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Abstract—Non-stationary parametric bandits have attracted
much attention recently. There are three principled ways to deal
with non-stationarity, including sliding-window, weighted, and
restart strategies. As many non-stationary environments exhibit
gradual drifting patterns, the weighted strategy is commonly
adopted in real-world applications. However, previous theoretical
studies show that its analysis is more involved and the algorithms
are either computationally less efficient or statistically subopti-
mal. This paper revisits the weighted strategy for non-stationary
parametric bandits. In linear bandits (LB), we discover that this
undesirable feature is due to an inadequate regret analysis, which
results in an overly complex algorithm design. We propose a
refined analysis framework, which simplifies the derivation and,
importantly, produces a simpler weight-based algorithm that is as
efficient as window/restart-based algorithms while retaining the
same regret as previous studies. Furthermore, our new frame-
work can be used to improve regret bounds of other parametric
bandits, including Generalized Linear Bandits (GLB) and Self-
Concordant Bandits (SCB). For example, we develop a simple
weighted GLB algorithm with an Õ(k

5/4
µ c

−3/4
µ d

3/4P
1/4
T T

3/4) re-
gret, improving the Õ(k2

µc
−1
µ d

9/10P
1/5
T T

4/5) bound in prior work,
where kµ and cµ characterize the reward model’s nonlinearity,
PT measures the non-stationarity, d and T denote the dimension
and time horizon. Moreover, we extend our framework to non-
stationary Markov Decision Processes (MDPs) with function
approximation, focusing on Linear Mixture MDP and Multino-
mial Logit (MNL) Mixture MDP. For both classes, we propose
algorithms based on the weighted strategy and establish dynamic
regret guarantees using our analysis framework.

Index Terms—dynamic regret, non-stationary bandits, dis-
counted factor, online MDPs, function approximation.

I. INTRODUCTION

NON-STATIONARY parametric bandits model the se-
quential decision-making problems where the reward

distributions of each arm are structured with an unknown time-
varying parameter, which have been extensively studied in re-
cent years [1]–[11] due to their significance in many real-world
non-stationary online applications such as recommendation
systems [12], [13]. This line of work also has a tight connec-
tion with the theoretical foundation of Reinforcement Learning
(RL), particularly in the context of episodic Markov Decision
Processes (MDPs) with function approximation [14]–[17]. In
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these settings, parametric bandits are frequently employed to
model both reward and transition dynamics across episodes.
Moreover, when these underlying dynamics exhibit non-
stationary behavior across different episodes, non-stationary
parametric bandit techniques naturally extend to capture the
non-stationary dynamics of rewards and transitions [18], [19].

Linear Bandits (LB) is a fundamental instance of parametric
bandits, where the expected reward for pulling a certain arm
at time t is the inner product between the arm’s feature vector
Xt and an unknown parameter θt, namely, E[rt |Xt] = X⊤

t θt.
Moreover, Generalized Linear Bandits (GLB) is introduced as
a generalization of LB to model a broader range of reward
functions (e.g. binary rewards), where the expected reward
obeys a generalized linear model as E[rt | Xt] = µ(X⊤

t θt)
with µ(·) being an inverse link function. Furthermore, LB
and GLB have fundamental applications in Markov Decision
Processes (MDPs) with function approximation. As a repre-
sentative instance, the Linear Mixture MDP adopts LB to
model both reward functions and transition dynamics. Building
on this, the Multinomial Logit (MNL) Mixture MDP was
introduced to address the limitation of linear functions to
model probabilities. By employing the MNL bandit (a special
case of GLB), it effectively models transition probabilities and
ensures valid distributions. Notably, the non-stationary models
allow the parameter θt in the above models to be time-varying;
therefore, we use dynamic regret [20], [21] to evaluate the al-
gorithm’s performance. There are two typical non-stationarity
measures to quantify the intensity of parameter changes: (i) in
gradually drifting cases, path length PT =

∑T
t=2 ∥θt−1 − θt∥2

is used to measure the cumulative variations of the underlying
parameters; and (ii) in piecewise-stationary cases, ΓT denotes
the number of parameter changes in T rounds.

To deal with non-stationarity, there are three principled
ways: sliding-window, weighted, and restart strategies. For the
sliding-window strategy, the learner maintains a time window
that contains the most recent observed data to discard the
outdated data. For the weighted strategy, the learner assigns
more weight to the most recent data and less to older data,
gradually forgetting the outdated data. For the restart strategy,
the learner restarts the algorithm according to a certain period
to discard the outdated data. The currently best-known result
for non-stationary (generalized) linear bandits and episodic
MDPs with linear function approximation is by [8], who
developed a minimax optimal algorithm consisting of a non-
stationarity detector and a base algorithm that performs well
in near-stationary environments. Whenever the detector ex-
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TABLE I: Comparisons of our dynamic regret bounds to the previous best-known results for weight-based algorithms, under different
non-stationary bandit and MDP settings. Below, kµ/cµ characterize the non-linearity in GLB/SCB (reducing to 1 for LB) and κ denotes
the non-linearity in MNL Mixture MDP; d is the dimension, H is the length of an episode in the MDP setting, path length PT and the
change number ΓT are non-stationarity measures for drifting and piecewise-stationary cases, respectively, and total path length ∆ measures
the non-stationarity in the drifting MDP case.

Settings Previous Work Our Results

Drifting LB Õ
(
d

7/8P
1/4
T T

3/4
)

[2] Õ
(
d

3/4P
1/4
T T

3/4
)

[Theorem 1]
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cµ
d

9/10P
1/5
T T

4/5
)

[6] Õ
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k5/4µ

c
3/4
µ

d
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1/4
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3/4
)

[Theorem 2]

Drifting SCB Õ
(
k2µ
cµ
d

9/10P
1/5
T T

4/5
)

[6] Õ
(
k5/4µ

c
1/2
µ

d
3/4P

1/4
T T

3/4
)

[Theorem 3]

Piecewise Stationary SCB Õ
(

1

c
1/3
µ

d
2/3Γ

1/3
T T

2/3
)

[7] Õ
(
d

2/3Γ
1/3
T T

2/3
)

[Theorem 4]

Drifting Linear Mixture MDP Õ
(
Hd∆

1/4T
3/4
)

[18] Õ
(
Hd∆

1/4T
3/4
)

[Theorem 5]

Drifting MNL Mixture MDP — Õ
(
κ−1Hd∆

1/4T
3/4
)

[Theorem 6]

amines that the non-stationarity exceeds a certain limit, the
algorithm will restart itself to handle the non-stationarity. In
this sense, their algorithm can be regarded as an adaptive
restart-based algorithm. Building on the RestartUCB algo-
rithm [3] and a carefully designed non-stationarity detector
with multi-scale explorations, their algorithm can achieve an
Õ(min{

√
ΓTT , P

1/3
T T

2/3}) optimal dynamic regret for both
LB and GLB and Õ(min{

√
ΓTT ,∆

1/3T
2/3}) dynamic regret

for Episodic MDPs where ∆ represents the total path length
which includes the cumulative parameters variations of both
reward function and transition function.

In real-world scenarios, the distributional change of environ-
ments often exhibits gradually drifting patterns [22]–[27], in
such cases, a soft weighted strategy can be (empirically) more
advantageous than a hard restart strategy to deal with the non-
stationarity, as can be observed in bandits learning [2], [3],
[9], classification with concept drift [28], [29], and adaptive
system identification [30], [31]. As a result, it will be highly
attractive to design an adaptive weight-based algorithm for
non-stationary parametric bandits, which imposes weights to
discount the importance of past data, and the weights are
set adaptively according to environments. Towards this end,
we examine existing methods for non-stationary parametric
bandits based on the weighted strategy, and (surprisingly) find
that current results exhibit unnatural gaps compared to the
other strategies, such as restart-based algorithms, as well as
unnatural regret analysis transitions from GLB to LB.

Those unnatural phenomena motivate us to revisit the algo-
rithm design and regret analysis of the weighted strategy for
non-stationary parametric bandits [2], [6], [7]. Indeed, the key
ingredient is the estimation error analysis for the weight-based
estimator, which is usually decomposed into two parts — one
is the bias part due to the parameter drift, and the other is the
variance part due to the stochastic noise. Generally, the bias
part is controlled by non-stationary strategies, and the vari-
ance part is handled by carefully designed concentration. [2]
provided the first analysis of a weight-based algorithm for
linear bandits (LB). In their bias analysis, they introduced a

virtual window size in the analysis to control the bias in order
to mimic the analysis of a sliding-window strategy [1]. For
the variance analysis, [2] developed a weighted version of
the self-normalized concentration inequality, which required
a specially designed local norm. This introduced additional
analytical complexity, since the previously studied sliding-
window [1] and restart strategy [3] could directly apply the
standard self-normalized concentration inequality [32]. Con-
sequently, they have to use different local norms to control
bias and variance parts, resulting in unexpected inefficiencies
of algorithm design and complications of analysis. For LB, this
leads to an algorithm D-LinUCB [2] requiring the maintenance
of an extra covariance matrix as the local norm for the
weighted version self-normalized concentration, which is less
efficient than the window and restart-based algorithms [1], [3].

This analysis framework for weighted strategy introduces
more severe issues in GLB, due to its more enriched and
complicated structure. Specifically, [6] studied the drift-
ing GLB and designed a highly complex projection oper-
ation to control bias and variance parts following the way
of [2] to mimic sliding-window analysis, and finally at-
tained an Õ(d

9/10P
1/5
T T

4/5) dynamic regret. Unfortunately, this
cannot recover the Õ(d

7/8P
1/4
T T

3/4) bound enjoyed by the
weight-based algorithm for drifting LB (a special case of
GLB) [2]. Subsequently, [7] investigated the non-stationary
Self-Concordant Bandits (SCB), a subclass of GLB with many
attractive structures. They can only conduct analysis under
the piecewise-stationary setting, whereas they failed in the
more challenging drifting setting, due to technical difficulties
in bounding bias using conventional analysis. Moreover, since
the weighted version of the self-normalized concentration for
LB [2] could not be extended to the SCB setting, they further
redesigned a weighted version specifically for SCB, building
on the self-normalized concentration for stationary SCB [33],
which introduced substantial additional complexity into the
analysis. As such, two open questions are proposed in their
papers: (i) how to extend weight-based algorithms to drifting
SCB; and (ii) how to replicate recent progress in stationary
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SCB [34] to improve dependence on cµ in non-stationary SCB.

Our Results. In this paper, we revisit the weighted strategy
for non-stationary parametric bandits and MDPs. We discover
that the earlier analysis framework for the weighted strat-
egy may be inappropriate due to its reliance on mimicking
the sliding-window analysis and the specifically designed
weighted version of self-normalized concentration, which re-
quires bounding the bias and variance components using
different local norms, and designing new weighted versions of
this concentration tool for every new setting further introduces
significant and unnecessary analytical complexity. As a result,
there is no unified analysis framework that can be applied
directly across different settings. To address this, we propose
a refined analysis framework for the weighted strategy. In
our framework, a new analysis for the bias part is presented,
while the variance part analysis only relies on the standard
self-normalized concentration [32] without the need for an
additional weighted version and enables the use of a single
local norm to analyze both the bias and variance components.
This refinement simplifies the analysis of the weighted strategy
and makes the approach more broadly applicable to other
decision-making settings. It also brings several benefits to
algorithm design, including improved efficiency for LB and
a resolution to the projection issue encountered in GLB and
SCB. Furthermore, our analysis framework is not limited to the
bandit setting and can be extended to online Markov decision
processes (MDPs) scenarios. In this paper, we extend our
results to two fundamental classes of MDPs: (i) non-stationary
linear mixture MDPs, and (ii) non-stationary multinomial
logit (MNL) mixture MDPs. Table I summarizes our main
results compared with the best-known results for weight-
based algorithms. Specifically, based on our refined analysis
framework, we achieve: (i) for LB, our approach only needs
to maintain one covariance instead of two and still enjoys
the same regret as [2]; (ii) for GLB, our approach enjoys an
Õ(k

5/4
µ c

−3/4
µ d

3/4P
1/4
T T

3/4) regret bound, whose order of d, PT
and T matches that in LB case; (iii) for SCB, we achieve
an Õ(k

5/4
µ c

−1/2
µ d

3/4P
1/4
T T

3/4) regret bound, and for piecewise
stationary SCB, our approach achieves an Õ(d

2/3Γ
1/3
T T

2/3)
regret bound that can get rid of the influence of c−1

µ , resolving
the second open problem asked by [7]; (iv) for Linear Mixture
MDP, we achieve an Õ(Hd∆

1/4T
3/4) regret bound that enjoys

the same regret as [18] that was achieved by the restarted
strategy; and (v) for MNL Mixture MDP, we establish the first
dynamic regret bound of Õ(Hd∆

1/4T
3/4) in the literature.

Compared with our earlier conference version [11], this
extended version presents additional results, along with a
simpler, clearer analysis and refined presentation. Firstly, this
extended version further simplifies the analysis compared
to our conference version [11]. The earlier approach [2]
relied on three key components: an extra covariance matrix,
a weighted self-normalized concentration inequality, and a
weighted potential lemma. In our conference version [11],
we removed the need to maintain an additional covariance
matrix. In this extended version, we take it a step further
by showing that the standard self-normalized concentration
inequality is sufficient for analyzing the weighted strategy. As

a result, the only essential component for the weighted strategy
analysis is the weighted potential lemma. The maintenance
of two covariance matrices and the use of weighted self-
normalized concentration, as done in previous works [2], [11],
are unnecessary. This simplification makes our analysis and
algorithm both much simpler and more general. Secondly,
this simplification makes our approach much more scalable
and easier to extend to other bandit settings. Both earlier
work [7] and our conference version [11] required designing a
new weighted self-normalized concentration inequality when
adapting the method to a new setting (e.g., SCB), which
limited their generality. Our refined analysis removes this need,
allowing the same framework to be applied across different
problems without requiring problem-specific weighted concen-
tration results. Thirdly, we extend our results to two funda-
mental settings of online MDPs with function approximation:
linear mixture MDPs and multinomial logit (MNL) mixture
MDPs. Notably, we provide the first dynamic regret guarantee
for MNL mixture MDPs, demonstrating both the effectiveness
and the broad applicability of our refined analytical framework
for weighted strategy.

II. RELATED WORK

Linear Bandits. The non-stationary LB problem was first
studied by [1]. They established an Ω(d

2/3P
1/3
T T

2/3) minimax
lower bound and then proposed SW-UCB algorithm based on
the sliding-window strategy. Then [2] proposed the D-LinUCB
algorithm based on a weighted strategy, and [3] proposed the
RestartUCB algorithm based on a restart strategy. Note that
the three works proved an Õ(d

2/3P
1/3
T T

2/3) regret bound, but
there exists a subtle technical gap in the regret analysis as
identified by [35]. After fixing the technical gap, all three
aforementioned algorithms achieve an Õ(d

7/8P
1/4
T T

3/4) regret
bound [35], [36]. However, to achieve this result, all three
algorithms require the knowledge of the path length PT as
an input at the beginning of algorithmic implementation,
which is undesired. To address this, [1] proposed the bandits-
over-bandits (BOB) strategy as a meta-algorithm to learn the
unknown parameter PT , which can be combined with the
above algorithms to remove the requirement of this prior
knowledge. Afterward, [8] proposed the MASTER algorithm
with theoretically optimal Õ(min{d

√
ΓTT , dP

1/3
T T

2/3}) regret
bound, also without requiring the non-stationarity level of en-
vironments (that is, ΓT and PT ) in advance, but requires fixed
arm set assumption. Most recently, there has also been some
new progress in the non-stationary (linear) bandits [10], [37]–
[39]. Furthermore, [40, Remark 4] bypassed the aforemen-
tioned technical gap by restarting adversarial LB algorithms.
However, it is important to note that this only applies to LB
and requires fixed arm set assumption and known PT .

Generalized Linear Bandits. The GLB problem was first
introduced by [41]. They proposed GLM-UCB algorithm,
achieving an Õ(kµc

−1
µ d

√
T ) regret bound where kµ, cµ

are the problem-dependent constants and kµ/cµ represents
the nonlinearity of the generalized linear model. [6] ex-
tended the stationary GLB to the drifting case, and proposed
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BVD-GLM-UCB algorithm with Õ(k2µc
−1
µ d

9/10P
1/5
T T

4/5) re-
gret bound. [33] studied a specific instance of GLB called
Logistic Bandits (LogB). They first pointed out that un-
der the GLB setting, the problem-dependent constant 1/cµ
could be very large in some cases like LogB, then they
proposed the Logistic-UCB-1 algorithm with an Õ(c

−1/2
µ d

√
T )

regret bound and the Logistic-UCB-2 algorithm with an
Õ(d

√
T + c−1

µ ) regret bound. Subsequently, [34] established
an Ω(d

√
µ′(X⊤

∗ θ∗)T ) regret lower bound for logistic bandits
and provided an optimal algorithm OFULog. [7] generalized
the logistic bandits to self-concordant bandits and consid-
ered the piecewise-stationary case; their algorithm enjoys an
Õ(c

−1/3
µ d

2/3Γ
1/3
T T

2/3) regret bound. To deal with PT -unknown
cases, [6] proposed a parameter-free algorithm by combining
BVD-GLM-UCB with the BOB strategy, but the final result
is still suboptimal. Meanwhile, the black-box algorithm [8]
can adaptively restart the stationary algorithm GLM-UCB [41]
and achieve an Õ(min kµc

−1
µ

√
ΓTT , k

4/3
µ c−1

µ dP
1/3
T T

2/3) re-
gret, which matches the lower bound for non-stationary LB in
terms of PT and T , and therefore optimal for non-stationary
GLBs, since LB is a special case of GLB (i.e. µ(x) = x).
Recently, there has been notable progress in GLB regarding
its efficiency and regret optimality in terms of non-linearity.
Readers can refer to [42] for the latest advancements. Nonethe-
less, these results focus on the static regret setting.

