochastic noise. Then, by
the Cauchy-Schwarz inequality, for any x ∈ X ,

|x>(θ̂t − θt)| ≤ ‖x‖V −1
t−1

(At +Bt), (18)

where At = ‖
∑t−1
s=1 γ

t−s−1XsX
>
s (θs − θt) ‖V −1

t−1
and

Bt = ‖
∑t−1
s=1 γ

t−s−1ηsXs − λθt‖V −1
t−1

.

Choosing an appropriate local norm for (18) is the key to
simplify and improve the estimation error analysis. We
note that the previous analysis [Russac et al., 2019] had
to use different local norms: using l2-norm in the bias part,
and V −1

t−1Ṽt−1V
−1
t−1-norm in the variance part, namely,

|x>(θ̂t − θt)| ≤ ‖x‖2A
′
t + ‖x‖V −1

t−1Ṽt−1V
−1
t−1

B′t, (19)

where A′t = ‖V −1
t−1

∑t−1
s=1 γ

t−s−1XsX
>
s (θs − θt) ‖2 and

B′t = ‖
∑t−1
s=1 γ

t−s−1ηsXs − λθt‖Ṽ −1
t−1

and Ṽt = λId +∑t
s=1 γ

2(t−s)XsX
>
s . Since the need for using sliding-

window analysis to analyze the bias part, they have to
use l2-norm to get the format of A′t. For the variance
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part, to use weighted version of self-normalized concen-
tration (Theorem 5), they use V −1

t−1Ṽt−1V
−1
t−1-norm to con-

trol x term so that B′t term can be normed by Ṽ −1
t−1. As

an improvement, we can directly use the same V −1
t−1-norm

to control both parts, which benefits from our new analysis
for the bias part and modified analysis for the variance part.

Bias Part Analysis. The first step is to extract the varia-
tions of underlying parameters as follows,

At ≤ L
t−1∑
p=1

p∑
s=1

γt−s−1 ‖Xs‖V −1
t−1
‖θp − θp+1‖2.

Term
∑p
s=1 γ

t−s−1 ‖Xs‖V −1
t−1

should be able to further de-
rive an expression about discounted factor γ, which can
control the variation item. After some derivation, we get

At ≤ L
√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 ,

where the variation item is only controlled by the dis-
counted factor γ instead of a virtual window size.

Variance Part Analysis. Based on the definition of Vt and
Ṽt, we can find that Vt � Ṽt, so we have Bt ≤ B′t ≤ βt−1

where βt−1 is the confidence radius (5) and the second in-
equality is by Theorem 5. So we keep the same confidence
bound βt−1 while only need to compute V −1

t−1 instead of
V −1
t−1Ṽt−1V

−1
t−1 when doing the arm selection.

Combining the analysis for bias and variance parts, we can
finish the proof of Lemma 1.

Remark 1. The key step (18) in our analysis framework
also resolves the projection issue in GLB. Specifically, af-
ter the projection step, the bias-variance decomposition can
only be performed in V −1

t−1-norm. To accommodate previ-
ous analysis (19), Faury et al. [2021] have to inject a highly
complex projection operation in the algorithm, whereas our
framework already satisfies this condition owing to the us-
age of the same V −1

t−1-norm for the bias and variance parts.

7 EXPERIMENTS

In this section, we further empirically examine the perfor-
mance of our proposed algorithms. We present two syn-
thetic experiments on drifting LB and GLB, respectively.
For each experiment, we set the dimension of the feature
space to d = 2, the number of rounds to T = 6000, and
the number of arms to n = 50. The features of each arm
are sampled from the normal distribution N (0, 1) and sub-
sequently rescaled to satisfy L = 1. We initialize the time-
varying parameter θt to [1, 0] and rotate it uniformly coun-
terclockwise around the unit circle, completing one full
revolution from 0 to 2π over the course of T rounds and
returning to the starting point [1, 0].
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Figure 1: Experiments of linear bandits.

7.1 Linear Bandits

Setting. We consider the linear model rt = X>t θt + ηt
where the random noise ηt is drawn from the normal dis-
tribution N (0, 1) at each time t independently. We com-
pare the performance of our proposed LB-WeightUCB
algorithm to: (a) the static algorithm OFUL [Abbasi-
Yadkori et al., 2011]; (b) the restart-based algorithm
RestartUCB [Zhao et al., 2020]; (c) the weight-based al-
gorithm D-LinUCB [Russac et al., 2019]; and (d) the
adaptive restart algorithm MASTER+OFUL [Wei and Luo,
2021]. Since PT is computable, we set the discounted fac-
tor γ = 1 − max{1/T,

√
PT /(dT )} for LB-WeightUCB

and D-LinUCB, and set the window size w and restarting
periodH as w = H = d1/4

√
T/(1 + PT ). For MASTER,

there is a parameter n representing the initial value of a
multi-scale exploration parameter (see the input of Proce-
dure 1 in [Wei and Luo, 2021]) and the origin MASTER
algorithm lets it start from 0 (i.e., n = 0, 1, ...). However,
a small initial value of n will lead to high-frequent restart
and thus achieve poor performance. To address this issue,
we experiment with a larger initial value of n = 13, which
leads to greatly improved performance in our case.

Results. The experimental results are averaged over 20 in-
dependent trials. Figure 1a shows the cumulative dynamic
regret performance, where the shaded area denotes the vari-
ance of the 20 independent trials of experimental results.
Figure 1b reports the average time per run, with each run
containing 6000 rounds. Our LB-WeightUCB algorithm
performs as well as D-LinUCB but significantly more effi-
cient, with over 1.5 times speedup. Figure 1a also shows
that when equipped with a fine-tuned n, MASTER+OFUL
(n = 13) performs better than RestartUCB, whereas a
vanilla MASTER+OFUL (n = 0) performs worse due to
overly active restarts at the beginning. However, a larger
initial value of n results in greater time overhead, since
at each restart, MASTER+OFUL needs to do Procedure 1
once, resulting in an O(n2n) time complexity. More im-
portantly, neither adaptive restart (MASTER+OFUL) nor
periodical restart (RestartUCB) outperforms our weighted
strategy in slowly-evolving environments.
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(c) GLB Algorithms (S = 5)
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Figure 2: Experiments of generalized linear bandits.

7.2 Generalized Linear Bandits

Setting. We employ the logistic model in GLB experi-
ment, i.e., the reward satisfies rt ∼ Bernoulli(µ(X>t θt))
with logistic function µ(x) = (1 + e−x)−1. We
consider two cases of S = 1 and S = 5, re-
spectively. We compare the performance of our pro-
posed GLB-WeightUCB and SCB-WeightUCB algorithm
to: (a) GLM-UCB, static algorithm for GLB [Fil-
ippi et al., 2010]; (b) LogUCB1, static algorithm
for LogB [Faury et al., 2020]; (c) BVD-GLM-UCB,
weight-based algorithm for GLB [Faury et al., 2021];
(d) GLB-RestartUCB, restart algorithm for GLB [Zhao
et al., 2020]; (e) SCB-RestartUCB, restart algorihtm for
SCB [Zhao et al., 2020]; (f) MASTER+GLM-UCB, adap-
tive restart algorithm for GLB [Wei and Luo, 2021]; and
(g) MASTER+LogUCB1, adaptive restart algorithm for
LogB [Wei and Luo, 2021]. We set discounted factor
γ = 1−max{1/T,

√
cµPT /(dT )} for GLB-WeightUCB,

γ = 1 − (PT /(
√
dT ))

2/5 for BVD-GLM-UCB and
γ = 1 − max{1/T,

√
PT /(dT )} for SCB-WeightUCB.

We set restarting period H = d1/4
√
T/(1 + PT ) for

both GLB-RestartUCB and SCB-RestartUCB. We set
regularizer λ = d for GLM-UCB, BVD-GLM-UCB,
GLB-RestartUCB and MASTER+GLM-UCB, λ =
d/c2µ for GLB-WeightUCB and λ = d log T/cµ for
LogUCB1, SCB-RestartUCB, MASTER+LogUCB1 and
SCB-WeightUCB. Note that for LogB, kµ = 1/4 < 1,
so we don’t need to control the order of kµ. For the two
MASTER algorithms, we set n = 13.

Results. We present the average cumulative dynamic re-
gret results of our experiments on 20 independent trials
in Figures 2. When S is small (S = 1, c−1

µ ≈ 5), all

of the weight-based algorithms outperform the static algo-
rithms, and our GLB-WeightUCB and SCB-WeightUCB
are better than BVD-GLM-UCB. When S is large (S =
5, c−1

µ ≈ 152), SCB-WeightUCB significantly outper-
forms GLB-WeightUCB, demonstrating the importance
of considering self-concordant property (recall that LogB
is an instance of SCB). In contrast, the performance of
BVD-GLM-UCB drops dramatically, as it does not take
the c−1

µ issue into account. Similar to LB, the experi-
mental results of GLB also demonstrate the empirical ad-
vantage of the weighted strategy over (adaptive) restart
strategy in slowly-evolving environments. Specifically, we
observe that GLB-WeightUCB consistently outperforms
MASTER+GLM-UCB, and SCB-WeightUCB consistently
outperforms MASTER+LogUCB1.

8 CONCLUSION

This paper revisits the weight-based algorithms for three
non-stationary parametric bandit models (LB, GLB, SCB).
We identify that the inadequacies of the previous work are
due to the inadequate analysis of the estimation error. We
thus propose a refined analysis framework that enables the
usage of the same local norm for both the bias and variance
part in estimation error analysis. Our framework ensures
more efficient algorithms for all three bandit models and
improves the regret bounds for GLB and SCB settings.

The importance of our work lies in the fact that we have
now made the weight-based algorithms for non-stationary
LB/GLB/SCB as competitive as the restart-based algo-
rithms, in terms of both computational efficiency and re-
gret guarantee. Given that the weighted strategy is par-
ticularly appealing in gradually drifting scenarios that are
commonly seen in real-world applications, it is essential to
further design adaptive weight-based algorithms for non-
stationary parametric bandits with optimal dynamic regret
without requiring the knowledge of environmental non-
stationarity, in the spirit of the currently best-known result
achieved by adaptive restart strategy [Wei and Luo, 2021].

In this work, we employ PT =
∑T
t=2 ‖θt−1 − θt‖2 as a

measure to capture the gradually changing environment.
However, this metric may not be precise enough in cap-
turing only the gradual changes in the environment, as it
can also include other types of variations, such as abrupt
changes. This might be able to serve as an explanation why
weight-based algorithms do not exhibit a significant theo-
retical advantage, yet perform remarkably well in exper-
iments on gradually changing environments compared to
restart-based algorithms. To overcome this limitation, fu-
ture research could explore more refined characterizations
of gradual changes, drawing inspiration from the ideas be-
hind Sobolev or Holder classes [Baby and Wang, 2019] or
other information-theoretic tools [Liu et al., 2022].
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A Analysis of LB-WeightUCB

In this section, we provide the analysis for LB-WeightUCB algorithm. In Appendix A.1, we review the D-LinUCB al-
gorithm proposed by Russac et al. [2019] and restate their estimation error analysis. In Appendix A.2, we present our
own estimation error analysis for the proposed LB-WeightUCB algorithm, which is captured in Lemma 1. Finally, in
Appendix A.3, we provide a proof for our dynamic regret bound, as stated in Theorem 1.

A.1 Review Estimation Error Analysis of D-LinUCB Algorithm

In this part, we review the previous estimation error analysis of the D-LinUCB algorithm [Russac et al., 2019] who has the
same estimator as ours (3). The first step is to divide the estimation error into the bias and variance parts, where the bias
part represents the error caused by parameter drift and the variance part represents the error caused by stochastic noise.
Based on the reward model assumption and the estimator (same as eq (1) and eq (3)), the estimation error of D-LinUCB
algorithm can be decomposed as

θ̂t − θt = V −1
t−1

(
t−1∑
s=1

γt−s−1rsXs

)
− θt

= V −1
t−1

(
t−1∑
s=1

γt−s−1
(
X>s θs + ηs

)
Xs

)
− V −1

t−1

(
λId +

t−1∑
s=1

γt−s−1XsX
>
s

)
θt

= V −1
t−1

(
t−1∑
s=1

γt−s−1XsX
>
s θs +

t−1∑
s=1

γt−s−1ηsXs

)
− V −1

t−1

(
λId +

t−1∑
s=1

γt−s−1XsX
>
s

)
θt

= V −1
t−1

(
t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

)
︸ ︷︷ ︸

bias part

+V −1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)
︸ ︷︷ ︸

variance part

. (20)

Afterward, Russac et al. [2019] use different local norms (we will explain the reason of using different local norms later)
for the bias and variance parts as follows,

|x>(θ̂t − θt)| ≤ ‖x‖2A
′
t + ‖x‖V −1

t−1Ṽt−1V
−1
t−1

B′t, (21)

where Ṽt = λId +
∑t
s=1 γ

2(t−s)XsX
>
s and

A′t =

∥∥∥∥∥V −1
t−1

t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

∥∥∥∥∥
2

, B′t =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
Ṽ −1
t−1

.

For the bias part, Russac et al. [2019] divide it into two parts on the timeline by introducing a virtual window size D,

A′t ≤

∥∥∥∥∥
t−1∑

s=t−D
V −1
t−1γ

t−s−1XsX
>
s (θs − θt)

∥∥∥∥∥
2︸ ︷︷ ︸

virtual window

+

∥∥∥∥∥
t−D−1∑
s=1

V −1
t−1γ

t−s−1XsX
>
s (θs − θt)

∥∥∥∥∥
2︸ ︷︷ ︸

small term

,

The first term can be considered as a virtual window containing the most recent data obtained after time t−D, and can be
directly analyzed by the analysis of SW-UCB [Cheung et al., 2019] since it corresponds to the bias part of the estimation
error of window strategy and this is why they use l2-norm for bias part. The second term reflects the influence formed by
the outdated data obtained before time t − D. Since γt−s−1 will be very small when s ≤ t − D − 1, this small term is
dominated by the first virtual window term which means the bias part is actually controlled by the virtual window size D.

For the variance part, Russac et al. [2019] extend the previous self-normalized concentration [Abbasi-Yadkori et al., 2011,
Theorem 1] to the weighted version which is restated in Theorem 5. This concentration requires to use Ṽt as the local
norm. To this end, Russac et al. [2019] split the variance part as∣∣∣∣∣x>V −1

t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)∣∣∣∣∣ ≤ ‖x‖V −1
t−1Ṽt−1V

−1
t−1

∥∥∥∥∥V −1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)∥∥∥∥∥
Vt−1Ṽ

−1
t−1Vt−1

,
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where∥∥∥∥∥V −1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)∥∥∥∥∥
Vt−1Ṽ

−1
t−1Vt−1

=

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
Ṽ −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
Ṽ −1
t−1

+
√
λS.

Then term ‖
∑t−1
s=1 γ

t−s−1ηsXs‖Ṽ −1
t−1

can be bounded by Theorem 5. Finally, based on this analysis, D-LinUCB needs to
use the following action selection criterion which only depends on the variance part since the bias part doesn’t contain x,

Xt = arg max
x∈X

{
〈x, θ̂t〉+ βt−1 ‖x‖V −1

t−1Ṽt−1V
−1
t−1

}
,

where βt−1 is the upper bound of B′t which is the same as (5). From this selection criterion, it can be seen that D-LinUCB
needs to maintain two covariance matrices, namely, Vt and Ṽt at round t during the algorithm running.

In the next section, we present our proof for the estimation error upper bound. The difference between our analysis and
D-LinUCB’s analysis mainly starts at step (21), which is the key step of the analysis and our new analysis framework
allows us to employ the same local norm for both bias and variance parts.

A.2 Proof of Lemma 1

Proof. Using the same derivation in (20), the estimation error of LB-WeightUCB algorithm can also be decomposed as

θ̂t − θt = V −1
t−1

(
t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

)
︸ ︷︷ ︸

bias part

+V −1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)
︸ ︷︷ ︸

variance part

.

Therefore, by the Cauchy-Schwarz inequality, we know that for any x ∈ X ,∣∣∣x> (θ̂t − θt)∣∣∣ ≤ ‖x‖V −1
t−1

(At +Bt), (22)

where

At =

∥∥∥∥∥
t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

∥∥∥∥∥
V −1
t−1

, Bt =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
V −1
t−1

.

The above two terms can be bounded separately, as summarized in the following two lemmas,

Lemma 4. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

∥∥∥∥∥
V −1
t−1

≤ L
√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 .

Lemma 5. For any δ ∈ (0, 1), with probability at least 1− δ, the following holds for all t ∈ [T ],∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
V −1
t−1

≤
√
λS +R

√
2 log

1

δ
+ d log

(
1 +

L2(1− γ2t−2)

λd(1− γ2)

)
,

Based on the inequality (22), Lemma 4, Lemma 5, and the boundedness assumption of the feasible set, for any x ∈ X ,
γ ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1− δ, the following holds for all t ∈ [T ],

|x>(θ̂t − θt)| ≤ L2

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + βt−1‖x‖V −1

t−1
,

where βt ,
√
λS + R

√
2 log 1

δ + d log
(

1 + L2(1−γ2t)
λd(1−γ2)

)
is the confidence radius used in LB-WeightUCB. Hence we

complete the proof.



Revisiting Weighted Strategy for Non-stationary Parametric Bandits

Proof of Lemma 4. The first step is to extract the variations of the parameter θt as follows,∥∥∥∥∥
t−1∑
s=1

γt−s−1XsX
>
s (θs − θt)

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
s=1

γt−s−1XsX
>
s

t−1∑
p=s

(θp − θp+1)

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
p=1

p∑
s=1

γt−s−1XsX
>
s (θp − θp+1)

∥∥∥∥∥
V −1
t−1

≤
t−1∑
p=1

∥∥∥∥∥
p∑
s=1

γt−s−1Xs‖Xs‖2‖θp − θp+1‖2

∥∥∥∥∥
V −1
t−1

≤ L
t−1∑
p=1

p∑
s=1

γt−s−1 ‖Xs‖V −1
t−1
‖θp − θp+1‖2,

and term
∑p
s=1 γ

t−s−1 ‖Xs‖V −1
t−1

can be able to further derive an expression about discounted factor γ as follows,

p∑
s=1

γt−s−1 ‖Xs‖V −1
t−1
≤ γ

t−1
2

√√√√ p∑
s=1

γ−s

√√√√ p∑
s=1

γt−s−1 ‖Xs‖2V −1
t−1
≤
√
dγ

t−1
2

√
γ−p − 1

1− γ
. (23)

In above, we use the fact that for any x, ‖x‖V −1
t−1
≤ ‖x‖2 /

√
λ since Vt−1 � λId. The second last step holds by the

Cauchy-Schwarz inequality. Besides, the last step follows the fact,

∀p ∈ [t− 1],

p∑
s=1

γt−s−1 ‖Xs‖2V −1
t−1
≤ d, (24)

which can be proven by the following argument.
p∑
s=1

γt−s−1 ‖Xs‖2V −1
t−1

=

p∑
s=1

γt−s−1Tr(X>s V
−1
t−1Xs) = Tr

(
V −1
t−1

p∑
s=1

γt−s−1XsX
>
s

)

≤ Tr

(
V −1
t−1

p∑
s=1

γt−s−1XsX
>
s

)
+ Tr

(
V −1
t−1

t−1∑
s=p+1

γt−s−1XsX
>
s

)
+ Tr

(
V −1
t−1λ

d∑
i=1

eie
>
i

)
= Tr(Id) = d.