MDP with Function Approximation. Reinforcement learning
with function approximation has attracted significant atten-
tion recently [16]–[18], [43], [44], with two fundamental
approaches: linear function approximation and generalized
linear function approximation. Among these, Linear Mixture
MDP was first introduced by [43], [44], which is a rep-
resentative model for linear function approximation. They
proposed the UCRL-VTR algorithm, achieving a regret bound
of Õ(d

√
H3T ), where H is the episode horizon. Building

on this, [18] extended the stationary Linear Mixture MDP to
drifting case, they establish Ω(d5/6∆1/3H2/3T 2/3) minimax
lower bound for non-stationary linear mixture MDPs, and
then proposed the SW-LSVI-UCB algorithm, which achieves
a regret bound of Õ(Hd∆

1/4T
3/4), where ∆ quantifies the

cumulative variation of the underlying parameters. To better
capture the probabilistic nature of transition dynamics, [16]
explored a class of generalized function approximation models
and introduced the MNL Mixture MDP, which leverages the
MNL function to model transitions. They proposed the UCRL-
MNL algorithm, achieving a regret bound of Õ(κ−1d

√
H3T ),

where κ represents the nonlinearity of the MNL model, H is
the episode horizon, and K is the total number of episodes.
Later, [17] further achieved an Õ(d

√
H3T +κ−1d2H2) regret

bound for MNL Mixture MDP.

III. LINEAR BANDIT

In this section, we first introduce the problem setting of non-
stationary LB, and describe our LB-WeightUCB algorithm and
its theoretical guarantee. Then we present a proof sketch of
Lemma 1 to illustrate our proposed analysis framework in
detail. Notably, our algorithm achieves the same regret bound
as the best-known weight-based algorithm [2] without relying

on a specially designed weighted version of self-normalized
concentration and can be more efficient.

A. Problem Setting

At each round t, the learner chooses an arm Xt from a
feasible set X ⊆ Rd and receives a reward rt such that

rt = X⊤
t θt + ηt, (1)

where θt ∈ Rd is the unknown time-varying parameter and
ηt is the R-sub-Gaussian noise. The goal of the learner is to
minimize the following (pseudo) dynamic regret:

D-REGT =

T∑
t=1

max
x∈X

x⊤θt −
T∑
t=1

X⊤
t θt, (2)

which is the cumulative regret against the optimal strategy
that has full information of the unknown parameter. Here
we consider the drifting case where we use path length
PT =

∑T
t=2 ∥θt−1 − θt∥2 as the non-stationarity measure.

Notice that in this paper we focus on a fixed arm set X .
A time-varying arm set Xt does not introduce any additional
difficulty for our weight-based algorithm. The only difference
is that the optimal comparator in the dynamic regret (2) would
need to be updated to maxx∈Xt

x⊤θt, and the arm selection
step (6) would be performed over the time-varying arm set Xt
instead of X . This does not affect the analysis. For simplicity,
we stick to the fixed arm set setting in this paper.

We work under the following standard boundedness as-
sumption [1]–[3], [32].

Assumption 1. The feasible set and unknown parameters are
assumed to be bounded: ∀x ∈ X , ∥x∥2 ≤ L, and θt ∈ Θ
holds for all t ∈ [T ] where Θ ≜ {θ | ∥θ∥2 ≤ S}.

B. Algorithm and Regret Guarantee

We propose the LB-WeightUCB algorithm, which attains
the same regret guarantees as previous methods while enjoying
better efficiency. We first give the employed estimator and then
derive its estimation error upper bound by our refined analysis
framework, which is the key for algorithm design and regret
analysis. Based on the estimation error bound, we propose our
selection criterion and finally give the theoretical guarantee on
its dynamic regret.

Estimator. We adopt a weighted regularized least square
estimator similar to D-LinUCB [2], the estimator θ̂t is the
solution to the following problem,

min
θ

λ ∥θ∥22 +
t−1∑
s=1

wt−1,s

(
X⊤
s θ − rs

)2
, (3)

where λ > 0 is the regularization coefficient and ∀t ∈
[T ], s ∈ [t − 1], wt−1,s is the weighted factor. To deal with
non-stationarity, we set wt,s = γt−s, where γ ∈ (0, 1) is
the discounted factor. This approach assigns lower weights
to older data while giving higher weights to more recent
data, thereby better adapting to changes over time. Clearly, θ̂t
admits a closed-form solution θ̂t = V −1

t−1(
∑t−1
s=1 wt−1,srsXs),
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Algorithm 1 LB-WeightUCB

Require: time horizon T , discounted factor γ, confidence δ,
regularizer λ, parameters S, L and R

1: Set V0 = λId, θ̂1 = 0 and compute β0 by (5)
2: for t = 1, 2, ..., T do
3: Select Xt = argmaxx∈X

{
⟨x, θ̂t⟩+ βt−1 ∥x∥V −1

t−1

}
4: Receive the reward rt
5: Update Vt = γVt−1 +XtX

⊤
t + (1− γ)λId

6: Compute θ̂t+1 by (3) and βt by (5) with wt,s = γt−s

7: end for

where Vt = λId +
∑t
s=1 wt,sXsX

⊤
s , V0 = λId is the

covariance matrix. Note that this closed-form solution can
be further transformed into a recursive formula such that
Vt = γVt−1+XtX

⊤
t +(1−γ)λId where we set wt,s = γt−s.

This allows it to be updated online without storing historical
data, which is another important computational advantage of
the weighted strategy over the sliding-window strategy.

Upper Confidence Bounds. For estimator (3), we provide
the following estimation error bound. Notably, this is different
from the previous result [2, Appendix B.3, second and third
steps in Proof of Theorem 2]. This difference is key to our
algorithm’s improved efficiency, as we discuss later.

Lemma 1. For any x ∈ X , γ ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1− δ, the following holds for all t ∈ [T ]∣∣∣x⊤(θ̂t − θt)

∣∣∣ (4)

≤ L2

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 + βt−1 ∥x∥V −1
t−1

,

where βt is the radius of the confidence region set by

βt =
√
λS +R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t
s=1 wt,s
λd

)
. (5)

The proof of Lemma 1 is presented in Appendix A-B. Based
on Lemma 1, we can specify the arm selection criterion as

Xt = argmax
x∈X

{
⟨x, θ̂t⟩+ βt−1 ∥x∥V −1

t−1

}
. (6)

The overall algorithm is summarized in Algorithm 1. From the
update procedure in Line 5 of Algorithm 1, we can observe
that our algorithm needs to maintain a single covariance matrix
Vt−1 ∈ Rd×d. By contrast, the selection criterion of the
algorithm proposed in [2] is

Xt = argmax
x∈X

{
⟨x, θ̂t⟩+ βt−1 ∥x∥V ′−1

t−1 Ṽt−1V
′−1
t−1

}
,

where βt−1 is similar to those in our selection criterion (6),
V ′
t−1 = λId+

∑t−1
s=1 γ

t−s−1XsX
⊤
s ∈ Rd×d, and Ṽt−1 = λId+∑t−1

s=1 γ
2(t−s−1)XsX

⊤
s ∈ Rd×d is an extra covariance matrix.

Thus, our algorithm is more efficient than their algorithm since
it only needs to maintain one covariance matrix instead of
two. This owes to the fact that our analysis of Lemma 1
only uses V −1

t−1 as the local norm to analyze both bias and

variance parts, but the algorithm of [2] requires to use l2-
norm and V −1

t−1Ṽt−1V
−1
t−1-norm to control bias and variance

parts, respectively. In Section III-C, we provide a sketch of
the analysis framework for Lemma 1, and a more detailed
discussion is presented in Appendix A-A. Furthermore, we
prove that our algorithm enjoys the same (even slightly better
in d) regret as the algorithm of [2].

Theorem 1. Let the weighted factor wt,s = γt−s, where γ ∈
(1/T, 1), and let λ = d, the dynamic regret of LB-WeightUCB
(Algorithm 1) is bounded with probability at least 1 − 1/T ,
by

D-REGT ≤ Õ
(

1

(1− γ)3/2
PT + d(1− γ)

1/2T

)
.

Furthermore, by setting the discounted factor optimally as γ =
1−max{1/T,

√
PT /(dT )}, LB-WeightUCB ensures

D-REGT ≤

Õ
(
d

3/4P
1/4
T T

3/4
)

when PT ≥ d/T,

Õ(d
√
T ) when PT < d/T.

Compared to previous works [1]–[3], our approach improves
from Õ(d

7/8P
1/4
T T

3/4) to Õ(d
3/4P

1/4
T T

3/4) when PT ≥ d/T .
We remark that this improved dimensional dependence is sim-
ply owing to the more refined tuning of the discounted factor
than the one used by [2], who did not take the dimension into
the tuning. Their algorithm and regret can also benefit from the
refined tuning. The proof of Theorem 1 is in Appendix A-C.

Further, notice that the optimal choice of discounted factor γ
requires knowing PT in advance. To achieve a parameter-free
result for unknown PT case, our algorithm can be combined
with the BOB strategy [1] and achieves an Õ(d

3/4P
1/4
T T

3/4)
bound.We provide the BOB version of LB-WeightUCB and
detailed regret analysis in Appendix H.However, this bound is
not optimal, and it is possible to design an adaptive weight-
based algorithm based on our result, in the spirit of [8],
to further achieve an optimal dynamic regret without prior
knowledge of PT . This is very challenging since at each round
t ∈ [T ], we can only receive one data pair (Xt, rt), which is
not adequate for the learner to real-time update the discounted
factor γt. At the same time, MASTER algorithm [8] can be
considered as a special case of the adaptive weight-based
algorithm since it only includes two circumstances: setting
γt = 0 to restart at time t and setting γt = 1 to keep going.
However, for the adaptive weight-based algorithm, the choice
of the discounted factor γt can be continuous in [0, 1], which
is more difficult than a binary decision. We leave this as an
important open question for future study. Additionally, we note
that our approach can handle time-varying arm set settings,
whereas MASTER relies on the fixed arm set assumption. It
remains unclear whether optimal regret can be achieved under
time-varying arm set.

C. Refined analysis framework

In this section, we present a proof sketch for Lemma 1 (esti-
mation error analysis for weighted linear bandits), which also
serves as a description of our proposed analysis framework.
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Proof Sketch. From the model assumption (1) and the estima-
tor (3), the estimation error can be split into two parts,

θ̂t − θt = V −1
t−1

(
t−1∑
s=1

wt−1,sXsX
⊤
s (θs − θt)

)
︸ ︷︷ ︸

bias part

+ V −1
t−1

(
t−1∑
s=1

wt−1,sηsXs − λθt

)
︸ ︷︷ ︸

variance part

,

where the bias part is caused by the parameter drifting, and
the variance part is due to the stochastic noise. Then, by the
Cauchy-Schwarz inequality, for any x ∈ X ,

|x⊤(θ̂t − θt)| ≤ ∥x∥V −1
t−1

(At +Bt), (7)

where At = ∥
∑t−1
s=1 wt−1,sXsX

⊤
s (θs − θt) ∥V −1

t−1
and Bt =

∥
∑t−1
s=1 wt−1,sηsXs − λθt∥V −1

t−1
.

Choosing an appropriate local norm for (7) is the key to
simplifying and improving the estimation error analysis. Note
that the previous analysis [2] had to use different local norms:
using l2-norm in the bias part, and V ′−1

t−1 Ṽt−1V
′−1
t−1 -norm in

the variance part, namely,

|x⊤(θ̂t − θt)| ≤ ∥x∥2A
′
t + ∥x∥V ′−1

t−1 Ṽt−1V
′−1
t−1

B′
t, (8)

where we have A′
t = ∥V ′−1

t−1

∑t−1
s=1 γ

t−s−1XsX
⊤
s (θs − θt) ∥2,

B′
t = ∥

∑t−1
s=1 γ

t−s−1ηsXs − λθt∥Ṽ −1
t−1

and V ′
t = λId +∑t−1

s=1 γ
t−sXsX

⊤
s , Ṽt = λId +

∑t
s=1 γ

2(t−s)XsX
⊤
s . Due to

the need for using sliding-window analysis to analyze the bias
part, they have to use l2-norm to get the format of A′

t. For
the variance part, to use weighted version of self-normalized
concentration, they use the V ′−1

t−1 Ṽt−1V
′−1
t−1 -norm to control x

term so that B′
t term can be normed by Ṽ −1

t−1.
As an improvement, we directly use the same V −1

t−1-norm to
control both parts, which benefits from our new analysis for
the bias part and modified analysis for the variance part.

Bias Part Analysis. The key step of bias part analysis is to
extract the variations of underlying parameters as follows,

At ≤ L

t−1∑
p=1

p∑
s=1

wt−1,s ∥Xs∥V −1
t−1

∥θp − θp+1∥2

≤ L
√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 .

Based on that, we can obtain an upper bound for bias part
related to the path length PT =

∑T
t=2 ∥θt−1 − θt∥2. A precise

proof for the above argument can be found in Lemma 7.

Variance Part Analysis. The key lies in analyzing the
following self-normalized term with weighted factor wt−1,s,

Bt ≤

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs

∥∥∥∥∥
V −1
t−1

+
√
λS

=

∥∥∥∥∥
t−1∑
s=1

η̃sX̃s

∥∥∥∥∥
V −1
t−1

+
√
λS.

Here, notice that Vt = λId +
∑t
s=1 X̃sX̃

⊤
s , where we define

η̃s ≜
√
wt−1,sηs and X̃s ≜

√
wt−1,sXs. Notably, for all t ∈

[T ] and s ∈ [t− 1], it holds that |wt−1,s| ≤ 1, which ensures
that η̃s remains R-sub-Gaussian, and a precise argument can
be found in Lemma 8. Consequently, we can directly apply
the self-normalized concentration (Theorem 7) to control the
variance term, without requiring the weighted version of the
self-normalized concentration proposed in Theorem 1 of [2].

Combining the analysis for bias and variance parts, we can
finish the proof of Lemma 1.

The estimation error analysis for weighted strategies in-
volves first decomposing the estimation error into bias and
variance parts, then analyzing them separately. [2] used dif-
ferent local norms to decompose estimation errors, mimicking
sliding window analysis for the bias term and specifically
designing a weighted version of self-normalized concentration
for the variance term. Our refined analysis framework shows
that such complexity is unnecessary. Bias and variance can be
decomposed using the same local norm, with a dedicated bias
analysis for the weighted strategy, and the variance term no
longer requires specially designed concentrations or additional
local norms. With the estimation error bound, we proceed to
the regret analysis, where we need to use a weighted potential
lemma to bound the regret.

Weighted Potential Lemma. Term ∥x∥V −1
t−1

in (7) induces a

summation term
∑T
t=1 ∥Xt∥V −1

t−1
in the variance part of regret

analysis. Since Vt−1 = λId+
∑t−1
s=1 wt−1,sXsX

⊤
s incorporates

the weighted factors, we cannot directly apply the standard
potential lemma. Instead, we need to use a weighted potential
lemma (see Lemma 9) for regret analysis with weighted factor
wt,s = γt−s, such that

T∑
t=1

∥Xt∥V −1
t−1

= Õ
(
T

√
d log

1

γ

)
. (9)

The next is to choose the discounted factor γ appropriately, so
that the bias and variance terms in the regret bound are well
balanced. A smaller γ corresponds to faster forgetting, which
helps reduce the bias caused by non-stationarity. However,
a smaller γ will also increase the variance by the key term
O(
√

log 1
γ ) shown in (9). For details on how to optimally se-

lect γ to balance these two parts, please refer to Appendix A-C.
To summarize, for non-stationary LB analysis, the weighted

strategy is as simple as the restarted or sliding-window strate-
gies, with only the difference being the requirement of the
weighted potential lemma for regret analysis, without the need
for more complicated deviation results.

Remark 1. The key step (7) in our analysis framework also
resolves the projection issue in GLB. Specifically, after the
projection step, the bias-variance decomposition can only be
performed in V −1

t−1-norm. To accommodate previous analy-
sis (8), [6] has to inject a highly complex projection operation
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in the algorithm, whereas our framework already satisfies this
condition owing to the usage of the same V −1

t−1-norm for the
bias and variance parts.

IV. GENERALIZED LINEAR BANDIT

In this section, we apply the weighted strategy to drifting
GLB. Compared to the best-known weight-based algorithm
for drifting GLB [6], our algorithm is simpler and meanwhile
has a better dynamic regret. Additionally, we consider a key
class of GLB, known as the Self-Concordant Bandit (SCB),
and further improve the theoretical guarantees in this setting.

A. Problem Setting

GLB assumes an inverse link function µ : R → R such that
rt = µ(X⊤

t θt)+ηt, where θt ∈ Rd is the unknown parameter
and can change over time. Similar to LB, we define dynamic
regret for GLB as follows:

D-REGT =

T∑
t=1

(
max
x∈X

µ(x⊤θt)− µ(X⊤
t θt)

)
. (10)

Under GLB, we make the same assumptions as those of LB,
which include R-sub-Gaussian noise, boundedness of feasible
set and unknown regression parameters (Assumption 1). In
addition, we work under the standard boundedness assumption
of the inverse link function [6], [41], [45].