Hence, we complete the proof.

Proof of Lemma 5. Let Ṽt , λId +
∑t
s=1 γ

2(t−s)XsX
>
s ,∥∥∥∥∥

t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
V −1
t−1

+ ‖λθt‖V −1
t−1
≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
Ṽ −1
t−1

+
√
λS.

Recall that Vt = λId +
∑t
s=1 γ

t−sXsX
>
s , so the last inequality comes from

Vt = λId +

t∑
s=1

γt−sXsX
>
s � λId +

t∑
s=1

γ2(t−s)XsX
>
s = Ṽt.

We emphasize that the Ṽt is introduced into analysis only, which is actually not required in our algorithmic implementation.
From the weighted version maximal deviation inequality [Russac et al., 2019, Theorem 1], restated in Theorem 5, we can
get the bound for the first term ‖

∑t−1
s=1 γ

t−s−1ηsXs‖Ṽ −1
t−1

as below by just let ws = γt−s−1, µt = λ,∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
Ṽ −1
t−1

≤ R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t−1
s=1 γ

2(t−s−1)

λd

)
≤ R

√
2 log

1

δ
+ d log

(
1 +

L2(1− γ2t−2)

λd(1− γ2)

)
,

which completes the proof.
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A.3 Proof of Theorem 1

Proof. Let X∗t , arg maxx∈X x>θt. Due to Lemma 1 and the fact that X∗t , Xt ∈ X , each of the following holds with
probability at least 1− δ,

∀t ∈ [T ], X∗>t θt ≤ X∗>t θ̂t + L2

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + βt−1‖X∗t ‖V −1

t−1

∀t ∈ [T ], X>t θt ≥ X>t θ̂t − L2

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 − βt−1‖Xt‖V −1

t−1
.

By the union bound, the following holds with probability at least 1− 2δ,

∀t ∈ [T ], X∗>t θt −X>t θt ≤ X∗>t θ̂t −X>t θ̂t + 2L2

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + βt−1(‖X∗t ‖V −1

t−1
+ ‖Xt‖V −1

t−1
)

≤ 2L2

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + 2βt−1‖Xt‖V −1

t−1
,

where the last step comes from the arm selection criterion (6) such that

X∗>t θ̂t + βt−1‖X∗t ‖V −1
t−1
≤ X>t θ̂t + βt−1‖Xt‖V −1

t−1
.

Hence, the following dynamic regret bound holds with probability at least 1− 2δ and can be divided into two parts,

RT =

T∑
t=1

(
X∗>t θt −X>t θt

)
≤ 2L2

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2︸ ︷︷ ︸

bias part

+ 2βT

T∑
t=1

‖Xt‖V −1
t−1︸ ︷︷ ︸

variance part

,

where βT =
√
λS +R

√
2 log 1

δ + d log
(

1 + L2(1−γ2T )
λd(1−γ2)

)
is the confidence radius.

Now we derive the upper bound for the bias and variance parts separately.

Bias Part. For the bias part, we need to extract path length PT and show the control of the discounted factor γ on PT .

2L2

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 = 2L2

√
d

λ

T−1∑
p=1

T∑
t=p+1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2

= 2L2

√
d

λ

T−1∑
p=1

γ
p
2 − γ T2
1− γ 1

2

√
γ−p − 1

1− γ
‖θp − θp+1‖2

≤ 2L2

√
d

λ

T−1∑
p=1

γ
p
2 − γ T2

(1− γ 1
2 ) 1+γ

1
2

2

√
γ−p − 1

1− γ
‖θp − θp+1‖2

≤ 4L2

√
d

λ

T−1∑
p=1

γ
p
2 γ−

p
2

(1− γ)3/2
‖θp − θp+1‖2

= 4L2

√
d

λ

1

(1− γ)3/2
PT .

So for the bias part, we have

2L2

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 ≤ 4L2

√
d

λ

1

(1− γ)3/2
PT . (25)

Variance Part. First, use the Cauchy-Schwarz inequality, we know that 2βT
∑T
t=1 ‖Xt‖V −1

t−1
≤ 2βT

√
T
∑T
t=1 ‖Xt‖2V −1

t−1

.



Revisiting Weighted Strategy for Non-stationary Parametric Bandits

Then by Lemma 11 (potential lemma), we have the following upper bound:

2βT

T∑
t=1

‖Xt‖V −1
t−1
≤ 2βT

√
2 max{1, L2/λ}dT

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
. (26)

Combining the upper bounds of the bias and variance parts and with confidence level δ = 1/(2T ), by union bound we
have the following dynamic regret bound with probability at least 1− 1/T ,

RT ≤ 4L2

√
d

λ

1

(1− γ)3/2
PT + 2βT

√
2 max{1, L2/λ}dT

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

where βT =
√
λS+R

√
2 log T + 2 log 2 + d log

(
1 + L2(1−γ2T )

λd(1−γ2)

)
. Since that there has a term T

√
log(1/γ) in the regret

bound, we cannot let γ close to 0, so we set γ ≥ 1/T and have log(1/γ) ≤ C(1− γ), where C = log T/(1− 1/T ).

Then, ignoring logarithmic factors in time horizon T , and let λ = d, we finally obtain

RT ≤ Õ
(

1

(1− γ)3/2
PT + d(1− γ)

1/2T

)
.

When PT < d/T (which corresponds a small amount of non-stationarity), we simply set γ = 1 − 1/T and achieve an
Õ(d
√
T ) regret bound. Besides, when coming to the non-degenerated case (PT ≥ d/T ), We set the discounted factor

optimally as 1− γ =
√
PT /(dT ) and attain an Õ(d

3/4P
1/4
T T

3/4) dynamic regret bound, which completes the proof.

B Analysis of GLB-WeightUCB

In this section, we provide the analysis for GLB-WeightUCB algorithm. In Appendix B.1, we review the projection issue
of GLB and restate the BVD-GLM-UCB algorithm of Faury et al. [2021]. In Appendix B.2, we present the proof of the
estimation error upper bound of our GLB-WeightUCB algorithm (namely, Lemma 2). Finally, in Appendix B.3, we provide
the proof of dynamic regret upper bound as stated in Theorem 2.

B.1 Review Projection Step of BVD-GLM-UCB Algorithm

As mentioned in Section 4.2, the main difficulty of GLB is that the result of MLE or QMLE estimator θ̂t may not belong
to the feasible set Θ and cµ is defined over the parameter θ ∈ Θ. Under stationary environments, Filippi et al. [2010]
overcame this difficulty by introducing a projection step as

θ̃t = arg min
θ∈Θ

‖gt(θ̂t)− gt(θ)‖V −1
t−1
, (27)

where Vt = λId +
∑t
s=1XsX

>
s and gt(θ) = λcµθ +

∑t−1
s=1 µ(X>s θ)Xs are the static version (by setting γ = 1). Based

on the QMLE, we know that

gt(θ̂t) = λcµθ̂t +

t−1∑
s=1

µ(X>s θ̂t)Xs =

t−1∑
s=1

rsXs, (28)

and then by the mean value theorem, we know that

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2), (29)

where Gt(θ1, θ2) ,
∫ 1

0
∇gt(sθ2 + (1− s)θ1)ds ∈ Rd×d. Notice that for any θ ∈ Θ, the gradient of gt satisfies

∇gt(θ) = λcµId +

t−1∑
s=1

µ′(X>s θ)XsX
>
s � cµVt−1,

which clearly implies ∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) � cµVt−1.
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Algorithm 3 BVD-GLM-UCB [Faury et al., 2021]
Input: time horizon T , discounted factor γ, confidence δ, regularizer λ, inverse link function µ, parameters S, L and R
1: Set V0 = λId, θ̂1 = 0 and compute kµ and cµ
2: for t = 1, 2, ..., T do

3: Find θpt by solving θpt ∈ arg minθ∈Rd

{∥∥∥gt(θ)− gt(θ̂t)∥∥∥
V −2
t

s.t Θ ∩ Eδt (θ) 6= ∅
}

4: Select θ̃t ∈ Θ ∩ Eδt (θpt ) where Eδt (θ) :=
{
θ′ ∈ Rd

∣∣∣ ‖gt (θ′)− gt(θ)‖Ṽ −1
t
≤ β̄t(δ)

}
5: Compute β̄t−1 by β̄t =

√
λcµS +R

√
2 log 1

δ + d log
(

1 + L2(1−γ2t)
λd(1−γ2)

)
6: Select Xt by Xt = arg maxx∈X

{
µ(x>θ̃t) +

2kµ
cµ
β̄t−1 ‖x‖V −1

t−1

}
7: Receive the reward rt
8: Update Vt = γVt−1 +XtX

>
t + (1− γ)λId, Ṽt = γ2Vt−1 +XtX

>
t + (1− γ2)λId

9: Compute θ̂t+1 according to λcµθ +
∑t
s=1 γ

t−s (µ(X>s θ)− rs
)
Xs = 0

10: end for

By this projection step, Filippi et al. [2010] can analyze the estimation error like,

|µ(x>θ̃t)− µ(x>θt)| ≤ kµ|x>(θ̃t − θt)|

= kµ|x>G−1
t (θt, θ̃t)(gt(θ̃t)− gt(θt))|

≤ kµ‖x‖G−1
t (θt,θ̃t)

‖gt(θ̃t)− gt(θt)‖G−1
t (θt,θ̃t)

≤ kµ
cµ
‖x‖V −1

t−1
‖gt(θ̃t)− gt(θt)‖V −1

t−1

≤ 2kµ
cµ
‖x‖V −1

t−1
‖gt(θ̂t)− gt(θt)‖V −1

t−1
,

where the last step comes from the projection step. After doing the projection step, term gt(θ̂t) − gt(θt) is the estimation
error of the MLE without projection. Notice that in piecewise-stationary case, Russac et al. [2021] can also use this
projection step. Faury et al. [2021] believe that these two previous works could use this projection operation mainly due
to their stationary or piecewise-stationary setting. They mention that for the drifting case, the estimation error is always
divided into the bias (tracking error) and variance (learning error) part, and this simple projection operation ignores the
bias part which needs to be generalized to adapt to the two sources of deviation. In the analysis, the problem is that after
the projection step estimation error term gt(θ̂t)− gt(θt) need to be separate into the bias part and variance parts, and Faury
et al. [2021] need to use l2-norm for bias part and V −1

t−1 for variance part. But the whole estimation error is already normed
by V −1

t−1, which means they cannot use the previous analysis of the window strategy for the bias part.

To this end, Faury et al. [2021] propose the BVD-GLM-UCB algorithm for drifting generalized linear bandits, as restated
in Algorithm 3, where a new projection step is devised to solve this problem. Specifically, at each round t, the first step is
to construct the confidence set Eδt (θ) which represents the influence of the stochastic noise.

Eδt (θ) :=
{
θ′ ∈ Rd

∣∣∣ ‖gt (θ′)− gt(θ)‖Ṽ −1
t
≤ β̄t(δ)

}
. (30)

The second step is to find a confidence set Eδt (θpt ) that intersects with the feasible set, and the gap between θpt and θ̂t
represents the influence of parameter drift.

θpt ∈ arg min
θ∈Rd

{∥∥∥gt(θ)− gt(θ̂t)∥∥∥
V −2
t

s.t Θ ∩ Eδt (θ) 6= ∅
}
. (31)

After obtaining the solution θpt via computing the optimization problem (31), the third step is to select θ̃t from Θ∩Eδt (θpt ).
Based on this projection step, Faury et al. [2021] can separate the bias and variance parts before projection as follows,

|µ(x>θ̃t)− µ(x>θt)| ≤ kµ|x>(θ̃t − θt)|

= kµ|x>G−1
t (θt, θ̃t)(gt(θ̃t)− gt(θt))| (32)
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≤ kµ|x>G−1
t (θt, θ̃t)(gt(θ̃t)− gt(θpt ) + gt(θ

p
t )− gt(θ̂t) + gt(θ̂t)− gt(θ̄t) + gt(θ̄t)− gt(θt))|

(33)

≤ kµ|x>G−1
t (θt, θ̃t)(gt(θ̃t)− gt(θpt ) + gt(θ̂t)− gt(θ̄t)|︸ ︷︷ ︸

bias part

(34)

+ kµ|x>G−1
t (θt, θ̃t)(gt(θ

p
t )− gt(θ̂t) + gt(θ̄t)− gt(θt))|︸ ︷︷ ︸

variance part

. (35)

Their bias-variance decomposition motivates the choice of different local norms for bounding bias and variance parts in
their algorithm and analysis. Notably, due to the complications of the projection step (see (30) and (31)), the overall
algorithm is fairly complicated and less attractive for practical implementations, and moreover, it needs to maintain two
covariance matrices Vt and Ṽt (due to the constructed confidence region (30)) at each round t during the algorithm running.
In the next section, we will show that the simple projection used in the stationary GLB (27) can be sufficient for coping
with the drifting GLB via our refined analysis framework.

B.2 Proof of Lemma 2

Proof. Base on the estimator equation (8), we know that

gt(θ̂t) = λcµθ̂t +

t−1∑
s=1

γt−s−1µ(X>s θ̂t)Xs =

t−1∑
s=1

γt−s−1rsXs, (36)

and then by the mean value theorem, we know that

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2), (37)

where Gt(θ1, θ2) ,
∫ 1

0
∇gt(sθ2 + (1− s)θ1)ds ∈ Rd×d. Notice that for any θ ∈ Θ, the gradient of gt is

∇gt(θ) = λcµId +

t−1∑
s=1

γt−s−1µ′(X>s θ)XsX
>
s � cµVt−1,

which clearly implies ∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) � cµVt−1.

By Assumption 2, the mean value theorem (37) on gt and the projection (9), we have

|µ(x>θ̃t)− µ(x>θt)| ≤ kµ|x>(θ̃t − θt)|

= kµ|x>G−1
t (θt, θ̃t)(gt(θ̃t)− gt(θt))|

≤ kµ‖x‖G−1
t (θt,θ̃t)

‖gt(θ̃t)− gt(θt)‖G−1
t (θt,θ̃t)

≤ kµ
cµ
‖x‖V −1

t−1
‖gt(θ̃t)− gt(θt)‖V −1

t−1

≤ 2kµ
cµ
‖x‖V −1

t−1
‖gt(θ̂t)− gt(θt)‖V −1

t−1
,

then based on the model assumption, the function gt (10) and gt(θ̂t) (36), we have,

gt(θt)− gt(θ̂t) = λcµθt +

t−1∑
s=1

γt−s−1µ(X>s θt)Xs −
t−1∑
s=1

γt−s−1rsXs

= λcµθt +

t−1∑
s=1

γt−s−1µ(X>s θt)Xs −
t−1∑
s=1

γt−s−1(µ(X>s θs) + ηs)Xs (38)

=

t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs︸ ︷︷ ︸
bias part

+λcµθt −
t−1∑
s=1

γt−s−1ηsXs︸ ︷︷ ︸
variance part

. (39)

Then, by the Cauchy-Schwarz inequality, we know that for any x ∈ X ,∣∣∣µ(x>θ̃t)− µ(x>θt)
∣∣∣ ≤ 2kµ

cµ
‖x‖V −1

t−1
(Ct +Dt) , (40)
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where

Ct =

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
V −1
t−1

, Dt =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
V −1
t−1

.

This two terms can be bounded separately, as summarized in the following lemmas.

Lemma 6. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
V −1
t−1

≤ Lkµ
√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 . (41)

Lemma 7. For any δ ∈ (0, 1), with probability at least 1− δ, the following holds for all t ∈ [T ],∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
V −1
t−1

≤
√
λcµS +R

√
2 log

1

δ
+ d log

(
1 +

L2(1− γ2t−2)

λd(1− γ2)

)
. (42)

Based on the inequality (40), Lemma 6, Lemma 7, and the boundedness assumption of the feasible set, we have for any
x ∈ X , γ ∈ (0, 1), δ ∈ (0, 1), with probability at least 1− δ, the following holds for all t ∈ [T ],∣∣∣µ(x>θ̃t)− µ(x>θt)

∣∣∣ ≤ 2kµ
cµ
‖x‖V −1

t−1

(
Lkµ
√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̄t−1

)

≤ 2kµ
cµ

(
L2kµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̄t−1‖x‖V −1

t−1

)
,

where β̄t ,
√
λcµS +R

√
2 log 1

δ + d log
(

1 + L2(1−γ2t)
λd(1−γ2)

)
is the confidence radius used in GLB-WeightUCB. Hence we

complete the proof.

Proof of Lemma 6. Here we need to extract the variations of the time-varying parameter θt∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1
t−1∑
p=s

(µ(X>s θp)− µ(X>s θp+1))Xs

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
p=1

p∑
s=1

γt−s−1α(Xs, θp, θp+1)(X>s θp −X>s θp+1)Xs

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
p=1

p∑
s=1

γt−s−1α(Xs, θp, θp+1)XsX
>
s (θp − θp+1)

∥∥∥∥∥
V −1
t−1

≤
t−1∑
p=1

∥∥∥∥∥
p∑
s=1

γt−s−1α(Xs, θp, θp+1)Xs‖Xs‖2‖θp − θp+1‖2

∥∥∥∥∥
V −1
t−1

≤ L
t−1∑
p=1

p∑
s=1

γt−s−1|α(Xs, θp, θp+1)| ‖Xs‖V −1
t−1
‖θp − θp+1‖2

≤ Lkµ
t−1∑
p=1

p∑
s=1

γt−s−1 ‖Xs‖V −1
t−1
‖θp − θp+1‖2.

where the forth equation is due to the mean value theorem where α(x, θ1, θ2) =
∫ 1

0
µ′(vx>θ2 + (1− v)x>θ1)dv:

µ(X>s θp)− µ(X>s θp+1) = α(Xs, θp, θp+1)(X>s θp −X>s θp+1).