Assumption 2. The inverse link function µ : R → R is kµ-
Lipschitz, and continuously differentiable with

cµ ≜ inf
{θ∈Θ,x∈X}

µ′(θ⊤x) > 0, Θ = {θ | ∥θ∥2 ≤ S}.

Previous works [3], [40] define a similar parameter c̃µ ≜
inf{θ∈Rd,x∈X} µ

′(θ⊤x) > 0 and obtain regret upper bound
scaling with 1/c̃µ. Clearly, c̃µ is smaller than our defined cµ
(and can be much smaller) as cµ is defined on Θ while c̃µ is
defined on R. Therefore, c̃µ is less attractive to appear in the
regret upper bound.

B. Algorithm and Regret Guarantee

We propose GLB-WeightUCB, which is a simpler algorithm
with better theoretical guarantee compared to previous weight-
based algorithm [6]. The key improvement is owing to our
refined analysis framework, which is compatible with a simple
projection step.

Estimator. At iteration t, we first adopt the quasi-maximum
likelihood estimator (QMLE) without considering the projec-
tion onto the feasible domain. Specifically, the estimator θ̂t is
the solution of the following weighted regularized equation:

λcµθ +

t−1∑
s=1

wt−1,s

(
µ(X⊤

s θ)− rs
)
Xs = 0. (11)

Similar to the Estimator (3), we set wt,s = γt−s, where γ ∈
(0, 1) is the discounted factor. Given that θ̂t may not belong to
the feasible set Θ and cµ is defined over the parameter θ ∈ Θ,
we need to perform the following projection step

θ̃t = argmin
θ∈Θ

∥gt(θ̂t)− gt(θ)∥V −1
t−1
, (12)

Algorithm 2 GLB-WeightUCB

Require: time horizon T , discounted factor γ, confidence δ,
regularizer λ, link function µ, parameters S, L and R

1: Set V0 = λId, θ̂1 = 0, compute kµ, cµ and β̄0 by (14)
2: for t = 1, 2, ..., T do
3: if ∥θ̂t∥2 ≤ S then
4: let θ̃t = θ̂t
5: else
6: Do the projection and get θ̃t by (12)
7: end if
8: Select Xt by (15)
9: Receive the reward rt

10: Update Vt = γVt−1 +XtX
⊤
t + (1− γ)λId

11: Compute θ̂t+1 according to (11) with wt,s = γt−s

12: Compute β̄t by (14) with wt,s = γt−s

13: end for

where Vt = λId +
∑t
s=1 wt,sXsX

⊤
s and gt(θ) is

gt(θ) ≜ λcµθ +

t−1∑
s=1

wt−1,sµ(X
⊤
s θ)Xs. (13)

However, previous work [6] cannot conduct the same simple
projection in the drifting case as stationary GLB or piecewise-
stationary GLB, since they use different local norms to mea-
sure the bias and variance parts separately for estimation error
analysis. Consequently, they have to design a complicated
projection to ensure that the bias and variance parts could be
measured by different local norms (see [6, Section 4.1], and
our restatements in Appendix B-A).

Our refined analysis framework is compatible with this pro-
jection operation, thanks to our analysis framework utilizing
the same local norm for the bias and variance parts.

Upper Confidence Bounds. For estimator (11) with projec-
tion (12), we construct following estimation error bound.

Lemma 2. For any x ∈ X , γ ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1− δ, the following holds for all t ∈ [T ]∣∣∣µ(x⊤θ̃t)− µ(x⊤θt)

∣∣∣
≤ 2kµ

cµ

(
t−1∑
p=1

C(p) ∥θp − θp+1∥2 + β̄t−1 ∥x∥V −1
t−1

)
,

where C(p) ≜ kµL
2
√

d
λ

√∑p
s=1 wt−1,s and β̄t is the radius

of confidence region set by

√
λcµS +R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t
s=1 wt,s
λd

)
. (14)

The proof of Lemma 2 is in Appendix B-B.Then, based on
Lemma 2, we can specify the arm selection criterion as

Xt = argmax
x∈X

{
µ(x⊤θ̃t) +

2kµ
cµ

β̄t−1 ∥x∥V −1
t−1

}
. (15)

The overall algorithm is summarized in Algorithm 2.
Notice that the estimation equation (11) and the confidence

radius (14) are the same as those used in Algorithm 1 of [6].
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But importantly, the final (projected) estimators of the two
approaches are significantly different. With a simpler projec-
tion operation and our refined analysis framework, we can
immediately attain an improved regret guarantee for weight-
based algorithm.

Theorem 2. Let the weighted factor wt,s = γt−s, where γ ∈
(1/T, 1), and let λ = d/c2µ, the regret of GLB-WeightUCB
(Algorithm 2) is bounded with probability at least 1− 1/T by

D-REGT ≤ Õ
(
k2µ

1

(1− γ)3/2
PT +

kµ
cµ
d(1− γ)

1/2T

)
.

By optimally setting γ = 1 − max{1/T,
√
kµcµPT /(dT )},

GLB-WeightUCB achieves the following dynamic regret,

D-REGT ≤


Õ
(
k5/4µ

c
3/4
µ

d
3/4P

1/4
T T

3/4

)
when PT ≥ d

kµcµT
,

Õ
(
kµ
cµ
d
√
T
)

when 0 ≤ PT <
d

kµcµT
.

Compared to BVD-GLM-UCB (the best-known weight-
based algorithm for drifting GLB) [6], focusing on the de-
pendence on d, PT , and T , we can see that our approach
improves the regret from Õ(d

9/10P
1/5
T T

4/5) to Õ(d
3/4P

1/4
T T

3/4).
Furthermore, our result also improves their result upon the cµ
dependence from c−1

µ to c−
3/4

µ .

C. Self-Concordant Bandits

This section studies Self-Concordant Bandits (SCB), an
important subclass of GLB with many attractive structures.
For SCB, the reward’s distribution belongs to a canonical
exponential family: Pθ [r | x] = exp(rx⊤θ − b(x⊤θ) + c(r))
where b(·) is a twice continuously differentiable function and
c(·) is a real-valued function. Owing to the benign properties
of exponential families, we have E [r | x] = b′(x⊤θ) and
Var [r | x] = b′′(x⊤θ) where b′ denotes the first derivative of
the function b, and b′′ denotes its second derivative. Then, we
can introduce the (inverse) link function µ(·) ≜ b′(·) such that

E [rt |Xt] = µ(X⊤
t θt),Var [rt |Xt] = µ′(X⊤

t θt). (16)

SCB requires the link function satisfy |µ′′| ≤ µ′, usually
referred to general self-concordant property. We further intro-
duce the notation ηt = rt−µ(X⊤

t θt) to denote the noise. SCB
successfully models many important real-world applications
and captures the reward structure. For example, choosing
µ(x) = (1 + e−x)−1 yields the Logistic Bandits (LogB),
which is often adopted to model the binary-feedback reward
in recommendation system [46]–[48].

We make several standard assumptions same as LB and
GLB, including boundedness of feasible set and unknown
parameters (Assumption 1), and non-linearity measure on the
(inverse) link function (Assumption 2). In addition, similar
to [7], we need assumptions on boundedness of reward, and
for the convenience of analysis we let L = 1 which means
∥x∥2 ≤ 1 for all x ∈ X .

Assumption 3. The reward received at each round satisfies
0 ≤ rt ≤ m for all t ∈ [T ] and some constant m > 0.

Algorithm. We propose the SCB-WeightUCB algorithm.
Compared to GLB, we use a new local norm for projection and
regret analysis which is the key to improving the order of c−1

µ .
At iteration t, we first adopt the same maximum likelihood
estimator as GLB which is defined in (11). Different from
GLB, here we use a new local norm to perform the projection
onto the feasible set Θ,

θ̃t = argmin
θ∈Θ

∥∥∥gt(θ̂t)− gt(θ)
∥∥∥
H−1

t (θ)
, (17)

where gt(θ) is the same as (13) while Ht(θ) is defined as

Ht(θ) ≜ λcµId +

t−1∑
s=1

wt−1,sµ
′(X⊤

s θ)XsX
⊤
s . (18)

Notably, compared to Vt, Ht(θ) depends on the function
curvature along the dynamics and thus captures more local
information. Combining this projection step with the standard
self-normalized concentration restated in Theorem 8 removes
a constant c−

1/2
µ in the regret. For estimator (11) with projec-

tion (17), we construct the following estimation error bound.

Lemma 3. For any x ∈ X , γ ∈ (0, 1) and δ ∈ (0, 1), with
probability at least 1− δ, the following holds for all t ∈ [T ]∣∣∣µ(x⊤θ̃t)− µ(x⊤θt)

∣∣∣
≤

√
4 + 8Skµ√

cµ

(
t−1∑
p=1

C(p)
√
cµ

∥θp − θp+1∥2 + β̃t−1∥x∥V −1
t−1

)
,

where C(p) ≜ kµL
2
√

d
λ

√∑p
s=1 wt−1,s, and β̃t is the radius

of confidence region set by

β̃t =

√
λcµ

2m
+

2m√
λcµ

(
log

1

δ
+ d log 2

)
+

dm√
λcµ

log

(
1 +

L2kµ
∑t
s=1 wt,s

λcµd

)
+
√
λcµS.

(19)

The proof of Lemma 3 is in Appendix C-A.Based on
Lemma 3, we can select the arm Xt as

argmax
x∈X

{
µ(x⊤θ̃t) + 2

√
1 + 2S

kµ√
cµ
β̃t−1∥x∥V −1

t−1

}
. (20)

Our algorithm for SCB (named SCB-WeightUCB) follows the
same procedure of Algorithm 2, and the difference is that θ̃t
is computed by (17), β̃t−1 is computed by (19) and Xt is
computed by (20). Further, we have the following guarantee
for SCB-WeightUCB algorithm.

Theorem 3. For all γ ∈ (1/T, 1), λ = d log(T )/cµ, the
dynamic regret of SCB-WeightUCB is bounded with probability
at least 1− 1/T , by

D-REGT ≤ Õ

(
k2µ√
cµ

1

(1− γ)3/2
PT +

kµ√
cµ
d(1− γ)

1/2T

)
.

By setting γ = 1−max{1/T,
√
kµPT /(dT )}, we achieve

D-REGT ≤


Õ
(
k5/4µ

c
1/2
µ

d
3/4P

1/4
T T

3/4

)
when PT ≥ d

kµT
,

Õ
(

kµ

c
1/2
µ

d
√
T

)
when 0 ≤ PT <

d
kµT

.
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Compared to GLB, we improve the order of cµ from c−1
µ

to c−
1/2

µ by exploiting the self-concordant properties. In near-
stationary environments (PT is small enough), our result can
recover to the performance of LogUCB1 algorithm [33]. Proof
of Theorem 3 is presented in Appendix C-B.

In addition, for the piecewise-stationary SCB, we propose
SCB-PW-WeightUCB algorithm that gets rid of influence of
cµ and thus directly improves upon [7].

Theorem 4. For all γ ∈ (1/2, 1), D = log(T )/ log(1/γ)
and λ = d log(T )/cµ, the regret of SCB-PW-WeightUCB is
bounded with probability at least 1− 1/T , by

D-REGT ≤ Õ
(

1

1− γ
ΓT +

1√
1− γ

+ d
√

(1− γ)T

)
.

By setting γ = 1−max{1/T, (ΓT /(dT ))
2/3}, we achieve

D-REGT ≤


Õ
(
d

2/3Γ
1/3
T T

2/3
)

when ΓT ≥ d/
√
T ,

Õ
(
d
√
T
)

when 0 ≤ ΓT < d/
√
T .

The overall algorithm and analysis are in Appendix D.

V. LINEAR MIXTURE MDP

In this section, we apply the weighted strategy to
non-stationary linear mixture MDPs, and describe our
WeightUCRL algorithm and its theoretical guarantee. Our
algorithm achieves the same regret bound as the previous
restart-based algorithm [18].

A. Problem Setting

We build upon the previously established definition of
episodic non-stationary MDPs [18] and provide the corre-
sponding learning protocol.

Episodic Non-stationary MDPs. An episodic MDP is defined
by a tuple M = (S,A, H,P, r), where S is the state space;
A is the action space; H is the length of each episode;
P =

{
Pkh
}
h∈[H],k∈[K]

, where Pkh : S × A × S → [0, 1] is
the transition probability at h-th step of k-th episode; and
r =

{
rkh
}
h∈[H],k∈[K]

, where rkh : S×A → [0, 1] is the reward
function at h-th step of k-th episode. A policy is defined as
π =

{
πkh
}
h∈[H],k∈[K]

, where each πkh : S → ∆(A) is a
function that maps a state s to distributions over action space
A at stage h of the k-th episode.

Learning Protocol. At the beginning of each episode k, the
learner chooses a policy πk =

{
πkh
}H
h=1

. At each stage h ∈
[H], starting from the initial stage sk1 , the learner observes the
state skh, chooses an action akh sampled from πkh(s

k
h), obtains

reward rkh(s
k
h, a

k
h) and transitions to the next state skh+1 ∼

Pkh(· | skh, akh) for h ∈ [H]. The episode ends when skH+1 is
reached; when this happens, no action is taken, and the reward
is equal to zero. For any policy π =

{
πkh
}
h∈[H],k∈[K]

and

(s, a) ∈ S ×A, we define the action-value function Qk,πh and
value function V k,πh as

Qk,πh (s, a) = E

[
H∑

h′=h

rkh′

(
skh′ , πkh′

(
skh′

) ) ∣∣∣∣∣ skh = s, akh = a

]
V k,πh (s) = Ea∼πk

h(· | s)

[
Qk,πh (s, a)

]
.

We define ∀V : S → R,
[
PkhV

]
(s, a) = Es′∼Pk

h(· | s,a)
V (s′),

and the Bellman equation for policy π is given by

Qk,πh (s, a) = rkh(s, a) +
[
PkhV

k,π
h+1

]
(s, a)

V k,πh (s) = Ea∼πk
h(· | s)

[
Qk,πh (s, a)

]
, V k,πH+1 = 0.

The learner’s goal is to minimize the following dynamic regret,

D-REGT =

K∑
k=1

V
k,πk

∗
1

(
sk1
)
−

K∑
k=1

V k,π
k

1

(
sk1
)
, (21)

where we denote T ≜ H · K, for consistency with the
bandits notations. The dynamic regret measures the difference
between the learner’s policy and the optimal policy, namely,
πk∗ = argmaxπ V

k,π
1 (sk1).

Non-stationary Linear Mixture MDP. An MDP instance
M = (S,A, H,P, r) is a linear mixture MDP if there exist
known feature maps ϕ : S×A → Rd and ψ : S×A×S → Rd
and for any k ∈ [K], h ∈ [H], there exist unknown vectors
θkh ∈ Rd and wk

h ∈ Rd such that

rkh(s, a) =
〈
ϕ(s, a), θkh

〉
Pkh(s′ | s, a) =

〈
ψ(s′ | s, a),wk

h

〉
,

(22)

here we consider the drifting case where we use path
length P θT =

∑K
k=2

∑H
h=1

∥∥θk−1
h − θkh

∥∥
2

to measure the non-
stationarity of θkh and Pw

T =
∑K
k=2

∑H
h=1

∥∥wk−1
h −wk

h

∥∥
2

to measure the non-stationarity of wk
h, and we define ∆ =

P θT+P
w
T as the total path length. We work under the following

standard boundedness assumption [18].

Assumption 4. The feasible set and unknown parameters
are assumed to be bounded: ∀s ∈ S, a ∈ A, ∥ϕ(s, a)∥ ≤
Lϕ; for any bounded function V : S → [0, 1] and
∀s ∈ S, a ∈ A, ∥ψV (s, a)∥2 ≤ Lψ,where ψV (s, a) ≜∑
s′∈S ψ(s

′ |s, a)V (s′); θkh ∈ Θ holds for all k ∈ [K], h ∈ [H]

where Θ ≜ {θ | ∥θ∥2 ≤ Sθ} and wk
h ∈ W holds for all

k ∈ [K], h ∈ [H] where W ≜ {w | ∥w∥2 ≤ Sw}.

B. Algorithm and Regret Guarantee

We propose the WeightUCRL algorithm in this section.
We first give the employed reward estimator and transition
estimator, and then derive its estimation error upper bound by
our refined analysis framework, which is the key for algorithm
design and regret analysis. Based on the estimation error
bound, we propose our selection criterion and finally give the
theoretical guarantee on its dynamic regret.



10 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, DECEMBER 2025

Reward Estimator. At h-th stage of k-th episode, we use
the following weighted least square estimator θ̂kh to estimate
the unknown parameter θkh, which is the minimizer of

λθ
2

∥θ∥22 +
k−1∑
j=1

wk−1,j

(
rjh(s

j
h, a

j
h)− ϕ(sjh, a

j
h)

⊤θ
)2
,

where λθ > 0 is the regularization coefficient and wk−1,j is
the weighted factor. Similar to the Estimator (3), we set wk,j =
γk−j , where γ ∈ (0, 1) is the discounted factor. Clearly, θ̂kh
has a closed-form solution:

θ̂kh =
(
Λk−1
h

)−1

k−1∑
j=1

wk−1,jr
j
h(s

j
h, a

j
h)ϕ(s

j
h, a

j
h)

 , (23)

where Λkh = λθId +
∑k
j=1 wk,jϕ(s

j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤.