Next, the derivation for the bound of term
∑p
s=1 γ

t−s−1 ‖Xs‖V −1
t−1

is the same as the inequality (23) in A.2, hence we
complete the proof.
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Proof of Lemma 7. Same as the linear case, we need to use Ṽt = λId +
∑t
s=1 γ

2(t−s)XsX
>
s .

Dt =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
V −1
t−1

+ ‖λcµθt‖V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
Ṽ −1
t−1

+
√
λcµS

≤ R

√
2 log

1

δ
+ d log

(
1 +

L2(1− γ2t−2)

λd(1− γ2)

)
+
√
λcµS.

Again, we emphasize that the Ṽt is introduced into analysis only. The proof here is the same as the proof of Lemma 5 in
A.2, the only difference is an extra cµ in the second term.

B.3 Proof of Theorem 2

Proof. Let X∗t , arg maxx∈X µ(x>θt). Due to Lemma 2 and the fact that X∗t , Xt ∈ X , each of the following holds with
probability at least 1− δ,

∀t ∈ [T ], µ(X∗>t θt) ≤ µ(X∗>t θ̃t) +
2kµ
cµ

(
L2kµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̄t−1‖X∗t ‖V −1

t−1

)
,

∀t ∈ [T ], µ(X>t θt) ≥ µ(X>t θ̃t)−
2kµ
cµ

(
L2kµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̄t−1‖Xt‖V −1

t−1

)
.

By the union bound, the following holds with probability at least 1− 2δ: ∀t ∈ [T ]

µ(X∗>t θt)− µ(X>t θt)

≤ µ(X∗>t θ̃t)− µ(X>t θ̃t) +
4L2k2

µ

cµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 +

2kµ
cµ

(
β̄t−1‖X∗t ‖V −1

t−1
+ β̄t−1‖Xt‖V −1

t−1

)

≤
4L2k2

µ

cµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 +

4kµ
cµ

β̄t−1‖Xt‖V −1
t−1
,

where the last step comes from the arm selection criterion (12) such that

µ(X∗>t θ̃t) +
2kµ
cµ

β̄t−1‖X∗t ‖V −1
t−1
≤ µ(X>t θ̃t) +

2kµ
cµ

β̄t−1‖Xt‖V −1
t−1
.

Hence the following dynamic regret bound holds with probability at least 1− 2δ and can be divided into two parts,

RT =

T∑
t=1

max
x∈X

µ(x>θt)− µ(X>t θt)

≤
4L2k2

µ

cµ

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2︸ ︷︷ ︸

bias part

+
4kµ
cµ

β̄T

T∑
t=1

‖Xt‖V −1
t−1︸ ︷︷ ︸

variance part

. (43)

where β̄t =
√
λcµS +R

√
2 log 1

δ + d log
(

1 + L2(1−γ2t)
λd(1−γ2)

)
is the confidence radius.

Now we derive the upper bound for these two parts separately.



Jing Wang, Peng Zhao, Zhi-Hua Zhou

Algorithm 4 SCB-WeightUCB
Input: time horizon T , discounted factor γ, confidence δ, regularizer λ, inverse link function µ, parameters S, L and m
1: Set V0 = λId, θ̂1 = 0 and compute kµ and cµ
2: for t = 1, 2, ..., T do
3: if ‖θ̂t‖2 ≤ S then
4: let θ̃t = θ̂t
5: else
6: Do the projection and get θ̃t by (14)
7: end if
8: Compute β̃t−1 by (16)
9: Select Xt by (17)

10: Receive the reward rt
11: Update Vt = γVt−1 +XtX

>
t + (1− γ)λId

12: Compute θ̂t+1 according to (8)
13: end for

Bias Part. Similar to the proof of inequality (25), we have

4L2k2
µ

cµ

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 ≤

8L2k2
µ

cµ

√
d

λ

1

(1− γ)3/2
PT .

Variance Part. Similar to the proof of inequality (26), we have

4kµ
cµ

β̄T
√
T

√√√√ T∑
t=1

‖Xt‖2V −1
t−1

≤ 4kµ
cµ

β̄T
√

2 max{1, L2/λ}dT

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

Combine the upper bound for the bias and variance parts, and let δ = 1/(2T 2), we have the following regret bound with
probability at least 1− 1/T ,

RT ≤
8L2k2

µ

cµ

√
d

λ

1

(1− γ)3/2
PT +

4kµ
cµ

β̄T
√

2 max{1, L2/λ}dT

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

where β̄t =
√
λcµS +R

√
4 log T + 2 log 2 + d log

(
1 + L2(1−γ2t)

λd(1−γ2)

)
. We set γ ≥ 1/T and λ = d/c2µ, and obtain that,

RT ≤ Õ
(
k2
µ

1

(1− γ)3/2
PT +

kµ
cµ
d(1− γ)

1/2T

)
.

When PT < d/(kµcµT ), we set γ = 1− 1/T and achieve an Õ(kµc
−1
µ d
√
T ) regret bound. When PT ≥ d/(kµcµT ), We

set γ optimally as 1− γ =
√
kµcµPT /(dT ) and attain an Õ(k

5/4
µ c
−3/4
µ d

3/4P
1/4
T T

3/4) regret bound. Notice that, if kµ < 1,
we just let 1− γ =

√
cµPT /(dT ) and the regret bound becomes Õ(k2

µc
−3/4
µ d

3/4P
1/4
T T

3/4).

C Analysis of SCB-WeightUCB

In this section, we first present SCB-WeightUCB algorithm in Algorithm 4, Then, in Appendix C.1 we present the proof
of the estimation error upper bound of our SCB-WeightUCB algorithm (Lemma 3). Finally, in Appendix C.2, we provide
the proof of dynamic regret upper bound (Theorem 3).

C.1 Proof of Lemma 3

Proof. Base on the estimator equation (8), we know that

gt(θ̂t) = λcµθ̂t +

t−1∑
s=1

γt−s−1µ(X>s θ̂t)Xs =

t−1∑
s=1

γt−s−1rsXs, (44)
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and then by the mean value theorem, we know that

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2), (45)

where Gt(θ1, θ2) ,
∫ 1

0
∇gt(sθ2 + (1− s)θ1)ds ∈ Rd×d. Notice that for any θ ∈ Θ, the gradient of gt is

∇gt(θ) = λcµId +

t−1∑
s=1

γt−s−1µ′(X>s θ)XsX
>
s � cµVt−1,

which clearly implies ∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) � cµVt−1 and ∀θ,Ht(θ) � cµVt−1, where Ht(θ) is defined as

Ht(θ) , λcµId +

t−1∑
s=1

γt−s−1µ′(X>s θ)XsX
>
s . (46)

By Assumption 2, the mean value theorem (37) on gt, the projection (14) and Lemma 14, we have

|µ(x>θ̃t)− µ(x>θt)| ≤ kµ|x>(θ̃t − θt)|

= kµ|x>G−1
t (θt, θ̃t)(gt(θ̃t)− gt(θt))|

≤ kµ‖x‖G−1
t (θt,θ̃t)

‖gt(θ̃t)− gt(θt)‖G−1
t (θt,θ̃t)

≤ kµ‖x‖G−1
t (θt,θ̃t)

(
‖gt(θ̃t)− gt(θ̂t)‖G−1

t (θt,θ̃t)
+ ‖gt(θ̂t)− gt(θt)‖G−1

t (θt,θ̃t)

)
≤
√

1 + 2Skµ‖x‖G−1
t (θt,θ̃t)

(
‖gt(θ̃t)− gt(θ̂t)‖H−1

t (θ̃t)
+ ‖gt(θ̂t)− gt(θt)‖H−1

t (θt)

)
≤ 2
√

1 + 2S
kµ√
cµ
‖x‖V −1

t−1
‖gt(θ̂t)− gt(θt)‖H−1

t (θt)
,

then based on the model assumption (13), the function gt (10) and the gt(θ̂t) (44), we have,

gt(θt)− gt(θ̂t) = λcµθt +

t−1∑
s=1

γt−s−1µ(X>s θt)Xs −
t−1∑
s=1

γt−s−1rsXs

= λcµθt +

t−1∑
s=1

γt−s−1µ(X>s θt)Xs −
t−1∑
s=1

γt−s−1(µ(X>s θs) + ηs)Xs

=

t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs + λcµθt −
t−1∑
s=1

γt−s−1ηsXs,

then, by Cauchy-Schwarz inequality, we have∣∣∣µ(x>θ̃t)− µ(x>θt)
∣∣∣ ≤ 2

√
1 + 2S

kµ√
cµ
‖x‖V −1

t−1
(Et + Ft) , (47)

where

Et =

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)

, Ft =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1
t (θt)

.

This two terms can be bounded separately.

Lemma 8. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)

≤ L kµ√
cµ

√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 . (48)
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Lemma 9. For any δ ∈ (0, 1), with probability at least 1− δ, we have for all t ∈ [T ],∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1
t (θt)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

dm√
λcµ

log

(
1 +

L2kµ(1− γ2t−2)

λcµd(1− γ2)

)
+

2m√
λcµ

d log(2) +
√
λcµS,

(49)

Based on the inequality (47), Lemma 6 and Lemma 7, and the boundedness assumption of the feasible set, we have for any
x ∈ X , δ ∈ (0, 1), with probability at least 1− δ, we have for all t ∈ [T ],∣∣∣µ(x>θ̃t)− µ(x>θt)

∣∣∣ ≤ 2
√

1 + 2S
kµ√
cµ
‖x‖V −1

t−1

(
L
kµ√
cµ

√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̃t−1

)
,

≤ 2
√

1 + 2S
kµ√
cµ

(
L2 kµ√

λcµ

√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̃t−1‖x‖V −1

t−1

)
,

where β̃t ,
√
λcµ

2m + 2m√
λcµ

log 1
δ + dm√

λcµ
log
(

1 +
L2kµ(1−γ2t)
λcµd(1−γ2)

)
+ 2m√

λcµ
d log(2) +

√
λcµS is the confidence radius used

in SCB-WeightUCB. Hence we completes the proof.