Transition Estimator. First notice that, based on model
assumption (22), we have[

PkhV kh+1

] (
skh, a

k
h

)
=
∑
s′

〈
ψ(s′ | skh, akh),wk

h

〉
V kh+1(s

′)

=

〈∑
s′

ψ(s′ | skh, akh)V kh+1(s
′),wk

h

〉
=
〈
ψkh+1

(
skh, a

k
h

)
,wk

h

〉
, (24)

where we denote ψkh+1 (s, a) ≜ ψV k
h+1

(s, a) for simplic-
ity. Based on Assumption 4, we know that ∀s ∈ S, a ∈
A,
∥∥ψkh+1 (s, a)

∥∥
2
≤ HLψ . We adopt the following weighted

least square estimator ŵk
h to estimate the unknown parameter

wk
h, which is the minimizer of

k−1∑
j=1

αk−1,j

(
⟨ψjh+1(s

j
h, a

j
h),w⟩ − V jh+1(s

j
h+1)

)2
+
λw
2

∥w∥22 ,

where λw > 0 is the regularization coefficient and αk−1,j is
the weighted factor, we set αk,j = γk−j , where γ ∈ (0, 1) is
the discounted factor. For this least square estimator, we have
a closed-form solution for ŵk

h:

(
Σk−1
h

)−1

k−1∑
j=1

αk−1,jV
j
h+1(s

j
h+1)ψ

j
h+1

(
sjh, a

j
h

) , (25)

where Σkh = λwId +
∑k
j=1 αk,jψ

j
h+1(s

j
h, a

j
h)ψ

j
h+1(s

j
h, a

j
h)

⊤.

Upper Confidence Bounds. For estimator (23) and (25), we
provide the estimation error bounds, respectively.

Lemma 4. For any s ∈ S, a ∈ A, the following holds for all
k ∈ [K], h ∈ [H],∣∣∣ϕ(s, a)⊤ (θ̂kh − θkh

)∣∣∣ ≤ Γk−1
h,θ + βθ ∥ϕ(s, a)∥(Λk−1

h )
−1 ,

where Γk−1
h,θ ≜ L2

ϕ

√
d
λθ

∑k−1
p=1

√∑p
j=1 wk−1,j

∥∥∥θph − θp+1
h

∥∥∥
2
,

βθ ≜
√
λθSθ.

Lemma 5. For any s ∈ S, a ∈ A, and δ ∈ (0, 1), with
probability at least 1 − δ, the following holds for all k ∈
[K], h ∈ [H]∣∣∣ψkh+1 (s, a)

⊤ (
ŵk
h −wk

h

)∣∣∣

Algorithm 3 WeightUCRL

Require: episode number K, time horizon H , discounted
factor γ, confidence δ, regularizer λθ, λw, parameters
Sθ, Sw, Lϕ, Lψ

1: Initialize
{
π0
h

}H
h=1

as uniform distribution policies,{
Q0
h

}H
h=1

as zero functions.
2: Set ∀h ∈ [H],Λ0

h = λθId,Σ
0
h = λwId for k = 1

3: for k = 1, 2, ...,K do
4: Receive the initial state sk1
5: Initialize V kH+1 as zero function
6: for h = H,H − 1, ..., 1 do
7: ψkh+1 (·, ·) =

∑
s′ ψ(s

′ | ·, ·)V kh+1(s
′)

8: Update Λkh = γΛk−1
h + ϕ(skh, a

k
h)ϕ(s

k
h, a

k
h)

⊤ + (1 −
γ)λθId

9: Update Σkh = ψkh+1

(
skh, a

k
h

)
ψkh+1

(
skh, a

k
h

)⊤
+

γΣk−1
h + (1− γ)λwId

10: Compute θ̂kh by (23) and ŵk
h by (25)

11: Compute optimistic value function Qkh(s, a) and
V kh (s) by (26)

12: end for
13: for h = 1, ..., H do
14: Choose policy as πkh(s) = argmaxa∈AQ

k
h(s, a)

15: Take action akh ∼ πkh(s
k
h), then observe the reward

rkh(s
k
h, a

k
h) and receive the next state skh+1

16: end for
17: end for

≤ Γk−1
h,w + βk−1

w

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1 ,

Γk−1
h,w ≜ H2L2

ψ

√
d
λw

∑k−1
p=1

√∑p
j=1 αk−1,j

∥∥∥wp
h −wp+1

h

∥∥∥
2
,

and βkw is the radius of confidence region defined by

H

√√√√1

2
log

1

δ
+
d

4
log

(
1 +

H2L2
ψ

∑k
j=1 αk,j

λwd

)
+
√
λwSw.

Proof of Lemma 4 and Lemma 5 are in Appendix E-A, E-B.

Arm Selection. Based on Lemma 4 and Lemma 5, we define
the optimistic value function Qkh(s, a) and V kh (s) as follows,

Qkh(s, a) ≜ min

{
H,ϕ(s, a)⊤θ̂kh + βθ ∥ϕ(s, a)∥(Λk−1

h )
−1

+ ψkh+1 (s, a)
⊤
ŵk
h + βk−1

w

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1

}
V kh (s) ≜ max

a∈A
Qkh(s, a) = Ea∼πk

h(· | s)
[
Qkh(s, a)

]
. (26)

At state skh, we can specify the action selection criterion of our
policy πkh(s

k
h) as akh = argmaxa∈AQ

k
h(s

k
h, a). The overall

algorithm is summarized in Algorithm 3. We show that our
algorithm enjoys the following regret guarantee.

Theorem 5. Let T = KH , δ = 1/(4T ), λθ = d, and λw =
H2d, ∀k, j ∈ [K], wk,j = αk,j = γk−j , γ ∈ (1/K, 1), the
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dynamic regret D-REGT is bounded with probability at least
1− 1/T by

O

(
Hd

(
1

(1− γ)3/2
∆+HK

√
1− γ

)
+H3/2d

√
HK

)
,

Furthermore, by setting the discounted factor optimally as γ =

1−max
{
1/K,

√
∆/T

}
, we have

D-REGT ≤

{
Õ
(
Hd∆1/4T 3/4

)
when ∆ ≥ H/K,

Õ
(
dH3/2

√
T
)

when ∆ < H/K.

The proof of Theorem 5 is in Appendix E-C. Compared to
previous work [18], our results achieve the same order regret
guarantees for dynamic regret in non-stationary environments.
Furthermore, in near-stationary settings, our results recover
the theoretical guarantees established for stationary environ-
ments [43], [44].

VI. MULTINOMIAL LOGIT MIXTURE MDP
In this section, we explore another class of MDPs, known as

the Multinomial Logit (MNL) Mixture MDP, under the non-
stationary setting. We introduce the MNL-WeightUCRL algo-
rithm, which applies the weighted strategy to non-stationary
MNL Mixture MDPs, and provide the first theoretical guaran-
tee for non-stationary MNL Mixture MDP.

A. Problem Setting

To address the limitation that linear function approximation
cannot guarantee valid distribution, a new class called MNL
mixture MDPs has been proposed recently [16], [17]. The
MNL mixture MDPs share the same episodic non-stationary
MDPs structure and learning protocol as the linear mixture
MDP, with the objective of minimizing dynamic regret (21).
The key distinction lies in its modeling assumptions for the
transition probabilities. Below, we present the formal definition
of MNL Mixture MDPs.

Definition 1 (Reachable States). For any (k, h, s, a) ∈
[K] × [H] × S × A, we define the ”reachable states” as
the set of states that can be reached from state s taking
action a at stage h of k-th episode within a single tran-
sition, i.e., Skh(s, a) ≜

{
s′ ∈ S | Pkh (s′ | s, a) > 0

}
. Also,

we define Skh(s, a) ≜
∣∣Skh(s, a)∣∣ and further define U ≜

max(k,h,s,a) S
k
h(s, a) as the maximum number of reachable

states.

Non-stationary MNL Mixture MDP. M = (S,A, H,P, r)
is a MNL mixture MDP if there exist known feature maps
ϕ : S × A → Rd and ψ : S × A × S → Rd and for any
k ∈ [K], h ∈ [H], there exist unknown vectors θkh ∈ Rd and
wk
h ∈ Rd such that

rkh(s, a) =
〈
ϕ(s, a), θkh

〉
Pkh(s′ | s, a) =

exp
(
ψ(s′ | s, a)⊤wk

h

)∑
s̃∈Sk

h(s,a)
exp

(
ψ(s̃ | s, a)⊤wk

h

) . (27)

We work under the following standard assumptions of MNL
Mixture MDP [16], [17].

Assumption 5. The feasible set and unknown parameters are
assumed to be bounded: ∀s ∈ S, a ∈ A, ∥ϕ(s, a)∥ ≤ Lϕ;
∀s′s ∈ S, a ∈ A, ∥ψ(s′ | s, a)∥ ≤ Lψ; θkh ∈ Θ holds
for all k ∈ [K], h ∈ [H] where Θ ≜ {θ | ∥θ∥2 ≤ Sθ}
and wk

h ∈ W holds for all k ∈ [K], h ∈ [H] where
W ≜ {w | ∥w∥2 ≤ Sw}.

Assumption 6. There exists 0 < κ < 1 such that for all
(s, a, h) ∈ S × A × [H] and s′, s′′ ∈ Skh(s, a), it holds that
infw∈W ps

′

s,a(w)ps
′′

s,a(w) ≥ κ.

B. Algorithm and Regret Guarantee

We propose the MNL-WeightUCRL algorithm, which ob-
tains the first dynamic regret guarantee for non-stationary
MNL Mixture MDPs. We begin by presenting the estimator
used in our approach and deriving its estimation error upper
bound by our refined analysis framework, which is the key
for algorithm design and regret analysis. Building on the
estimation error bound, we propose our selection criterion and
finally give the theoretical guarantee on its dynamic regret.

Reward Estimator. Since we use the same linear function
as (22) to model the reward function, here we still use
estimator (23) to estimate the unknown parameter θkh.

Transition Estimator. For the trajectory {(skh, akh)}Hh=1 at
episode k, we define the variable: ykh ∈ {0, 1}Sk

h , where
ykh(s

′) = 1(skh+1 = s′) for s′ ∈ Skh ≜ Skh(skh, akh) and
Skh ≜

∣∣Skh∣∣. Furthermore, we denote pkh(ψ(s
′ | s, a)⊤w) =

exp(ψ(s′ | s,a)⊤w)∑
s̃∈Sk

h
(s,a)

exp(ψ(s̃ | s,a)⊤w)
. We define ψ̄kh(s

′) ≜ ψ(s′ |skh, akh).

Then ykh is a sample from the multinomial distribution:

multinomial
(
1,
[
pkh(ψ̄

k
h(s1)

⊤w), . . . , pkh(ψ̄
k
h(sNk

h
)⊤w)

])
.

We use the following weighted maximum likelihood estima-
tion (MLE) ŵk

h to estimate the unknown parameter wk
h, which

is the minimizer of

λwκ

2
∥w∥22 +

k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

−yjh(s
′) log pjh(ψ̄

j
h(s

′)⊤w),

where λw > 0 is the regularization coefficient and αk−1,j is
the weighted factor. We set αk,j = γk−j , where γ ∈ (0, 1)
is the discounted factor. Specifically the estimator ŵk

h is the
solution of the following equation:

k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

(
pjh(ψ̄

j
h(s

′)⊤w)− yjh(s
′)
)
ψ̄jh(s

′)

+λwκw = 0.

(28)

Given that ŵk
h may not belong to the feasible set W and κ is

defined over the parameter w ∈ W , we need to perform the
following projection step

w̃k
h = argmin

w∈W

∥∥gkh(ŵk
h)− gkh(w)

∥∥
(Σ̄k−1

h )
−1 , (29)
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Algorithm 4 MNL-WeightUCRL

Require: episode number K, time horizon H , discounted
factor γ, confidence δ, regularizer λθ, λw, parameters
Sθ, Sw, Lϕ, Lψ

1: Initialize
{
π0
h

}H
h=1

as uniform distribution policies,{
Q̄0
h

}H
h=1

as zero functions.
2: for k = 1, 2, ...,K do
3: Receive the initial state sk1
4: Initialize V̄ kH+1 as zero function
5: Set ∀h ∈ [H],Λ0

h = λθId, Σ̄
0
h = λwId

6: for h = H,H − 1, ..., 1 do
7: Update Λkh = γΛk−1

h + ϕ(skh, a
k
h)ϕ(s

k
h, a

k
h)

⊤ + (1 −
γ)λθId

8: Update Σ̄kh =
∑
s′∈Sj

h
ψ̄jh(s

′|skh, akh)ψ̄
j
h(s

′|skh, akh)⊤+
γΣ̄k−1

h + (1− γ)λwId
9: Compute θ̂kh by (23) and ŵk

h by (28)
10: if ∥ŵk

h∥2 ≤ Sw then
11: let w̃k

h = ŵk
h

12: else
13: Do the projection and get w̃k

h by (29)
14: end if
15: Compute optimistic value function Q̄kh(s, a) and

V̄ kh (s) by (30)
16: end for
17: for h = 1, ..., H do
18: Choose policy as πkh(s) = argmaxa∈A Q̄

k
h(s, a)

19: Take action akh ∼ πkh(s
k
h), then observe the reward

rkh(s
k
h, a

k
h) and receive the next state skh+1

20: end for
21: end for

where Σ̄kh = λwId +
∑k
j=1 αk,j

∑
s′∈Sj

h
ψ̄jh(s

′)ψ̄jh(s
′)⊤ and

gkh(w) is defined as

gkh(w) ≜ λwκw +

k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

pjh(ψ̄
j
h(s

′)⊤w)ψ̄jh(s
′).

Upper Confidence Bounds. Estimator (23) can directly apply
Lemma 4 for UCB construction. And for estimator (28), we
provide the following estimation error bounds. For simplicity,
we define for any function V : S → R,

[
PkhV

]
(s, a) =∑

s′∈Sk
h
pkh(ψ(s

′ | s, a)⊤wk
h)V (s′),

[
P̃khV

]
(s, a) =∑

s′∈Sk
h
pkh(ψ(s

′ | s, a)⊤w̃k
h)V (s′).

Lemma 6. For any x ∈ X , and δ ∈ (0, 1), ∀k, j ∈
[K], αk,j ≤ 1, with probability at least 1 − δ, the following
holds for all k ∈ [K], h ∈ [H]∣∣∣[P̃khV ] (s, a)− [PkhV ] (s, a)∣∣∣

≤ H

κ

(
Γk−1
h,w + β̄k−1

w max
s′∈Sk

h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1

)
,

Γk−1
h,w ≜ L2

ψ

√
d
λw

∑k−1
p=1

√∑p
j=1 αk−1,j

∥∥∥wp
h −wp+1

h

∥∥∥
2
, and

β̄kw is the radius of confidence region defined by√√√√1

2
log

1

δ
+
d

4
log

(
1 +

UL2
ψ

∑k
j=1 αk,j

λwd

)
+
√
λwκSw.

Proof of Lemma 6 is in Appendix F-A.

Action Selection. Based on Lemma 4 and Lemma 6, we
construct the optimistic value function Q̄kh(s, a), V̄

k
h (s) and

the action selection criteria as follow,

Q̄kh(s, a) = min

{
H,ϕ(s, a)⊤θ̂kh + βθ ∥ϕ(s, a)∥(Λk−1

h )
−1

+ [P̃khV̄ kh+1](s, a) +
H

κ
β̄k−1
w max

s′∈Sk
h

∥∥ψ̄kh(s′)∥∥(Σ̄k−1
h )

−1

}
V̄ kh (s) = max

a∈A
Q̄kh(s, a) = Ea∼πk

h(· | s)
[
Q̄kh(s, a)

]
πkh(s) = argmax

a∈A
Q̄kh(s, a). (30)

The overall algorithm is summarized in Algorithm 4. We show
that our algorithm has the following regret guarantee.

Theorem 6. Let δ = 1/(4T ), λθ = d, and λw = d, ∀k, j ∈
[K], wk,j = αk,j = γk−j , γ ∈ (1/K, 1), the dynamic regret
D-REGT is bounded with probability at least 1− 1/T , by

O

(
Hd

κ

(
1

(1− γ)3/2
∆+HK

√
1− γ

)
+H3/2d

√
HK

)
.

Furthermore, by setting the discounted factor optimally as γ =

1−max
{
1/K,

√
∆/T

}
, we have

D-REGT ≤

{
Õ
(
κ−1Hd∆1/4T 3/4

)
when ∆ ≥ H/K,

Õ
(
κ−1dH3/2

√
T
)

when ∆ < H/K.

Proof of Theorem 6 is in Appendix F-B.

VII. EXPERIMENTS

In this section, we further empirically examine the perfor-
mance of our proposed algorithms. We present two synthetic
experiments on drifting LB and GLB, respectively. For each
experiment, we set the dimension of the feature space to
d = 2, the number of rounds to T = 6000, and the number of
arms to n = 50. The features of each arm are sampled from
the normal distribution N (0, 1) and subsequently rescaled to
satisfy L = 1. We initialize the time-varying parameter θt to
[1, 0] and rotate it uniformly counterclockwise around the unit
circle, completing one full revolution from 0 to 2π over the
course of T rounds and returning to the starting point [1, 0].

A. Linear Bandits

Setting. We consider the linear model rt = X⊤
t θt + ηt

where the random noise ηt is drawn from the normal dis-
tribution N (0, 1) at each time t independently. We compare
the performance of our proposed LB-WeightUCB algorithm
to: (a) the static algorithm OFUL [32]; (b) the restart-
based algorithm RestartUCB [3]; (c) the weight-based algo-
rithm D-LinUCB [2]; and (d) the adaptive restart algorithm
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(a) LB: Cumulative regret
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(b) GLB Algorithms (S = 1)
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(d) LB: Average running time
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(e) GLB Algorithms (S = 5)

0 1000 2000 3000 4000 5000 6000

t

0

500

1000

1500

2000

2500

3000

D
yn

am
ic

 R
eg

re
t

LogUCB1
SCB-RestartUCB
MASTER+LogUCB1
SCB-WeightUCB (ours)

(f) SCB Algorithms (S = 5)

Fig. 1: Experiments of generalized linear bandits.