Proof of Lemma 8. Since ∀θ,Ht(θ) � cµVt−1, we have∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)

≤ 1
√
cµ

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
V −1
t−1

.

Then use Lemma 6 and we complete the proof.

Proof of Lemma 9. Let H̃t(θ) , λcµγ
−2(t−1)Id +

∑t−1
s=1 γ

−2sµ′(X>s θ)XsX
>
s which is only used in the analysis.

Ft =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1
t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1
t (θt)

+ ‖λcµθt‖H−1
t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

γ−sηsXs

∥∥∥∥∥
H̃−1
t (θt)

+
√
λcµS.

Recall that Ht(θ) = λcµId +
∑t−1
s=1 γ

t−s−1µ′(X>s θ)XsX
>
s , so the last inequality comes from

γ−2(t−1)Ht(θ) = λcµγ
−2(t−1)Id +

t−1∑
s=1

γ−t−s+1µ′(X>s θ)XsX
>
s � λcµγ−2(t−1)Id +

t−1∑
s=1

γ−2sµ′(X>s θ)XsX
>
s = H̃−1

t (θ).

(50)

From the weighted version concentration inequality [Russac et al., 2021, Theorem 3], restated in Theorem 6, we can get
the bound for the first term ‖

∑t−1
s=1 γ

−sηsXs‖H̃−1
t (θt)

. First by the model assumption (13), we know that σ2
t = E[η2

t |Ft] =

Var[rt|Ft] = µ′′(Xtθt), then just let wt = γ−t, λt = λcµγ
−2t and we have,∥∥∥∥∥

t−1∑
s=1

γ−sηsXs

∥∥∥∥∥
H̃−1
t (θt)

≤
√
λcµ

2m
+

2m√
λcµ

log

(
det(H̃t)

1/2

δ(λcµγ−2(t−1))d/2

)
+

2m√
λcµ

d log(2).

Then use Lemma 12 and let wt,s = γ−2sµ′(X>s θt), λt = λcµγ
−2(t−1), we get the upper bound for det(H̃t),

det(H̃t) ≤

(
λcµγ

−2(t−1) +
L2kµ

∑t−1
s=1 γ

−2s

d

)d
,
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then,∥∥∥∥∥
t−1∑
s=1

γ−sηsXs

∥∥∥∥∥
H̃−1
t (θt)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

dm√
λcµ

log

λcµγ−2(t−1) +
L2kµ

∑t−1
s=1 γ

−2s

d

λcµγ−2(t−1)

+
2m√
λcµ

d log(2)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

dm√
λcµ

log

(
1 +

L2kµ(1− γ2t−2)

λcµd(1− γ2)

)
+

2m√
λcµ

d log(2).

Therefore, we get the upper bound for Ft term.

C.2 Proof of Theorem 3

Proof. Let X∗t , arg maxx∈X µ(x>θt). Due to Lemma 2 and the fact that X∗t , Xt ∈ X , each of the following holds with
probability at least 1− δ,

∀t ∈ [T ], µ(X∗>t θt) ≤ µ(X∗>t θ̃t) + 2
√

1 + 2S
kµ√
cµ

(
L2 kµ√

λcµ

√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̃t−1‖X∗t ‖V −1

t−1

)
,

∀t ∈ [T ], µ(X>t θt) ≥ µ(X>t θ̃t)− 2
√

1 + 2S
kµ√
cµ

(
L2 kµ√

λcµ

√
d

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 + β̃t−1‖Xt‖V −1

t−1

)
.

By the union bound, the following holds with probability at least 1− 2δ: ∀t ∈ [T ]

µ(X∗>t θt)− µ(X>t θt)

≤ µ(X∗>t θ̃t)− µ(X>t θ̃t) + 2
√

1 + 2S

(
2L2k2

µ

cµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2

+
kµ√
cµ

(
β̃t−1‖X∗t ‖V −1

t−1
+ β̃t−1‖Xt‖V −1

t−1

))

≤
4
√

1 + 2SL2k2
µ

cµ

√
d

λ

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 +

4
√

1 + 2Skµ√
cµ

β̃t−1‖Xt‖V −1
t−1
,

where the last step comes from the arm selection criterion (17) such that

µ(X∗>t θ̃t) + 2
√

1 + 2S
kµ√
cµ
β̃t−1‖X∗t ‖V −1

t−1
≤ µ(X>t θ̃t) + 2

√
1 + 2S

kµ√
cµ
β̃t−1‖Xt‖V −1

t−1
.

Hence, the following dynamic regret bound holds with probability at least 1− 2δ and can be divided into two parts,

RT =

T∑
t=1

µ(X∗>t θt)− µ(X>t θt)

≤
4
√

1 + 2SL2k2
µ

cµ

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2︸ ︷︷ ︸

bias part

+
4
√

1 + 2Skµ√
cµ

β̃T

T∑
t=1

‖Xt‖V −1
t−1︸ ︷︷ ︸

variance part

.

where β̃t =

√
λcµ

2m + 2m√
λcµ

log 1
δ + dm√

λcµ
log
(

1 +
L2kµ(1−γ2t)
λcµd(1−γ2)

)
+ 2m√

λcµ
d log(2) +

√
λcµS is the confidence radius.

Now we derive the upper bound for these two parts separately.

Bias Part. Similar to the proof of inequality (25), we have

4
√

1 + 2SL2k2
µ

cµ

√
d

λ

T∑
t=1

t−1∑
p=1

γ
t−1
2

√
γ−p − 1

1− γ
‖θp − θp+1‖2 ≤

8
√

1 + 2SL2k2
µ

cµ

√
d

λ

1

(1− γ)3/2
PT .
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Variance Part. First use the Cauchy-Schwarz inequality, we know that

4
√

1 + 2Skµ√
cµ

β̃T

T∑
t=1

‖Xt‖V −1
t−1
≤ 4
√

1 + 2Skµ√
cµ

β̃T
√
T

√√√√ T∑
t=1

‖Xt‖2V −1
t−1

.

Then for the term
√∑T

t=1 ‖Xt‖2V −1
t−1

, we can directly use the Lemma 11 to bound it,

4
√

1 + 2Skµ√
cµ

β̃T
√
T

√√√√ T∑
t=1

‖Xt‖2V −1
t−1

≤ 4
√

1 + 2Skµ√
cµ

β̃T
√

2 max{1, L2/λ}dT

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

Combining the upper bound for the bias and variance parts, and letting δ = 1/(2T ), we have the following regret bound
with probability at least 1− 1/T ,

RT ≤
8
√

1 + 2SL2k2
µ

cµ

√
d

λ

1

(1− γ)3/2
PT +

4
√

1 + 2Skµ√
cµ

β̃T
√

2 max{1, L2/λ}dT

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

where β̃t =

√
λcµ

2m + 2m√
λcµ

log (2T ) + dm√
λcµ

log
(

1 +
L2kµ(1−γ2t)
λcµd(1−γ2)

)
+ 2m√

λcµ
d log(2) +

√
λcµS. Since that there is a

T
√

log(1/γ) term in the regret bound, which means that we cannot let γ close to 0, so we set γ ≥ 1/T , then we have
log(1/γ) ≤ C(1 − γ), where C = log T/(1 − 1/T ). Then, ignoring logarithmic factors in time horizon T , and let
λ = d log(T )/cµ, we finally obtain that,

RT ≤ Õ

(
k2
µ√
cµ

1

(1− γ)3/2
PT +

kµ√
cµ
d(1− γ)

1/2T

)
.

When PT < d/(kµT ) (which corresponds a small amount of non-stationarity), we simply set γ = 1 − 1/T and achieve
an Õ(kµc

−1/2
µ d

√
T ) regret bound. Besides, when coming to the non-degenerated case of PT ≥ d/(kµT ), We set the dis-

counted factor optimally as 1− γ =
√
kµPT /(dT ) and attain an Õ(k

5/4
µ c
−1/2
µ d

3/4P
1/4
T T

3/4) regret bound, which completes
the proof.

D Piecewise-Stationary SCB

In this section, we study SCB under piecewise-stationary environment and our work is a direct improvement over [Rus-
sac et al., 2021]. Next, we will first propose our SCB-PW-WeightUCB algorithm, and then, present the analysis of the
confidence set. Finally, we give the proof of the dynamic regret upper bound.

D.1 SCB-PW-WeightUCB Algorithm

Inspired by Abeille et al. [2021], we make a direct improvement over Russac et al. [2021]. Just like Russac et al. [2021],
for D ≥ 1, define T (D) = {1 ≤ t ≤ T, such that θs = θt for t −D ≤ s ≤ t − 1}. t ∈ T (D) when t is at least D steps
away from the previous closest changing point. But the difference is that Russac et al. [2021] considers D as an analysis
parameter, and we treat D as a tunable algorithm parameter. Notice that, the D here is not a virtual window size, but the
algorithm’s estimate of how durable the environment is stationary.

Estimator. At iteration t, we adopt the same maximum likelihood estimator as in the drifting case as defined in (8).

Confidence Set. We further construct confidence set for the real θt. For δ ∈ (0, 1), we define,

Ct(δ) ,
{
θ ∈ Θ

∣∣∣ ‖gt(θ)− gt(θ̂t)‖H−1
t (θ) ≤ ρt

}
,

where ρt =
2L2Skµ√

λcµ

γD

1−γ + Lm√
λcµ

γD

1−γ +β̆t and β̆t = dm√
λcµ

log
(

1 +
L2kµ(1−γ2D)
λcµd(1−γ)

)
+

√
λcµ

2m + 2m√
λcµ

log 1
δ + 2m√

λcµ
d log(2)+√

λcµS.
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Algorithm 5 SCB-PW-WeightUCB
Input: time horizon T , discounted factor γ, confidence δ, regularizer λ, inverse link function µ, parameters S, L and m,

changing confidence D
1: Set θ̂0 = 0 and compute kµ and cµ
2: for t = 1, 2, 3, ..., T do
3: Compute (Xt, θ̃t) = arg maxx∈X ,θ∈Ct(δ) µ(x>θ)
4: Select Xt and receive the reward rt
5: Compute θ̂t+1 according to (8)
6: end for

Lemma 10. For any δ ∈ (0, 1), with probability at least 1− δ, we have ∀t ∈ T (D), θt ∈ Ct(δ).

Ct(δ) =

{
θ ∈ Θ | ‖gt(θ)− gt(θ̂t)‖H−1

t (θ) ≤
2L2Skµ√

λcµ

γD

1− γ
+

Lm√
λcµ

γD

1− γ
+ β̆t

}
,

where β̆t =

√
λcµ

2m + 2m√
λcµ

log 1
δ + dm√

λcµ
log
(

1 +
L2kµ(1−γ2D)
λcµd(1−γ)

)
+ 2m√

λcµ
d log(2) +

√
λcµS.

The proof of Lemma 10 is presented in Appendix D.2.

Selection Criteria. Algorithms discussed earlier for drifting cases are using bonus-based selection criteria. But here we
use a parameter-based selection criterion as follows,

(Xt, θ̃t) = arg max
x∈X ,θ∈Ct(δ)

µ(x>θ). (51)

The main difference between parameter-based and bonus-based selection criteria is discussed in Section 3.2 of Abeille
et al. [2021]. The overall algorithm is summarized in Algorithm 5.

D.2 Proof of Lemma 10

Proof. Based on the model assumption (13), the function gt (10) and the gt(θ̂t) (44), we have,

gt(θt)− gt(θ̂t) = λcµθt +

t−1∑
s=1

γt−s−1µ(X>s θt)Xs −
t−1∑
s=1

γt−s−1rsXs

= λcµθt +

t−1∑
s=1

γt−s−1µ(X>s θt)Xs −
t−1∑
s=1

γt−s−1(µ(X>s θs) + ηs)Xs

=

t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs + λcµθt −
t−1∑
s=1

γt−s−1ηsXs.

Then,

‖gt(θt)− gt(θ̂t)‖H−1
t (θt)

=

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs + λcµθt −
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1
t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)

+

∥∥∥∥∥λcµθt −
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1
t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)︸ ︷︷ ︸

term (a)

+

∥∥∥∥∥
t−D−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1
t (θt)︸ ︷︷ ︸

term (b)

+

∥∥∥∥∥
t−1∑

s=t−D
γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1
t (θt)︸ ︷︷ ︸

term (c)

.
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Term (a). Since t ∈ T (D), we have∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)

=

∥∥∥∥∥
t−D−1∑
s=1

γt−s−1(µ(X>s θt)− µ(X>s θs))Xs

∥∥∥∥∥
H−1
t (θt)

≤

∥∥∥∥∥
t−D−1∑
s=1

γt−s−1kµX
>
s (θt − θs)Xs

∥∥∥∥∥
H−1
t (θt)

≤
t−D−1∑
s=1

γt−s−1kµ‖Xs‖2‖(θt − θs)‖2 ‖Xs‖H−1
t (θt)

≤ 2L2Skµ√
λcµ

γD

1− γ
.

Term (b).∥∥∥∥∥
t−D−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1
t (θt)

≤
t−D−1∑
s=1

γt−s−1m ‖Xs‖H−1
t (θt)

≤ Lm√
λcµ

t−D−1∑
s=1

γt−s−1 ≤ Lm√
λcµ

γD

1− γ
.

Term (c). Let H̃t−D:t(θ) = λcµγ
−2(t−1)Id +

∑t−1
s=t−D γ

−2sµ′(X>s θ)XsX
>
s∥∥∥∥∥

t−1∑
s=t−D

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1
t (θt)

≤

∥∥∥∥∥
t−1∑

s=t−D
γt−s−1ηsXs

∥∥∥∥∥
H−1
t (θt)

+
√
λcµS

≤

∥∥∥∥∥
t−1∑

s=t−D
γ−sηsXs

∥∥∥∥∥
H̃−1
t (θt)

+
√
λcµS

≤

∥∥∥∥∥
t−1∑

s=t−D
γ−sηsXs

∥∥∥∥∥
H̃−1
t−D:t(θt)

+
√
λcµS.

We already proof that γ−2(t−1)Ht(θ) � H̃−1
t (θ) in (50), and obviously H̃t(θ) � H̃t−D:t(θ). Next, we need to bound

the term ‖
∑t−1
s=t−D γ

−sηsXs‖H̃−1
t−D:t(θt)

using self-normalization bound [Russac et al., 2021, Theorem 3], restated in

Theorem 6 by let wt = γ−t, λt = λcµγ
−2t, then we have∥∥∥∥∥

t−1∑
s=t−D

γ−sηsXs

∥∥∥∥∥
H̃−1
t−D:t(θt)

≤
√
λcµ

2m
+

2m√
λcµ

log

 det
(
H̃t−D:t

)1/2

δ(λcµγ−2(t−1))d/2

+
2m√
λcµ

d log(2)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

dm√
λcµ

log

λcµγ−2(t−1) +
L2kµ

∑t
s=t−D γ

−2s

d

λcµγ−2(t−1)

+
2m√
λcµ

d log(2)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

dm√
λcµ

log

(
1 +

L2kµ(1− γ2D)

λcµd(1− γ)

)
+

2m√
λcµ

d log(2).

Let β̆t ,
√
λcµ

2m + 2m√
λcµ

log 1
δ + dm√

λcµ
log
(

1 +
L2kµ(1−γ2D)
λcµd(1−γ)

)
+ 2m√

λcµ
d log(2) +

√
λcµS , finally we have,

‖gt(θt)− gt(θ̂t)‖H−1
t (θt)

≤ 2L2Skµ√
λcµ

γD

1− γ
+

Lm√
λcµ

γD

1− γ
+ β̆t,

which completes the proof.
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D.3 Proof of Theorem 4

Proof. Let Rt = µ(X∗>t θt)− µ(X>t θt)

RT =

T∑
t=1

Rt =
∑

t/∈T (D)

Rt +
∑

t∈T (D)

Rt = ΓTD +
∑

t∈T (D)

Rt.

For t ∈ T (D), by selection criterion (51),

Rt = µ(X∗>t θt)− µ(X>t θt)

≤ µ(X>t θ̃t)− µ(X>t θ̂t) + µ(X>t θ̂t)− µ(X>t θt)

≤ α(Xt, θ̃t, θ̂t)
∣∣∣X>t (θ̃t − θ̂t)∣∣∣+ α(Xt, θt, θ̂t)

∣∣∣X>t (θt − θ̂t)∣∣∣
≤
√

1 + 2S

(
α(Xt, θ̃t, θ̂t) ‖Xt‖G−1

t (θ̃t,θ̂t)

∥∥∥gt(θ̃t)− gt(θ̂t)∥∥∥
H−1
t (θ̃t)

+ α(Xt, θt, θ̂t) ‖Xt‖G−1
t (θt,θ̂t)

∥∥∥gt(θt)− gt(θ̂t)∥∥∥
H−1
t (θt)

)
.

where α(x, θ1, θ2) =
∫ 1

0
µ′(vx>θ2 + (1− v)x>θ1)dv, and the last second inequality comes from the mean value theorem

µ(x>θ1)−µ(x>θ2) = α(x, θ1, θ2)(x>θ1−x>θ2). Since that θ̃t ∈ Ct(δ) and with probability at least 1−δ, ∀t ∈ [T ], θt ∈
Ct(δ), and by union bound, the following dynamic regret bound hold with probability at least 1− δ,∑

t∈T (D)

Rt ≤
∑

t∈T (D)

√
1 + 2S

(
α(Xt, θ̃t, θ̂t) ‖Xt‖G−1

t (θ̃t,θ̂t)
ρt + α(Xt, θt, θ̂t) ‖Xt‖G−1

t (θt,θ̂t)
ρt

)

≤
√

1 + 2SρT

 ∑
t∈T (D)

α(Xt, θ̃t, θ̂t) ‖Xt‖G−1
t (θ̃t,θ̂t)

+
∑

t∈T (D)

α(Xt, θt, θ̂t) ‖Xt‖G−1
t (θt,θ̂t)

 .

Now we try to derive the upper bound for term
∑
t∈T (D) α(Xt, θ̃t, θ̂t) ‖Xt‖G−1

t (θ̃t,θ̂t)
.