MASTER+OFUL [8]. Among these algorithms, RestartUCB
and D-LinUCB both require prior knowledge of PT , whereas
MASTER+OFUL does not. Although MASTER+OFUL op-
erates under weaker requirements, we still include it in our
comparison because it achieves theoretically optimal regret
with a faster convergence rate, making it an important bench-
mark. Since PT is computable, we set the discounted factor
γ = 1 − max{1/T,

√
PT /(dT )} for LB-WeightUCB and

D-LinUCB, and set the window size W and restarting period
H as W = H = d1/4

√
T/(1 + PT ). For MASTER, there is

a parameter n representing the initial value of a multi-scale
exploration parameter (see the input of Procedure 1 in [8]),
and the origin MASTER algorithm lets it start from 0 (i.e.,
n = 0, 1, ...). However, a small initial value of n leads to
frequent restarts and thus poor performance. To this end, we
experiment with a larger initial value of n = 13, which yields
substantially improved performance in our case.

Results. The experimental results are averaged over 20 inde-
pendent trials. Fig. 1a shows the cumulative dynamic regret
performance, where the shaded area denotes the variance of
experimental results. Fig. 1d reports the average time per run,
with each run containing 6000 rounds. Our LB-WeightUCB
algorithm performs as well as D-LinUCB but is significantly
more efficient, with over 1.5 times speedup. Fig. 1a also shows
that when equipped with a fine-tuned n, MASTER+OFUL
(n = 13) performs better than RestartUCB, whereas a vanilla
MASTER+OFUL (n = 0) performs worse due to overly
active restarts at the beginning. However, a larger initial

value of n results in greater time overhead, since at each
restart, MASTER+OFUL needs to do Procedure 1 once, re-
sulting in an O(n2n) time complexity. More importantly, nei-
ther adaptive restart (MASTER+OFUL) nor periodical restart
(RestartUCB) outperforms our weighted strategy in slowly-
evolving environments.

B. Generalized Linear Bandits

Setting. We employ the logistic model in the GLB exper-
iment, i.e., the reward satisfies rt ∼ Bernoulli(µ(X⊤

t θt))
with logistic function µ(x) = (1 + e−x)−1. We consider
two cases of S = 1 and S = 5, respectively. We com-
pare the performance of our proposed GLB-WeightUCB
and SCB-WeightUCB algorithm to: (a) GLM-UCB, static
algorithm for GLB [41]; (b) LogUCB1, static algorithm
for LogB [33]; (c) BVD-GLM-UCB, weight-based algo-
rithm for GLB [6]; (d) GLB-RestartUCB, restart algorithm
for GLB [3]; (e) SCB-RestartUCB, restart algorithm for
SCB [3]; (f) MASTER+GLM-UCB, adaptive restart algo-
rithm for GLB [8]; and (g) MASTER+LogUCB1, adaptive
restart algorithm for LogB [8]. We set discounted factor
γ = 1 − max{1/T,

√
cµPT /(dT )} for GLB-WeightUCB,

γ = 1 − (PT /(
√
dT ))

2/5 for BVD-GLM-UCB and
γ = 1 − max{1/T,

√
PT /(dT )} for SCB-WeightUCB. We

set restarting period H = d1/4
√
T/(1 + PT ) for both

GLB-RestartUCB and SCB-RestartUCB. We set regularizer
λ = d for GLM-UCB, BVD-GLM-UCB, GLB-RestartUCB
and MASTER+GLM-UCB, λ = d/c2µ for GLB-WeightUCB
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and λ = d log T/cµ for LogUCB1, SCB-RestartUCB,
MASTER+LogUCB1 and SCB-WeightUCB. Note that for
LogB, kµ = 1/4 < 1, so we don’t need to control the order
of kµ. For two MASTER algorithms, we set n = 13.

Results. We present the average cumulative dynamic re-
gret results of our experiments on 20 independent trials in
Fig. 1. When S is small (S = 1, c−1

µ ≈ 5), all of the
weight-based algorithms outperform the static algorithms, and
our GLB-WeightUCB and SCB-WeightUCB are better than
BVD-GLM-UCB. When S is large (S = 5, c−1

µ ≈ 152),
SCB-WeightUCB significantly outperforms GLB-WeightUCB,
demonstrating the importance of considering the self-
concordant property (recall that LogB is an instance of SCB).
In contrast, the performance of BVD-GLM-UCB drops dra-
matically, as it does not take the c−1

µ issue into account. Similar
to LB, the experimental results of GLB also demonstrate
the empirical advantage of the weighted strategy over (adap-
tive) restart strategy in slowly-evolving environments. Specif-
ically, we observe that GLB-WeightUCB consistently outper-
forms MASTER+GLM-UCB, and SCB-WeightUCB consis-
tently outperforms MASTER+LogUCB1.

VIII. CONCLUSION

This paper revisits the weight-based algorithms for three
non-stationary parametric bandit models (LB, GLB, SCB)
and two non-stationary MDP settings (Linear Mixture MDP,
MNL Mixture MDP). We identify that the inadequacies of
the previous work are due to the inadequate analysis of the
estimation error. We thus propose a refined analysis framework
that enables the usage of the same local norm for both the bias
and variance parts in estimation error analysis. Our framework
ensures more efficient algorithms for all three bandit models
and two RL models, improves the regret bounds for GLB and
SCB settings, and establishes the first dynamic regret bound
for MNL Mixture MDP.

The importance of our work lies in the fact that we have
now made the weight-based algorithms for non-stationary
parametric bandits and MDPs as competitive as the restart-
based algorithms, in terms of both computational efficiency
and regret guarantee. Note that the current window-based,
restart-based, and weight-based algorithms can only achieve
a regret bound of Õ(P

1/4
T T 3/4), which does not match the

optimal rate Õ(P
1/3
T T 2/3) attained by the MASTER algo-

rithm, an adaptive restart strategy [8]. In the spirit of this
best-known result, it is essential to design adaptive weight-
based algorithms that can achieve the optimal dynamic regret
bound without requiring prior knowledge of the environment’s
non-stationarity, given that weighted strategies are particu-
larly effective in gradually drifting environments, which are
commonly encountered in real-world applications. The current
lower bound of Ω(P

1/3
T T 2/3) is established under the fixed

arm set assumption [40]. The MASTER algorithm [8] matches
this rate with the same assumption, making Θ(P

1/3
T T 2/3) the

minimax optimal rate for the fixed arm set case. However, the
minimax rate remains open for time-varying arm sets.

In this work, we employ PT =
∑T
t=2 ∥θt−1 − θt∥2 as

a measure to capture the gradually changing environment.

However, this metric may not be precise enough in capturing
only the gradual changes in the environment, as it can also
include other types of variations, such as abrupt changes and
restless changes [49], [50]. This might be able to explain why
weight-based algorithms do not exhibit a significant theoretical
advantage, yet perform remarkably well in experiments on
gradually changing environments compared to restart-based
algorithms. To overcome this limitation, future research could
explore more refined characterizations of gradual changes,
drawing inspiration from the ideas behind Sobolev or Holder
classes [51] or other information-theoretic tools [10].

APPENDIX A
ANALYSIS OF LB-WEIGHTUCB

In this section, we provide the analysis for LB-WeightUCB
algorithm. In Appendix A-A, we review the D-LinUCB al-
gorithm proposed by [2] and restate their estimation error
analysis. In Appendix A-B, we present our own estimation
error analysis for the proposed LB-WeightUCB algorithm,
which is captured in Lemma 1. Finally, in Appendix A-C, we
provide an analysis of dynamic regret, as stated in Theorem 1.

A. Review Estimation Error Analysis of D-LinUCB Algorithm

In this part, we review the previous estimation error analysis
of the D-LinUCB algorithm [2], which has the same estimator
as ours (3). The first step is to divide the estimation error into
the bias and variance parts, where the bias part represents the
error caused by parameter drift and the variance part represents
the error caused by stochastic noise. Based on the reward
model assumption and estimator (same as (1) and (3)), the
estimation error of D-LinUCB algorithm can be decomposed
as

θ̂t − θt = V ′−1
t−1

(
t−1∑
s=1

γt−s−1rsXs

)
− θt

= V ′−1
t−1

(
t−1∑
s=1

γt−s−1
(
X⊤
s θs + ηs

)
Xs

)

− V ′−1
t−1

(
λId +

t−1∑
s=1

γt−s−1XsX
⊤
s

)
θt

= V ′−1
t−1

(
t−1∑
s=1

γt−s−1XsX
⊤
s θs +

t−1∑
s=1

γt−s−1ηsXs

)

− V ′−1
t−1

(
λId +

t−1∑
s=1

γt−s−1XsX
⊤
s

)
θt

= V ′−1
t−1

(
t−1∑
s=1

γt−s−1XsX
⊤
s (θs − θt)

)
︸ ︷︷ ︸

bias part

+ V ′−1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)
︸ ︷︷ ︸

variance part

, (31)
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where V ′
t = λId +

∑t−1
s=1 γ

t−sXsX
⊤
s . Afterward, [2] uses

different local norms (we will explain the reason for using
different local norms later) for the bias and variance parts as

|x⊤(θ̂t − θt)| ≤ ∥x∥2A
′
t + ∥x∥V ′−1

t−1 Ṽt−1V
′−1
t−1

B′
t, (32)

where Ṽt = λId +
∑t
s=1 γ

2(t−s)XsX
⊤
s and

A′
t =

∥∥∥∥∥V ′−1
t−1

t−1∑
s=1

γt−s−1XsX
⊤
s (θs − θt)

∥∥∥∥∥
2

B′
t =

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
Ṽ −1
t−1

.

For the bias part, [2] divide it into two parts on the timeline
by introducing a virtual window size D,

A′
t ≤

∥∥∥∥∥
t−1∑

s=t−D
V ′−1
t−1 γ

t−s−1XsX
⊤
s (θs − θt)

∥∥∥∥∥
2︸ ︷︷ ︸

virtual window

+

∥∥∥∥∥
t−D−1∑
s=1

V ′−1
t−1 γ

t−s−1XsX
⊤
s (θs − θt)

∥∥∥∥∥
2︸ ︷︷ ︸

small term

,

The first term can be considered as a virtual window con-
taining the most recent data obtained after time t − D, and
can be directly analyzed by the analysis of SW-UCB [1] since
it corresponds to the bias part of the estimation error of the
window strategy, and this is why they use l2-norm for the
bias part. The second term reflects the influence formed by
the outdated data obtained before time t − D. Since γt−s−1

will be very small when s ≤ t − D − 1, this small term is
dominated by the first virtual window term, which means the
bias part is actually controlled by the virtual window size D.

For the variance part, [2] extend the previous self-
normalized concentration [32, Theorem 1] to the weighted
version. This concentration requires the use of Ṽt as the local
norm. To this end, [2] split the variance part as∣∣∣∣∣x⊤V ′−1

t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)∣∣∣∣∣ ≤ ∥x∥V ′−1
t−1 Ṽt−1V

′−1
t−1

C ′
t,

where

C ′
t =

∥∥∥∥∥V ′−1
t−1

(
t−1∑
s=1

γt−s−1ηsXs − λθt

)∥∥∥∥∥
V ′
t−1Ṽ

−1
t−1V

′
t−1

=

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs − λθt

∥∥∥∥∥
Ṽ −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
Ṽ −1
t−1

+
√
λS.

Then term ∥
∑t−1
s=1 γ

t−s−1ηsXs∥Ṽ −1
t−1

can be bounded by the
weighted version self-normalized concentration. Finally, based
on this analysis, D-LinUCB needs to use the following action

selection criterion, which only depends on the variance part
since the bias part doesn’t contain x,

Xt = argmax
x∈X

{
⟨x, θ̂t⟩+ βt−1 ∥x∥V ′−1

t−1 Ṽt−1V
′−1
t−1

}
,

where βt−1 is the upper bound of B′
t which is the same as (5).

From this selection criterion, it can be seen that D-LinUCB
needs to maintain two covariance matrices, namely, V ′

t and Ṽt
at round t during the algorithm running.

In the next section, we present our proof for the estimation
error upper bound. The difference between our analysis and
D-LinUCB’s analysis mainly starts at step (32), which is the
key step of analysis, and our new analysis framework allows
us to employ same local norm for both bias and variance parts.

B. Proof of Lemma 1

Proof. Using the same derivation in (31), the estimation error
of LB-WeightUCB algorithm can also be decomposed as

θ̂t − θt = V −1
t−1

(
t−1∑
s=1

wt−1,sXsX
⊤
s (θs − θt)

)
︸ ︷︷ ︸

bias part

+ V −1
t−1

(
t−1∑
s=1

wt−1,sηsXs − λθt

)
︸ ︷︷ ︸

variance part

.

Therefore, by the Cauchy-Schwarz inequality, we know that
for any x ∈ X ,∣∣∣x⊤

(
θ̂t − θt

)∣∣∣ ≤ ∥x∥V −1
t−1

(At +Bt), (33)

where

At =

∥∥∥∥∥
t−1∑
s=1

wt−1,sXsX
⊤
s (θs − θt)

∥∥∥∥∥
V −1
t−1

Bt =

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs − λθt

∥∥∥∥∥
V −1
t−1

.

The above two terms can be bounded separately, as summa-
rized in the following two lemmas,

Lemma 7. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=1

wt−1,sXsX
⊤
s (θs − θt)

∥∥∥∥∥
V −1
t−1

≤ L
√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 .

Lemma 8. For any δ ∈ (0, 1), with probability at least 1− δ,
the following holds for all t ∈ [T ],∥∥∥∥∥

t−1∑
s=1

wt−1,sηsXs − λθt

∥∥∥∥∥
V −1
t−1

≤
√
λS +R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t−1
s=1 wt−1,s

λd

)
,
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Based on the inequality (33), Lemma 7, Lemma 8, the bound-
edness assumption of the feasible set and the fact that for any
x, ∥x∥V −1

t−1
≤ ∥x∥2 /

√
λ since Vt−1 ⪰ λId, for any x ∈ X ,

γ ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ, the
following holds for all t ∈ [T ],

|x⊤(θ̂t − θt)|

≤ L2

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 + βt−1∥x∥V −1
t−1
,

where βt ≜
√
λS + R

√
2 log 1

δ + d log
(
1 +

L2
∑t

s=1 wt−1,s

dλ

)
is the confidence radius used in LB-WeightUCB. Hence, we
complete the proof.

Proof of Lemma 7. The first step is to extract the variations
of the parameter θt as follows,∥∥∥∥∥

t−1∑
s=1

wt−1,sXsX
⊤
s (θs − θt)

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
s=1

wt−1,sXsX
⊤
s

t−1∑
p=s

(θp − θp+1)

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
p=1

p∑
s=1

wt−1,sXsX
⊤
s (θp − θp+1)

∥∥∥∥∥
V −1
t−1

≤
t−1∑
p=1

∥∥∥∥∥
p∑
s=1

wt−1,sXs∥Xs∥2∥θp − θp+1∥2

∥∥∥∥∥
V −1
t−1

≤ L

t−1∑
p=1

p∑
s=1

wt−1,s ∥Xs∥V −1
t−1

∥θp − θp+1∥2,

and term
∑p
s=1 wt−1,s ∥Xs∥V −1

t−1
can further derive to an

expression about the discounted factor γ as follows,

p∑
s=1

wt−1,s ∥Xs∥V −1
t−1

≤

√√√√ p∑
s=1

wt−1,s

√√√√ p∑
s=1

wt−1,s ∥Xs∥2V −1
t−1

≤
√
d

√√√√ p∑
s=1

wt−1,s. (34)

In above, the second last step holds by the Cauchy-Schwarz
inequality. Besides, the last step follows the Lemma 25 by
letting As =

√
wt−1,sXs and Ut−1 = Vt−1. Hence, we

complete the proof.

Proof of Lemma 8.∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs − λθt

∥∥∥∥∥
V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs

∥∥∥∥∥
V −1
t−1

+
√
λS.

We define η̃s ≜
√
wt−1,sηs and X̃s ≜

√
wt−1,sXs, and notice

that ∀t ∈ [T ], s ∈ [t− 1], |wt−1,s| ≤ 1, then η̃s is still R-sub-
Gaussian, then by Theorem 7, we have∥∥∥∥∥

t−1∑
s=1

wt−1,sηsXs

∥∥∥∥∥
V −1
t−1

≤

√√√√2R2 log

(
det(Vt−1)

1
2 det(V0)−

1
2

δ

)
.

Then, based on Lemma 26 and det(V0) = λd, we have∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs

∥∥∥∥∥
V −1
t−1

≤ R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t−1
s=1 wt−1,s

dλ

)
.

which completes the proof.

C. Proof of Theorem 1

Proof. Let X∗
t ≜ argmaxx∈X x⊤θt. Due to Lemma 1 and

the fact that X∗
t , Xt ∈ X , each of the following holds with

probability at least 1− δ,

∀t ∈ [T ], X∗⊤
t θt ≤ X∗⊤

t θ̂t + βt−1∥X∗
t ∥V −1

t−1

+ L2

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 ,

∀t ∈ [T ], X⊤
t θt ≥ X⊤

t θ̂t − βt−1∥Xt∥V −1
t−1

− L2

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 .

By the union bound, the following holds with probability at
least 1− 2δ, ∀t ∈ [T ],

X∗⊤
t θt −X⊤

t θt

≤ X∗⊤
t θ̂t −X⊤

t θ̂t + 2L2

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+ βt−1(∥X∗
t ∥V −1

t−1
+ ∥Xt∥V −1

t−1
)

≤ 2L2

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 + 2βt−1∥Xt∥V −1
t−1
,

where the last step comes from the arm selection criterion (6)
such that

X∗⊤
t θ̂t + βt−1∥X∗

t ∥V −1
t−1

≤ X⊤
t θ̂t + βt−1∥Xt∥V −1

t−1
.
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Hence, the following dynamic regret bound holds with prob-
ability at least 1− 2δ and can be divided into two parts,

D-REGT =

T∑
t=1

(
X∗⊤
t θt −X⊤

t θt
)

≤ 2L2

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2︸ ︷︷ ︸
bias part

+ 2βT

T∑
t=1

∥Xt∥V −1
t−1︸ ︷︷ ︸

variance part

,

where βT =
√
λS + R

√
2 log 1

δ + d log
(
1 + L2(1−γ2T )

λd(1−γ2)

)
is

the confidence radius.
Now we derive the upper bound for the bias and variance

parts separately.

Bias Part. Notice that wt−1,s = γt−s−1 with γ ∈ (1/T, 1).
For the bias part, we need to extract the path length PT and
show the control of the discounted factor γ on PT .

2L2

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

= 2L2

√
d

λ

T−1∑
p=1

T∑
t=p+1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

= 2L2

√
d

λ

T−1∑
p=1

T∑
t=p+1

γ
t−1
2

√√√√ p∑
s=1

γ−s ∥θp − θp+1∥2

= 2L2

√
d

λ

T−1∑
p=1

γ
p
2 − γ

T
2

1− γ
1
2

√
γ−p − 1

1− γ
∥θp − θp+1∥2

≤ 2L2

√
d

λ

T−1∑
p=1

γ
p
2 γ−

p
2

(1− γ
1
2 ) 1+γ

1
2

2

√
1− γ

∥θp − θp+1∥2

≤ 4L2

√
d

λ

1

(1− γ)3/2
PT .

So for the bias part, we have

2L2

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

≤ 4L2

√
d

λ

1

(1− γ)3/2
PT .

(35)

Variance Part. First, use the Cauchy-Schwarz inequality, we

have 2βT
∑T
t=1 ∥Xt∥V −1

t−1
≤ 2βT

√
T
∑T
t=1 ∥Xt∥2V −1

t−1

. Then

by Lemma 9 (weighted potential lemma) with wt,t = γt−t =
1, c = wt,s/wt,s−1 = γ, we have the following upper bound:

2βT

T∑
t=1

∥Xt∥V −1
t−1

≤ 2βT

√
2max{1, L

2

λ
}dT

·

√√√√T log
1

γ
+ log

(
1 +

L2
∑T
s=1 wT,s
dλ

)
.

(36)

Notice that the main differences between weighted LB and
standard LB in analysis are the need for path length analysis
and the use of the weighted potential lemma. Further we have∑t
s=1 wt,s = 1−γt

1−γ ≤ 1
1−γ . Combining the upper bounds

of the bias and variance parts and with confidence level
δ = 1/(2T ), by union bound, we have the following dynamic
regret bound with probability at least 1− 1/T ,

D-REGT ≤ 4L2

√
d

λ

1

(1− γ)3/2
PT + 2βT

√
2max

{
1,
L2

λ

}
dT

·

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
,

βT =
√
λS + R

√
2 log T + 2 log 2 + d log

(
1 + L2(1−γT )

λd(1−γ)

)
.

Since the regret bound contains a term T
√

log(1/γ), we
cannot let γ close to 0, so we set γ ≥ 1/T and have
log(1/γ) ≤ C(1 − γ), where C = log T/(1 − 1/T ). Then,
ignoring logarithmic factors in time horizon T , and let λ = d,
we finally obtain

D-REGT ≤ Õ
(

1

(1− γ)3/2
PT + d(1− γ)

1/2T

)
. (37)

When PT < d/T (which corresponds to a small amount of
non-stationarity), we simply set γ = 1 − 1/T and achieve
an Õ(d

√
T ) regret bound. Besides, when coming to the

non-degenerated case (PT ≥ d/T ), We set the discounted
factor optimally as 1 − γ =

√
PT /(dT ) and attain an

Õ(d
3/4P

1/4
T T

3/4) regret bound, which completes the proof.

Lemma 9 (Weighted Version Potential Lemma). Suppose
Vt =

∑t
s=1 wt,sXsX

⊤
s + λId, V0 = λId, the weight sat-

isfies that, ∀t ∈ [T ], s ∈ [t − 1], wt,s/wt−1,s = c ≤ 1,
∀t, s ∈ [T ], wt,s ∈ (0, 1), wt,t = 1 and ∥Xt∥2 ≤ L for all
t ≥ 1, then the following inequality holds,

T∑
t=1

∥wt,tXt∥2V −1
t−1

≤ 2max

{
1,
L2

λ

}
d

(
T log

1

c
+ log

(
1 +

L2
∑T
s=1 wT,s
dλ

))
.

Proof of Lemma 9.

Vt =

t∑
s=1

wt,sXsX
⊤
s + λId

=

t−1∑
s=1

wt,sXsX
⊤
s + wt,tXtX

⊤
t + λId
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= c

t−1∑
s=1

wt−1,sXsX
⊤
s +XtX

⊤
t + λId (wt,t = 1)

⪰ c

(
t−1∑
s=1

wt−1,sXsX
⊤
s +XtX

⊤
t + λId

)
, (c < 1)

= c
(
Vt−1 +XtX

⊤
t

)
= cV

1/2
t−1

(
Id + V

−1/2
t−1 XtX

⊤
t V

−1/2
t−1

)
V

1/2
t−1 ,

Taking the determinant on both sides and we obtain,

det(Vt) ≥ det(cVt−1) det
(
Id + V

−1/2
t−1 XtX

⊤
t V

−1/2
t−1

)
det(Vt) ≥ cd det(Vt−1)

(
1 + ∥Xt∥2V −1

t−1

)
log det(Vt) ≥ d log c+ log det(Vt−1) + log

(
1 + ∥Xt∥2V −1

t−1

)
d log

1

c
+ log

det(Vt)

det(Vt−1)
≥ log

(
1 + ∥Xt∥2V −1

t−1

)
Then summing from 1 to T , and telescoping we have,

dT log
1

c
+ log

(
det(VT )

det(V0)

)
≥

T∑
t=1

log
(
1 + ∥Xt∥2V −1

t−1

)
≥

T∑
t=1

log

(
1 +

1

max {1, L2/λ}
∥Xt∥2V −1

t−1

)

≥ 1

2max {1, L2/λ}

T∑
t=1

∥Xt∥2V −1
t−1

So we have
T∑
t=1

∥Xt∥2V −1
t−1

≤ 2max

{
1,
L2

λ

}
·
(
dT log

1

c
+ log

(
det(VT )

det(V0)

))
.

Finally, by using Lemma 26 and the fact det(V0) = λd, we
complete the proof.

APPENDIX B
ANALYSIS OF GLB-WEIGHTUCB

In this section, we provide analysis for GLB-WeightUCB
algorithm. In Appendix B-A, we review the projection issue
of GLB and restate the BVD-GLM-UCB algorithm of [6].
In Appendix B-B, we present the proof of the estimation
error upper bound of our GLB-WeightUCB algorithm (namely,
Lemma 2). Finally, in Appendix B-C, we provide the proof of
dynamic regret upper bound as stated in Theorem 2.

A. Review Projection Step of BVD-GLM-UCB Algorithm

As mentioned in Section IV-B, the main difficulty of GLB is
that the result of MLE or QMLE estimator θ̂t may not belong
to the feasible set Θ and cµ is defined over the parameter
θ ∈ Θ. Under stationary environments, [41] overcame this
difficulty by introducing a projection step as

θ̃t = argmin
θ∈Θ

∥gt(θ̂t)− gt(θ)∥V −1
t−1
, (38)

where Vt = λId +
∑t
s=1XsX

⊤
s and gt(θ) = λcµθ +∑t−1

s=1 µ(X
⊤
s θ)Xs are the static version (by setting γ = 1).

Based on the QMLE, we know that

gt(θ̂t) = λcµθ̂t +

t−1∑
s=1

µ(X⊤
s θ̂t)Xs =

t−1∑
s=1

rsXs, (39)

and then by the mean value theorem, we know that

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2), (40)

where Gt(θ1, θ2) ≜
∫ 1

0
∇gt(sθ2+(1−s)θ1)ds ∈ Rd×d. Notice

that for any θ ∈ Θ, the gradient of gt satisfies

∇gt(θ) = λcµId +

t−1∑
s=1

µ′(X⊤
s θ)XsX

⊤
s ⪰ cµVt−1,

which clearly implies ∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) ⪰ cµVt−1. By
this projection step, [41] can analyze the estimation error like,

|µ(x⊤θ̃t)− µ(x⊤θt)| ≤ kµ|x⊤(θ̃t − θt)|
= kµ|x⊤G−1

t (θt, θ̃t)(gt(θ̃t)− gt(θt))|
≤ kµ∥x∥G−1

t (θt,θ̃t)
∥gt(θ̃t)− gt(θt)∥G−1

t (θt,θ̃t)

≤ kµ
cµ

∥x∥V −1
t−1

∥gt(θ̃t)− gt(θt)∥V −1
t−1

≤ 2kµ
cµ

∥x∥V −1
t−1

∥gt(θ̂t)− gt(θt)∥V −1
t−1
,

where the last step comes from the projection step. After
doing the projection step, term gt(θ̂t)−gt(θt) is the estimation
error of the MLE without projection. Notice that in piecewise-
stationary case, [7] can also use this projection step. [6]
believe that these two previous works could use this projec-
tion operation mainly due to their stationary or piecewise-
stationary setting. They mention that for the drifting case, the
estimation error is always divided into the bias (tracking error)
and variance (learning error) part, and this simple projection
operation ignores the bias part which needs to be generalized
to adapt to the two sources of deviation. In the analysis,
the problem is that after the projection step estimation error
term gt(θ̂t) − gt(θt) need to be separate into the bias part
and variance parts, and [6] need to use l2-norm for bias part
and V −1

t−1 for variance part. But the whole estimation error is
already normed by V −1

t−1, which means they cannot use the
previous analysis of the window strategy for the bias part.

To this end, [6] propose the BVD-GLM-UCB algorithm for
drifting generalized linear bandits, as restated in Algorithm 5,
where a new projection step is devised to solve this problem.
Specifically, at each round t, the first step is to construct the
confidence set Eδt (θ) which represents the influence of the
stochastic noise.

Eδt (θ) :=
{
θ′ ∈ Rd

∣∣∣ ∥gt (θ′)− gt(θ)∥Ṽ −1
t

≤ β̄t(δ)
}
. (41)

The second step is to find a confidence set Eδt (θ
p
t ) that

intersects with the feasible set, and the gap between θpt and θ̂t
represents the influence of parameter drift.

θpt ∈ argmin
θ∈Rd

∥∥∥gt(θ)− gt(θ̂t)
∥∥∥
V −2
t

s.t Θ ∩ Eδt (θ) ̸= ∅
(42)
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Algorithm 5 BVD-GLM-UCB [6]

Require: time horizon T , discounted factor γ, confidence δ,
regularizer λ, inverse link function µ, parameters S, L and
R

1: Set V0 = λId, θ̂1 = 0 and compute kµ and cµ
2: for t = 1, 2, ..., T do
3: Solving θpt ∈ argminθ∈Rd

{∥∥∥gt(θ)− gt(θ̂t)
∥∥∥
V −2
t

s.t

Θ ∩ Eδt (θ) ̸= ∅
}

4: Select θ̃t ∈ Θ ∩ Eδt (θ
p
t ) where Eδt (θ) :={

θ′ ∈ Rd
∣∣∣ ∥gt (θ′)− gt(θ)∥Ṽ −1

t
≤ β̄t(δ)

}
5: Get β̄t−1 = R

√
2 log 1

δ + d log
(
1 + L2(1−γ2t−2)

λd(1−γ2)

)
+

√
λcµS

6: Get Xt = argmaxx∈X

{
µ(x⊤θ̃t) +

2kµ
cµ
β̄t−1 ∥x∥V −1

t−1

}
7: Receive the reward rt
8: Update Vt = γVt−1 + XtX

⊤
t + (1 − γ)λId, Ṽt =

γ2Vt−1 +XtX
⊤
t + (1− γ2)λId

9: Compute θ̂t+1 by
∑t
s=1 γ

t−s (µ(X⊤
s θ)− rs

)
Xs +

λcµθ = 0
10: end for

After obtaining the solution θpt via computing the optimization
problem (42), the third step is to select θ̃t from Θ ∩ Eδt (θ

p
t ).

Based on this projection step, [6] can separate the bias and
variance parts before projection as follows,

|µ(x⊤θ̃t)− µ(x⊤θt)| ≤ kµ|x⊤(θ̃t − θt)|
= kµ|x⊤G−1

t (θt, θ̃t)(gt(θ̃t)− gt(θt))|
≤ kµ|x⊤G−1

t (θt, θ̃t)(gt(θ̃t)− gt(θ
p
t ) + gt(θ

p
t )− gt(θ̂t)

+ gt(θ̂t)− gt(θ̄t) + gt(θ̄t)− gt(θt))|
≤ kµ|x⊤G−1

t (θt, θ̃t)(gt(θ̃t)− gt(θ
p
t ) + gt(θ̂t)− gt(θ̄t))|︸ ︷︷ ︸

bias part

+ kµ|x⊤G−1
t (θt, θ̃t)(gt(θ

p
t )− gt(θ̂t) + gt(θ̄t)− gt(θt))|︸ ︷︷ ︸

variance part

.

Their bias-variance decomposition motivates the choice of
different local norms for bounding bias and variance parts
in their algorithm and analysis. Notably, due to the com-
plications of the projection step (see (41) and (42)), the
overall algorithm is fairly complicated and less attractive for
practical implementations, and moreover, it needs to maintain
two covariance matrices Vt and Ṽt (due to the constructed
confidence region (41)) at each round t during the algorithm
running. In the next section, we will show that the simple
projection used in the stationary GLB (38) can be sufficient for
coping with drifting GLB via our refined analysis framework.

B. Proof of Lemma 2

Proof. Based on the estimator equation (11), we know that

gt(θ̂t) = λcµθ̂t +

t−1∑
s=1

wt−1,sµ(X
⊤
s θ̂t)Xs

=

t−1∑
s=1

wt−1,srsXs,

(43)

and then by the mean value theorem, we know that

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2), (44)

where Gt(θ1, θ2) ≜
∫ 1

0
∇gt(sθ2+(1−s)θ1)ds ∈ Rd×d. Notice

that for any θ ∈ Θ, the gradient of gt is

∇gt(θ) = λcµId +

t−1∑
s=1

wt−1,sµ
′(X⊤

s θ)XsX
⊤
s ⪰ cµVt−1,

which clearly implies ∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) ⪰ cµVt−1.
By Assumption 2, the mean value theorem (44) on gt and

the projection (12), we have

|µ(x⊤θ̃t)− µ(x⊤θt)| ≤ kµ|x⊤(θ̃t − θt)|
= kµ|x⊤G−1

t (θt, θ̃t)(gt(θ̃t)− gt(θt))|
≤ kµ∥x∥G−1

t (θt,θ̃t)
∥gt(θ̃t)− gt(θt)∥G−1

t (θt,θ̃t)

≤ kµ
cµ

∥x∥V −1
t−1

∥gt(θ̃t)− gt(θt)∥V −1
t−1

≤ 2kµ
cµ

∥x∥V −1
t−1

∥gt(θ̂t)− gt(θt)∥V −1
t−1
,

then based on the model assumption, the function gt (13) and
gt(θ̂t) (43), we have,

gt(θt)− gt(θ̂t)

= λcµθt +

t−1∑
s=1

wt−1,sµ(X
⊤
s θt)Xs −

t−1∑
s=1

wt−1,srsXs

= λcµθt +

t−1∑
s=1

wt−1,sµ(X
⊤
s θt)Xs

−
t−1∑
s=1

wt−1,s(µ(X
⊤
s θs) + ηs)Xs

=

t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs︸ ︷︷ ︸
bias part

+ λcµθt −
t−1∑
s=1

wt−1,sηsXs︸ ︷︷ ︸
variance part

.

Then, by the Cauchy-Schwarz inequality, we know that for
any x ∈ X ,∣∣∣µ(x⊤θ̃t)− µ(x⊤θt)

∣∣∣ ≤ 2kµ
cµ

∥x∥V −1
t−1

(Ct +Dt) , (45)
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where

Ct =

∥∥∥∥∥
t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
V −1
t−1

Dt =

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs − λcµθt

∥∥∥∥∥
V −1
t−1

.

This two terms can be bounded separately, as summarized in
the following lemmas.

Lemma 10. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
V −1
t−1

≤ Lkµ
√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 .

(46)

Lemma 11. For any δ ∈ (0, 1), with probability at least 1−δ,
the following holds for all t ∈ [T ],∥∥∥∥∥

t−1∑
s=1

wt−1,sηsXs − λcµθt

∥∥∥∥∥
V −1
t−1

≤
√
λcµS

+R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t−1
s=1 wt−1,s

λd

)
.