Based on the definition of gt (10), we have

gt(θ1)− gt(θ2) = λcµ(θ1 − θ2) +

t−1∑
s=1

γt−s−1(µ(X>s θ1)− µ(X>s θ2))Xs

= λcµ(θ1 − θ2) +

t−1∑
s=1

γt−s−1α(Xs, θ1, θ2)X>s Xs(θ1 − θ2)

=

(
λcµ +

t−1∑
s=1

γt−s−1α(Xs, θ1, θ2)X>s Xs

)
(θ1 − θ2).

(52)

Then based on the definition of Gt (45), we know Gt(θ1, θ2) = λcµ +
∑t−1
s=1 γ

t−s−1α(Xs, θ1, θ2)X>s Xs. which means

Gt(θ̃t, θ̂t) = λcµId +
∑t−1
s=1 γ

t−s−1α(Xs, θ̃t, θ̂t)XsX
>
s , if we let X̃s =

√
α(Xs, θ̃t, θ̂t)Xs, then

∑
t∈T (D)

α(Xt, θ̃t, θ̂t) ‖Xt‖G−1
t (θ̃t,θ̂t)

≤

√√√√ T∑
t=1

α(Xt, θ̃t, θ̂t)

√√√√ T∑
t=1

α(Xt, θ̃t, θ̂t) ‖Xt‖2G−1
t (θ̃t,θ̂t)

≤
√
kµT

√√√√ T∑
t=1

∥∥∥X̃t

∥∥∥2

G−1
t (θ̃t,θ̂t)

. (53)

Then for the term
√∑T

t=1 ‖X̃t‖2
G−1
t (θ̃t,θ̂t)

, we can directly use the Lemma 11 to bound it,

√
kµT

√√√√ T∑
t=1

∥∥∥X̃t

∥∥∥2

G−1
t (θ̃t,θ̂t)

≤
√

2kµ max{1, L2kµ/(λcµ)}dT

√
T log

1

γ
+ log

(
1 +

L2kµ
λcµd(1− γ)

)
.
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We can bound term
∑
t∈T (D) α(Xt, θt, θ̂t) ‖Xt‖G−1

t (θt,θ̂t)
in the same way and get,

∑
t∈T (D)

α(Xt, θt, θ̂t) ‖Xt‖G−1
t (θt,θ̂t)

≤
√

2kµ max{1, L2kµ/(λcµ)}dT

√
T log

1

γ
+ log

(
1 +

L2kµ
λcµd(1− γ)

)
.

Combine these two bound and let δ = 1/T , we have the following regret bound with probability at least 1− 1/T ,

RT ≤ ΓTD + 2
√

1 + 2SρT

√
2kµ max{1, L2kµ/(λcµ)}dT

√
T log

1

γ
+ log

(
1 +

L2kµ
λcµd(1− γ)

)
,

where ρt =
2L2Skµ√

λcµ

γD

1−γ + Lm√
λcµ

γD

1−γ + β̆t and β̆t = dm√
λcµ

log
(

1 +
L2kµ(1−γ2D)
λcµd(1−γ)

)
+

√
λcµ

2m + 2m√
λcµ

log (T ) +

2m√
λcµ

d log(2) +
√
λcµS. Since that there is a T

√
log(1/γ) term in the regret bound, which means that we cannot let

γ close to 0, so we set γ ≥ 1/2, then we have log(1/γ) ≤ 2 log(2)(1− γ). Then, we set D = log(T )/ log(1/γ), noticing
that 0 < 1/γ − 1 < 1 and using log(1 + x) ≥ x/2 for 0 < x < 1, we have

log
1

γ
= log(1 + 1/γ − 1) ≥ 1− γ

2γ
.

Therefore, we have D ≤ 2γ log(T )
1−γ . Then, ignoring logarithmic factors in time horizon T , and let λ = d log(T )/cµ, we

finally obtain that,

RT ≤ Õ
(

1

1− γ
ΓT +

(
1√
d

1

1− γ
1

T
+
√
d

)√
d(1− γ)T

)
≤ Õ

(
1

1− γ
ΓT +

1√
1− γ

+ d
√

(1− γ)T

)
.

When ΓT < d/
√
T (which corresponds a small amount of non-stationarity), we simply set γ = 1 − 1/T and achieve an

Õ(d
√
T ) regret bound. Besides, when coming to the non-degenerated case of ΓT > d/

√
T , We set the discounted factor

optimally as 1− γ = (ΓT /(dT ))
2/3 and attain an Õ(d

2/3Γ
1/3
T T

2/3) dynamic regret bound, which completes the proof.

E Thechnical Lemmas

In this section, we provide several useful lemmas, mainly about weighted version self-normalized concentration, weighted
version potential lemma and some derivatives of self-concordant property.

E.1 Weighted Version Self-normalized Concentration

Theorem 5 (Weighted Version Self-Normalized Bound for Vector-Valued Martingales [Russac et al., 2019, Theorem 1]).
Let {Ft}∞t=0 be a filtration, {ηt}∞t=0 be a real-valued stochastic process such that ηt is Ft-measurable and ηt is condition-
ally R-sub-Gaussian for some R ≥ 0, such that

∀λ ∈ R,E [exp(ληt) |X1:t, η1:t−1] ≤ exp

(
λ2R2

2

)
.

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. For any t ≥ 0, define

Ṽt = µtId +

t∑
s=1

w2
sXsX

>
s , St =

t∑
s=1

wsηsXs.

where ∀s ≥ 0, t ≥ 0, ws, µt > 0. Then, for any δ > 0, with probability at least 1− δ, we have

∀t ≥ 0, ‖St‖Ṽ −1
t
≤ R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t
s=1 w

2
s

dµt

)
.

Theorem 6 (Theorem 3 of Russac et al. [2021]). Let t be a fixed time instant. Let {Ft}∞t=0 be a filtration. Let {Xt}∞t=0

be a stochastic process on Rd such that Xt is Ft−1 measurable and ‖Xt‖2 ≤ 1. Let {ηt}∞t=0 be a martingale difference
sequence such that ηt is Ft measurable. Assume that the weights are non-decreasing, strictly positive and the time horizon
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is known. Furthermore, assume that conditionally on Ft we have |ηt| ≤ m a.s. Let {λt}∞u=0 be a deterministic sequence
of regularization terms and denote σ2

t = E
[
η2
t | Ft

]
. Let H̃t =

∑t−1
s=1 w

2
sσ

2
sXsX

>
s + λt−1Id and St =

∑t−1
s=1 wsηsXs,

then for any δ ∈ (0, 1], with probability at least 1− δ,

∀t ≥ 0, ‖St‖H̃−1
t
≤
√
λt−1

2mwt−1
+

2mwt−1√
λt−1

log

det
(
H̃t

)1/2

δλ
d/2
t−1

+
2mwt−1√
λt−1

d log(2).

E.2 Weighted Version Potential Lemma

Lemma 11 (Weighted Version Potential Lemma [Faury et al., 2021, Lemma 8]). Suppose Vt =
∑t
s=1 γ

t−sXsX
>
s +

λId, V0 = λId, γ ∈ (0, 1] and ‖Xt‖2 ≤ L for all t ≥ 1, then the following inequality holds,

T∑
t=1

‖Xt‖2V −1
t−1

≤ 2 max{1, L2/λ}d
(
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

))
.

Lemma 12 (Determinant inequality). Let Vt =
∑t
s=1 wt,sXsX

>
s + λtId, V0 = λ0Id. Assume ‖x‖2 ≤ L and we have,

det(Vt) ≤

(
λt +

L2
∑t
s=1 wt,s
d

)d
.

Proof. Now we have Vt =
∑t
s=1 wt,sXsX

>
s + λtId, take the trace on both sides, and get the upper bound of Tr(Vt)

Tr(Vt) = Tr(λtId) +

t∑
s=1

wt,sTr
(
XsX

>
s

)
= λtd+

t∑
s=1

wt,s‖Xs‖22 ≤ λtd+ L2
t∑

s=1

wt,s. (54)

Base on the definition of determinant and the upper bound of Tr(Vt) (54), we can get the upper bound for det(Vt),

det(Vt) =

d∏
i=1

λi ≤

(∑d
i=1 λi
d

)d
=

(
Tr(Vt)

d

)d
≤

(
λt +

L2
∑t
s=1 wt,s
d

)d
.

E.3 Self-Concordant Properties

Based on the generalized self-concordant property of the (inverse) link function µ(·), we have the following lemma, which
will be later used to derive Lemma 14.

Lemma 13 (Lemma 9 of Faury et al. [2020]). For any z1, z2 ∈ R, we have the following inequality:

µ′(z1)
1− exp(−|z1 − z2|)

|z1 − z2|
≤
∫ 1

0

µ′(z1 + v(z2 − z1))dv ≤ µ′(z1)
exp(|z1 − z2|)− 1

|z1 − z2|
.

Furthermore,
∫ 1

0
µ′(z1 + v(z2 − z1))dv ≥ µ′(z1)(1 + |z1 − z2|)−1.

The following lemma provides a weighted version of Lemma 10 of Faury et al. [2020] which can be easily proven.

Lemma 14. With Gt defined in (45) and Ht defined in (46), the following inequalities hold

∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) ≥ (1 + 2S)−1Ht(θ1), Gt(θ1, θ2) ≥ (1 + 2S)−1Ht(θ2).
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