(47)

Based on the inequality (45), Lemma 10, Lemma 11, and the
boundedness assumption of the feasible set, we have for any
x ∈ X , γ ∈ (0, 1), δ ∈ (0, 1), with probability at least 1− δ,
the following holds for all t ∈ [T ],∣∣∣µ(x⊤θ̃t)− µ(x⊤θt)

∣∣∣ ≤ 2kµ
cµ

∥x∥V −1
t−1

·

Lkµ√d t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 + β̄t−1


≤ 2kµ

cµ

(
L2kµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+ β̄t−1∥x∥V −1
t−1

)
,

where β̄t ≜
√
λcµS + R

√
2 log 1

δ + d log
(
1 +

L2
∑t

s=1 wt,s

λd

)
is the confidence radius used in GLB-WeightUCB. Hence we
complete the proof.

Proof of Lemma 10. Here we need to extract the variations of
the time-varying parameter θt∥∥∥∥∥

t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

wt−1,s

t−1∑
p=s

(µ(X⊤
s θp)− µ(X⊤

s θp+1))Xs

∥∥∥∥∥
V −1
t−1

=

∥∥∥∥∥
t−1∑
p=1

p∑
s=1

wt−1,sα(Xs, θp, θp+1)(X
⊤
s θp −X⊤

s θp+1)Xs

∥∥∥∥∥
V −1
t−1

≤
t−1∑
p=1

∥∥∥∥∥
p∑
s=1

wt−1,sα(Xs, θp, θp+1)Xs∥Xs∥2∥θp − θp+1∥2

∥∥∥∥∥
V −1
t−1

≤ L

t−1∑
p=1

p∑
s=1

wt−1,s|α(Xs, θp, θp+1)| ∥Xs∥V −1
t−1

∥θp − θp+1∥2

≤ Lkµ

t−1∑
p=1

p∑
s=1

wt−1,s ∥Xs∥V −1
t−1

∥θp − θp+1∥2.

where the fourth equation is due to the mean value theorem
where α(x, θ1, θ2) =

∫ 1

0
µ′(vx⊤θ2 + (1− v)x⊤θ1)dv:

µ(X⊤
s θp)−µ(X⊤

s θp+1) = α(Xs, θp, θp+1)(X
⊤
s θp−X⊤

s θp+1).

Next, the derivation of bound of term
∑p
s=1 wt−1,s ∥Xs∥V −1

t−1

is the same as the inequality (34) in Appendix A-B, hence we
complete the proof.

Proof of Lemma 11. Same as the linear case, we define η̃s ≜√
wt−1,sηs and X̃s ≜

√
wt−1,sXs, and notice that ∀t ∈

[T ], s ∈ [t− 1], |wt−1,s| ≤ 1, then η̃s is still R-sub-Gaussian,
then by Theorem 7, we have

Dt =

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs − λcµθt

∥∥∥∥∥
V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs

∥∥∥∥∥
V −1
t−1

+ ∥λcµθt∥V −1
t−1

≤

∥∥∥∥∥
t−1∑
s=1

η̃sX̃s

∥∥∥∥∥
V −1
t−1

+
√
λcµS

≤ R

√√√√2 log
1

δ
+ d log

(
1 +

L2
∑t−1
s=1 wt−1,s

dλ

)
+

√
λcµS.

The proof here is the same as the proof of Lemma 8 in A-B,
the only difference is an extra cµ in the second term.

C. Proof of Theorem 2
Proof. Let X∗

t ≜ argmaxx∈X µ(x
⊤θt). Due to Lemma 2 and

the fact that X∗
t , Xt ∈ X , each of the following holds with

probability at least 1− δ,

∀t ∈ [T ], µ(X∗⊤
t θt) ≤ µ(X∗⊤

t θ̃t)

+
2kµ
cµ

(
L2kµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+ β̄t−1∥X∗
t ∥V −1

t−1

)
,

∀t ∈ [T ], µ(X⊤
t θt) ≥ µ(X⊤

t θ̃t)

− 2kµ
cµ

(
L2kµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+ β̄t−1∥Xt∥V −1
t−1

)
.
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By the union bound, the following holds with probability at
least 1− 2δ: ∀t ∈ [T ]

µ(X∗⊤
t θt)− µ(X⊤

t θt) ≤ µ(X∗⊤
t θ̃t)− µ(X⊤

t θ̃t)

+
2kµ
cµ

(
β̄t−1∥X∗

t ∥V −1
t−1

+ β̄t−1∥Xt∥V −1
t−1

)
+

4L2k2µ
cµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

≤
4L2k2µ
cµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+
4kµ
cµ

β̄t−1∥Xt∥V −1
t−1
,

where the last step comes from the arm selection criterion (15)
such that

µ(X∗⊤
t θ̃t) +

2kµ
cµ

β̄t−1∥X∗
t ∥V −1

t−1

≤ µ(X⊤
t θ̃t) +

2kµ
cµ

β̄t−1∥Xt∥V −1
t−1
.

Hence the following dynamic regret bound holds with proba-
bility at least 1− 2δ and can be divided into two parts,

D-REGT =

T∑
t=1

max
x∈X

µ(x⊤θt)− µ(X⊤
t θt)

≤
4L2k2µ
cµ

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2︸ ︷︷ ︸
bias part

+
4kµ
cµ

β̄T

T∑
t=1

∥Xt∥V −1
t−1︸ ︷︷ ︸

variance part

.

where β̄t =
√
λcµS + R

√
2 log 1

δ + d log
(
1 + L2(1−γ2t)

λd(1−γ2)

)
is

the confidence radius.
Now we derive the upper bound for these two parts.

Bias Part. Similar to the proof of inequality (35), we have

4L2k2µ
cµ

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

≤
8L2k2µ
cµ

√
d

λ

1

(1− γ)3/2
PT .

Variance Part. Similar to the proof of inequality (36), let
CGLB
T ≜ 4kµ

cµ
β̄T
√
2max {1, L2/λ} dT we have

4kµ
cµ

β̄T
√
T

√√√√ T∑
t=1

∥Xt∥2V −1
t−1

≤ CGLB
T

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

Algorithm 6 SCB-WeightUCB

Require: time horizon T , discounted factor γ, confidence δ,
regularizer λ, inverse link function µ, parameters S, L and
m

1: Set V0 = λId, θ̂1 = 0 and compute kµ and cµ
2: for t = 1, 2, ..., T do
3: if ∥θ̂t∥2 ≤ S then
4: let θ̃t = θ̂t
5: else
6: Do the projection and get θ̃t by (17)
7: end if
8: Compute β̃t−1 by (19)
9: Select Xt by (20)

10: Receive the reward rt
11: Update Vt = γVt−1 +XtX

⊤
t + (1− γ)λId

12: Compute θ̂t+1 according to (11)
13: end for

Combine the upper bound for the bias and variance parts, and
let δ = 1/(2T 2), we have the following regret bound with
probability at least 1− 1/T ,

D-REGT ≤
8L2k2µ
cµ

√
d

λ

1

(1− γ)3/2
PT

+ CGLB
T

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

where β̄t = R

√
4 log T + 2 log 2 + d log

(
1 + L2(1−γt)

λd(1−γ)

)
+

√
λcµS. We set γ ≥ 1/T and λ = d/c2µ, and obtain that,

D-REGT ≤ Õ
(
k2µ

1

(1− γ)3/2
PT +

kµ
cµ
d(1− γ)

1/2T

)
.

When PT < d/(kµcµT ), we set γ = 1 − 1/T and achieve
an Õ(kµc

−1
µ d

√
T ) regret bound. When PT ≥ d/(kµcµT ), We

set γ optimally as 1 − γ =
√
kµcµPT /(dT ) and attain an

Õ(k
5/4
µ c

−3/4
µ d

3/4P
1/4
T T

3/4) regret bound. Notice that, if kµ <
1, we just let 1 − γ =

√
cµPT /(dT ) and the regret bound

becomes Õ(k2µc
−3/4
µ d

3/4P
1/4
T T

3/4).

APPENDIX C
ANALYSIS OF SCB-WEIGHTUCB

In this section, we first present SCB-WeightUCB algorithm
in Algorithm 6, Then, in Appendix C-A we present the proof
of the estimation error upper bound of our SCB-WeightUCB
algorithm (Lemma 3). Finally, in Appendix C-B, we provide
the proof of dynamic regret upper bound (Theorem 3).

A. Proof of Lemma 3

Proof. Based on the estimator equation (11), we know that

gt(θ̂t) = λcµθ̂t +

t−1∑
s=1

wt−1,sµ(X
⊤
s θ̂t)Xs

=

t−1∑
s=1

wt−1,srsXs,

(48)
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and then by the mean value theorem, we know that

gt(θ1)− gt(θ2) = Gt(θ1, θ2)(θ1 − θ2), (49)

where Gt(θ1, θ2) ≜
∫ 1

0
∇gt(sθ2+(1−s)θ1)ds ∈ Rd×d. Notice

that for any θ ∈ Θ, the gradient of gt is

∇gt(θ) = λcµId +

t−1∑
s=1

wt−1,sµ
′(X⊤

s θ)XsX
⊤
s ⪰ cµVt−1,

which clearly implies ∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) ⪰ cµVt−1 and
∀θ,Ht(θ) ⪰ cµVt−1, where Ht(θ) is defined as

Ht(θ) ≜ λcµId +

t−1∑
s=1

wt−1,sµ
′(X⊤

s θ)XsX
⊤
s . (50)

By Assumption 2, the mean value theorem (44) on gt, the
projection (17) and Lemma 28, we have

|µ(x⊤θ̃t)− µ(x⊤θt)| ≤ kµ|x⊤(θ̃t − θt)|
= kµ|x⊤G−1

t (θt, θ̃t)(gt(θ̃t)− gt(θt))|
≤ kµ∥x∥G−1

t (θt,θ̃t)
∥gt(θ̃t)− gt(θt)∥G−1

t (θt,θ̃t)

≤ kµ∥x∥G−1
t (θt,θ̃t)

(
∥gt(θ̃t)− gt(θ̂t)∥G−1

t (θt,θ̃t)

+ ∥gt(θ̂t)− gt(θt)∥G−1
t (θt,θ̃t)

)
≤

√
1 + 2Skµ∥x∥G−1

t (θt,θ̃t)

(
∥gt(θ̃t)− gt(θ̂t)∥H−1

t (θ̃t)

+ ∥gt(θ̂t)− gt(θt)∥H−1
t (θt)

)
≤ 2

√
1 + 2S

kµ√
cµ

∥x∥V −1
t−1

∥gt(θ̂t)− gt(θt)∥H−1
t (θt)

,

then based on the model assumption (16), the function gt (13)
and the gt(θ̂t) (48), we have,

gt(θt)− gt(θ̂t)

= λcµθt +

t−1∑
s=1

wt−1,sµ(X
⊤
s θt)Xs −

t−1∑
s=1

wt−1,srsXs

= λcµθt +

t−1∑
s=1

wt−1,sµ(X
⊤
s θt)Xs

−
t−1∑
s=1

wt−1,s(µ(X
⊤
s θs) + ηs)Xs

=

t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs + λcµθt

−
t−1∑
s=1

wt−1,sηsXs,

then, by Cauchy-Schwarz inequality, we have∣∣∣µ(x⊤θ̃t)− µ(x⊤θt)
∣∣∣

≤ 2
√
1 + 2S

kµ√
cµ

∥x∥V −1
t−1

(Et + Ft) ,
(51)

where

Et =

∥∥∥∥∥
t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)

Ft =

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs − λcµθt

∥∥∥∥∥
H−1

t (θt)

.

This two terms can be bounded separately.

Lemma 12. For any t ∈ [T ], we have∥∥∥∥∥
t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)

≤ L
kµ√
cµ

√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2 .

(52)

Lemma 13. For any δ ∈ (0, 1), with probability at least 1−δ,
we have for all t ∈ [T ],∥∥∥∥∥

t−1∑
s=1

wt−1,sηsXs − λcµθt

∥∥∥∥∥
H−1

t (θt)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

2m√
λcµ

d log(2) +
√
λcµS

+
dm√
λcµ

log

(
1 +

L2kµ
∑t−1
s=1 wt−1,s

λcµd

)
,

(53)

Based on the inequality (51), Lemma 10 and Lemma 11, and
the boundedness assumption of the feasible set, we have for
any x ∈ X , δ ∈ (0, 1), with probability at least 1−δ, we have
for all t ∈ [T ],∣∣∣µ(x⊤θ̃t)− µ(x⊤θt)

∣∣∣
≤ 2

√
1 + 2S

kµ√
cµ

∥x∥V −1
t−1

(
β̃t−1

+ L
kµ√
cµ

√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

)

≤ 2
√
1 + 2S

kµ√
cµ

(
β̃t−1∥x∥V −1

t−1

+ L2 kµ√
λcµ

√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

)
,

where β̃t ≜ dm√
λcµ

log
(
1 +

L2kµ
∑t−1

s=1 wt−1,s

λcµd

)
+

√
λcµ
2m +

2m√
λcµ

log 1
δ +

2m√
λcµ

d log(2)+
√
λcµS is the confidence radius

used in SCB-WeightUCB. Hence we completes the proof.

Proof of Lemma 12. Since ∀θ,Ht(θ) ⪰ cµVt−1, we have∥∥∥∥∥
t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)

≤ 1
√
cµ

∥∥∥∥∥
t−1∑
s=1

wt−1,s(µ(X
⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
V −1
t−1

.
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Then use Lemma 10 and we complete the proof.

Proof of Lemma 13. We define η̃s ≜
√
wt−1,sηs
|m| , X̃s ≜

√
wt−1,sXs and notice that ∀t ∈ [T ], s ∈ [t−1], |wt−1,s| ≤ 1,

then η̃s is bounded by 1 with variance σ̃s, then we have

Ft =

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs − λcµθt

∥∥∥∥∥
H−1

t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

wt−1,sηsXs

∥∥∥∥∥
H−1

t (θt)

+
√
λcµS

=

∥∥∥∥∥
t−1∑
s=1

η̃sX̃s

∥∥∥∥∥
H̃−1

t (θt)

+
√
λcµS

where H̃t(θ) ≜
λcµ
m2 Id +

∑t−1
s=1

µ′(X⊤
s θ)

m2 X̃sX̃
⊤
s . By the model

assumption (16), we know that σ̃2
t =

E[η̃2t |Ft−1]
m2 ≤ E[η2t |Ft] =

Var[rt|Ft]
m2 = µ′(Xtθt)

m2 , then from the Self-normalized concen-
tration inequality for self-concordant bandits [33, Theorem 1],
restated in Theorem 8, we can get the bound for the first term∥∥∥∑t−1

s=1 η̃sX̃s

∥∥∥
H̃−1

t (θt)
as follows,∥∥∥∥∥

t−1∑
s=1

wt−1,sη̃sXs

∥∥∥∥∥
H−1

t (θt)

≤
√
λcµ

2m
+

2m√
λcµ

log

(
det(Ht)

1/2

δ(λcµ)d/2

)
+

2m√
λcµ

d log(2),

then we have∥∥∥∥∥
t−1∑
s=1

γ−sηsXs

∥∥∥∥∥
H̃−1

t (θt)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ

+
dm√
λcµ

log

(
1 +

L2kµ
∑t−1
s=1 wt−1,s

λcµd

)
+

2m√
λcµ

d log(2).

Therefore, we get the upper bound for Ft term.

B. Proof of Theorem 3

Proof. Let X∗
t ≜ argmaxx∈X µ(x

⊤θt). Due to Lemma 2 and
the fact that X∗

t , Xt ∈ X , each of the following holds with
probability at least 1− δ,

∀t ∈ [T ], µ(X∗⊤
t θt)

≤ µ(X∗⊤
t θ̃t) + 2

√
1 + 2S

kµ√
cµ

(
β̃t−1∥X∗

t ∥V −1
t−1

+ L2 kµ√
λcµ

√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

)
,

∀t ∈ [T ], µ(X⊤
t θt)

≥ µ(X⊤
t θ̃t)− 2

√
1 + 2S

kµ√
cµ

(
β̃t−1∥Xt∥V −1

t−1

+ L2 kµ√
λcµ

√
d

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

)
.

By the union bound, the following holds with probability at
least 1− 2δ: ∀t ∈ [T ]

µ(X∗⊤
t θt)− µ(X⊤

t θt) ≤ µ(X∗⊤
t θ̃t)− µ(X⊤

t θ̃t)

+ 2
√
1 + 2S

(
2L2k2µ
cµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+
kµ√
cµ

(
β̃t−1∥X∗

t ∥V −1
t−1

+ β̃t−1∥Xt∥V −1
t−1

))

≤
4
√
1 + 2SL2k2µ

cµ

√
d

λ

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

+
4
√
1 + 2Skµ√
cµ

β̃t−1∥Xt∥V −1
t−1
,

where the last step comes from the arm selection criterion (20)
such that

µ(X∗⊤
t θ̃t) + 2

√
1 + 2S

kµ√
cµ
β̃t−1∥X∗

t ∥V −1
t−1

≤ µ(X⊤
t θ̃t) + 2

√
1 + 2S

kµ√
cµ
β̃t−1∥Xt∥V −1

t−1
.

Hence, the following dynamic regret bound holds with prob-
ability at least 1− 2δ and can be divided into two parts,

D-REGT =

T∑
t=1

µ(X∗⊤
t θt)− µ(X⊤

t θt)

≤
4
√
1 + 2SL2k2µ

cµ

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2︸ ︷︷ ︸
bias part

+
4
√
1 + 2Skµ√
cµ

β̃T

T∑
t=1

∥Xt∥V −1
t−1︸ ︷︷ ︸

variance part

.

where β̃t = dm√
λcµ

log
(
1 +

L2kµ(1−γt)
λcµd(1−γ)

)
+ 2m√

λcµ
log 1

δ +
√
λcµ
2m + 2m√

λcµ
d log(2) +

√
λcµS is the confidence radius.

Now we derive the upper bound for these two parts.

Bias Part. Similar to the proof of inequality (35), we have

4
√
1 + 2SL2k2µ

cµ

√
d

λ

T∑
t=1

t−1∑
p=1

√√√√ p∑
s=1

wt−1,s ∥θp − θp+1∥2

≤
8
√
1 + 2SL2k2µ

cµ

√
d

λ

1

(1− γ)3/2
PT .

Variance Part. First use the Cauchy-Schwarz inequality, we
know that

4
√
1 + 2Skµ√
cµ

β̃T

T∑
t=1

∥Xt∥V −1
t−1

≤ 4
√
1 + 2Skµ√
cµ

β̃T
√
T

√√√√ T∑
t=1

∥Xt∥2V −1
t−1

.
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For term
√∑T

t=1 ∥Xt∥2V −1
t−1

, we can use the Lemma 9 to

bound it, Let CSCB
T ≜ 4

√
1+2Skµ√
cµ

β̃T
√
2max{1, L2/λ}dT then

4
√
1 + 2Skµ√
cµ

β̃T
√
T

√√√√ T∑
t=1

∥Xt∥2V −1
t−1

≤ CSCB
T

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

Combining the upper bound for the bias and variance parts,
and letting δ = 1/(2T ), we have the following regret bound
with probability at least 1− 1/T ,

D-REGT ≤
8
√
1 + 2SL2k2µ

cµ

√
d

λ

1

(1− γ)3/2
PT

+ CSCB
T

√
T log

1

γ
+ log

(
1 +

L2

λd(1− γ)

)
.

where β̃t = dm√
λcµ

log
(
1 +

L2kµ(1−γt)
λcµd(1−γ)

)
+ 2m√

λcµ
log (2T ) +

√
λcµ
2m + 2m√

λcµ
d log(2)+

√
λcµS. Since there is a T

√
log(1/γ)

term in the regret bound, which means that we cannot let γ
close to 0, so we set γ ≥ 1/T , then we have log(1/γ) ≤ C(1−
γ), where C = log T/(1 − 1/T ). Then, ignoring logarithmic
factors in time horizon T , and let λ = d log(T )/cµ, we finally
obtain that,

D-REGT ≤ Õ

(
k2µ√
cµ

1

(1− γ)3/2
PT +

kµ√
cµ
d(1− γ)

1/2T

)
.

When PT < d/(kµT ) (which corresponds a small amount of
non-stationarity), we simply set γ = 1 − 1/T and achieve
an Õ(kµc

−1/2
µ d

√
T ) regret bound. Besides, when coming to

the non-degenerated case of PT ≥ d/(kµT ), We set the dis-
counted factor optimally as 1− γ =

√
kµPT /(dT ) and attain

an Õ(k
5/4
µ c

−1/2
µ d

3/4P
1/4
T T

3/4) regret bound, which completes
the proof.

APPENDIX D
PIECEWISE-STATIONARY SCB

In this section, we study SCB under piecewise-stationary
environment and our work is a direct improvement over [7].
Next, we will first propose our SCB-PW-WeightUCB algo-
rithm, and then, present the analysis of the confidence set.
Finally, we give the proof of the dynamic regret upper bound.

A. SCB-PW-WeightUCB Algorithm

Inspired by [34], we make a direct improvement over [7].
Just like [7], for D ≥ 1, define T (D) = {1 ≤ t ≤
T, such that θs = θt for t − D ≤ s ≤ t − 1}. t ∈ T (D)
when t is at least D steps away from the previous closest
changing point. But the difference is that [7] considers D as
an analysis parameter, and we treat D as a tunable algorithm
parameter. Notice that, the D here is not a virtual window size,
but the algorithm’s estimate of how durable the environment
is stationary.

Algorithm 7 SCB-PW-WeightUCB

Require: time horizon T , discounted factor γ, confidence δ,
regularizer λ, inverse link function µ, parameters S, L and
m, changing confidence D

1: Set θ̂0 = 0 and compute kµ and cµ
2: for t = 1, 2, 3, ..., T do
3: Compute (Xt, θ̃t) = argmaxx∈X ,θ∈Ct(δ) µ(x

⊤θ)
4: Select Xt and receive the reward rt
5: Compute θ̂t+1 according to (11)
6: end for

Estimator. At iteration t, we adopt the same maximum
likelihood estimator (11) with wt,s = γt−s as in the drifting
case.

Confidence Set. We further construct confidence set for the
real θt. For δ ∈ (0, 1), we define,

Ct(δ) ≜
{
θ ∈ Θ

∣∣∣ ∥gt(θ)− gt(θ̂t)∥H−1
t (θ) ≤ ρt

}
,

where ρt =
2L2Skµ√

λcµ

γD

1−γ + Lm√
λcµ

γD

1−γ + β̆t and

β̆t =
dm√
λcµ

log
(
1 +

L2kµ(1−γ2D)
λcµd(1−γ)

)
+

√
λcµ
2m + 2m√

λcµ
log 1

δ +

2m√
λcµ

d log(2) +
√
λcµS.

Lemma 14. For any δ ∈ (0, 1), with probability at least 1−δ,
we have ∀t ∈ T (D), θt ∈ Ct(δ).

Ct(δ) =

{
θ ∈ Θ | ∥gt(θ)− gt(θ̂t)∥H−1

t (θ)

≤ 2L2Skµ√
λcµ

γD

1− γ
+

Lm√
λcµ

γD

1− γ
+ β̆t

}
,

where β̆t = dm√
λcµ

log
(
1 +

L2kµ(1−γ2D)
λcµd(1−γ)

)
+

√
λcµ
2m +

2m√
λcµ

log 1
δ +

2m√
λcµ

d log(2) +
√
λcµS.

The proof of Lemma 14 is presented in Appendix D-B.

Selection Criteria. Algorithms discussed earlier for drifting
cases are using bonus-based selection criteria. But here we use
a parameter-based selection criterion as follows,

(Xt, θ̃t) = argmax
x∈X ,θ∈Ct(δ)

µ(x⊤θ). (54)

The main difference between parameter-based and bonus-
based selection criteria is discussed in Section 3.2 of [34].
The overall algorithm is summarized in Algorithm 7.

B. Proof of Lemma 14

Proof. Based on the model assumption (16), the function
gt (13) and the gt(θ̂t) (48), we have,

gt(θt)− gt(θ̂t)

= λcµθt +

t−1∑
s=1

γt−s−1µ(X⊤
s θt)Xs −

t−1∑
s=1

γt−s−1rsXs
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= λcµθt +

t−1∑
s=1

γt−s−1µ(X⊤
s θt)Xs

−
t−1∑
s=1

γt−s−1(µ(X⊤
s θs) + ηs)Xs

=

t−1∑
s=1

γt−s−1(µ(X⊤
s θt)− µ(X⊤

s θs))Xs + λcµθt

−
t−1∑
s=1

γt−s−1ηsXs.

Then,

∥gt(θt)− gt(θ̂t)∥H−1
t (θt)

=

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X⊤
s θt)− µ(X⊤

s θs))Xs

+ λcµθt −
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1

t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)

+

∥∥∥∥∥λcµθt −
t−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1

t (θt)

≤

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)︸ ︷︷ ︸
TERM (A)

+

∥∥∥∥∥
t−D−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1

t (θt)︸ ︷︷ ︸
TERM (B)

+

∥∥∥∥∥
t−1∑

s=t−D
γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1

t (θt)︸ ︷︷ ︸
TERM (C)

.

Term (a). Since t ∈ T (D), we have

∥∥∥∥∥
t−1∑
s=1

γt−s−1(µ(X⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)

=

∥∥∥∥∥
t−D−1∑
s=1

γt−s−1(µ(X⊤
s θt)− µ(X⊤

s θs))Xs

∥∥∥∥∥
H−1

t (θt)

≤

∥∥∥∥∥
t−D−1∑
s=1

γt−s−1kµX
⊤
s (θt − θs)Xs

∥∥∥∥∥
H−1

t (θt)

≤
t−D−1∑
s=1

γt−s−1kµ∥Xs∥2∥(θt − θs)∥2 ∥Xs∥H−1
t (θt)

≤ 2L2Skµ√
λcµ

γD

1− γ
.

Term (b).∥∥∥∥∥
t−D−1∑
s=1

γt−s−1ηsXs

∥∥∥∥∥
H−1

t (θt)

≤
t−D−1∑
s=1

γt−s−1m ∥Xs∥H−1
t (θt)

≤ Lm√
λcµ

t−D−1∑
s=1

γt−s−1

≤ Lm√
λcµ

γD

1− γ
.

Term (c).We define η̃s ≜
√
γt−s−1ηs
|m| , X̃s ≜

√
γt−s−1Xs

and notice that ∀t ∈ [T ], s ∈ [t − 1],
∣∣γt−s−1

∣∣ ≤ 1,
then η̃s is bounded by 1 with variance σ̃s. Let H̃t(θ) ≜
λcµ
m2 Id +

∑t−1
s=1

µ′(X⊤
s θ)

m2 X̃sX̃
⊤
s and H̃t−D:t(θ) = λcµId +∑t−1

s=t−D
µ′(X⊤

s θ)
m2 X̃sX̃

⊤
s ,∥∥∥∥∥

t−1∑
s=t−D

γt−s−1ηsXs − λcµθt

∥∥∥∥∥
H−1

t (θt)

≤

∥∥∥∥∥
t−1∑

s=t−D
γt−s−1ηsXs

∥∥∥∥∥
H−1

t (θt)

+
√
λcµS

≤

∥∥∥∥∥
t−1∑

s=t−D
η̃sX̃s

∥∥∥∥∥
H̃−1

t−D:t(θt)

+
√
λcµS,

where H̃t(θ) ⪰ H̃t−D:t(θ). Next, we need to bound
the term ∥

∑t−1
s=t−D η̃sX̃s∥H̃−1

t−D:t(θt)
using self-normalization

bound [33, Theorem 1], restated in Theorem 8, similar to the
proof of Lemma 13, we have∥∥∥∥∥

t−1∑
s=t−D

γ−sηsXs

∥∥∥∥∥
H̃−1

t−D:t(θt)

≤
√
λcµ

2m
+

2m√
λcµ

log

det
(
H̃t−D:t

)1/2
δ(λcµ)d/2

+
2m√
λcµ

d log(2)

≤
√
λcµ

2m
+

2m√
λcµ

log
1

δ
+

dm√
λcµ

log

(
1 +

L2kµ(1− γ2D)

λcµd(1− γ)

)
+

2m√
λcµ

d log(2).

Let β̆t ≜ dm√
λcµ

log
(
1 +

L2kµ(1−γ2D)
λcµd(1−γ)

)
+ 2m√

λcµ
log 1

δ +
√
λcµ
2m + 2m√

λcµ
d log(2) +

√
λcµS , finally we have,

∥gt(θt)− gt(θ̂t)∥H−1
t (θt)

≤ 2L2Skµ√
λcµ

γD

1− γ
+

Lm√
λcµ

γD

1− γ
+ β̆t,

which completes the proof.
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C. Proof of Theorem 4

Proof. Let Rt = µ(X∗⊤
t θt)− µ(X⊤

t θt)

D-REGT =

T∑
t=1

Rt =
∑

t/∈T (D)

Rt +
∑

t∈T (D)

Rt

= ΓTD +
∑

t∈T (D)

Rt.

For t ∈ T (D), by selection criterion (54),

Rt = µ(X∗⊤
t θt)− µ(X⊤

t θt)

≤ µ(X⊤
t θ̃t)− µ(X⊤

t θ̂t) + µ(X⊤
t θ̂t)− µ(X⊤

t θt)

≤ α(Xt, θ̃t, θ̂t)
∣∣∣X⊤

t

(
θ̃t − θ̂t

)∣∣∣+ α(Xt, θt, θ̂t)
∣∣∣X⊤

t

(
θt − θ̂t

)∣∣∣
≤

√
1 + 2S

·
(
α(Xt, θ̃t, θ̂t) ∥Xt∥G−1

t (θ̃t,θ̂t)

∥∥∥gt(θ̃t)− gt(θ̂t)
∥∥∥
H−1

t (θ̃t)

+ α(Xt, θt, θ̂t) ∥Xt∥G−1
t (θt,θ̂t)

∥∥∥gt(θt)− gt(θ̂t)
∥∥∥
H−1

t (θt)

)
.

where α(x, θ1, θ2) =
∫ 1

0
µ′(vx⊤θ2+(1−v)x⊤θ1)dv, and the

last second inequality comes from the mean value theorem
µ(x⊤θ1) − µ(x⊤θ2) = α(x, θ1, θ2)(x

⊤θ1 − x⊤θ2). Since
that θ̃t ∈ Ct(δ) and with probability at least 1 − δ, ∀t ∈
[T ], θt ∈ Ct(δ), and by union bound, the following dynamic
regret bound hold with probability at least 1− δ,∑
t∈T (D)

Rt ≤
∑

t∈T (D)

√
1 + 2S

(
α(Xt, θ̃t, θ̂t) ∥Xt∥G−1

t (θ̃t,θ̂t)
ρt

+ α(Xt, θt, θ̂t) ∥Xt∥G−1
t (θt,θ̂t)

ρt
)

≤
√
1 + 2SρT

( ∑
t∈T (D)

α(Xt, θ̃t, θ̂t) ∥Xt∥G−1
t (θ̃t,θ̂t)

+
∑

t∈T (D)

α(Xt, θt, θ̂t) ∥Xt∥G−1
t (θt,θ̂t)

)
.

Now we try to derive the upper bound for term∑
t∈T (D) α(Xt, θ̃t, θ̂t) ∥Xt∥G−1

t (θ̃t,θ̂t)
.

Based on the definition of gt (13), we have

gt(θ1)− gt(θ2)

= λcµ(θ1 − θ2) +

t−1∑
s=1

γt−s−1(µ(X⊤
s θ1)− µ(X⊤

s θ2))Xs

= λcµ(θ1 − θ2) +

t−1∑
s=1

γt−s−1α(Xs, θ1, θ2)X
⊤
s Xs(θ1 − θ2)

=

(
λcµ +

t−1∑
s=1

γt−s−1α(Xs, θ1, θ2)X
⊤
s Xs

)
(θ1 − θ2).

Then based on the definition of Gt (49), we know Gt(θ1, θ2) =
λcµ +

∑t−1
s=1 γ

t−s−1α(Xs, θ1, θ2)X
⊤
s Xs. which means

Gt(θ̃t, θ̂t) = λcµId+
∑t−1
s=1 γ

t−s−1α(Xs, θ̃t, θ̂t)XsX
⊤
s , if we

let X̃s =

√
α(Xs, θ̃t, θ̂t)Xs, then∑

t∈T (D)

α(Xt, θ̃t, θ̂t) ∥Xt∥G−1
t (θ̃t,θ̂t)

≤

√√√√ T∑
t=1

α(Xt, θ̃t, θ̂t)

√√√√ T∑
t=1

α(Xt, θ̃t, θ̂t) ∥Xt∥2G−1
t (θ̃t,θ̂t)

≤
√
kµT

√√√√ T∑
t=1

∥∥∥X̃t

∥∥∥2
G−1

t (θ̃t,θ̂t)
.

Then for the term
√∑T

t=1 ∥X̃t∥2
G−1

t (θ̃t,θ̂t)
, we can di-

rectly use the Lemma 9 to bound it, let CPWSCB
T ≜√

2kµmax{1, L2kµ/(λcµ)}dT we have

√
kµT

√√√√ T∑
t=1

∥∥∥X̃t

∥∥∥2
G−1

t (θ̃t,θ̂t)

≤ CPWSCB
T

√
T log

1

γ
+ log

(
1 +

L2kµ
λcµd(1− γ)

)
.

We can bound term
∑
t∈T (D) α(Xt, θt, θ̂t) ∥Xt∥G−1

t (θt,θ̂t)
in

the same way and get,∑
t∈T (D)

α(Xt, θt, θ̂t) ∥Xt∥G−1
t (θt,θ̂t)

≤ CPWSCB
T

√
T log

1

γ
+ log

(
1 +

L2kµ
λcµd(1− γ)

)
.

Combine these two bounds and let δ = 1/T , we have the
following regret bound with probability at least 1− 1/T ,

D-REGT ≤ ΓTD

+ 2
√
1 + 2SρTC

PWSCB
T

√
T log

1

γ
+ log

(
1 +

L2kµ
λcµd(1− γ)

)
,

where ρt =
2L2Skµ√

λcµ

γD

1−γ + Lm√
λcµ

γD

1−γ + β̆t and β̆t =

dm√
λcµ

log
(
1 +

L2kµ(1−γ2D)
λcµd(1−γ)

)
+

√
λcµ
2m + 2m√

λcµ
log (T ) +

2m√
λcµ

d log(2)+
√
λcµS. Since there is a T

√
log(1/γ) term in

the regret bound, which means that we cannot let γ close to 0,
so we set γ ≥ 1/2, then we have log(1/γ) ≤ 2 log(2)(1− γ).
Then, we set D = log(T )/ log(1/γ), noticing that 0 <
1/γ − 1 < 1 and using log(1 + x) ≥ x/2 for 0 < x < 1,
we have

log
1

γ
= log(1 + 1/γ − 1) ≥ 1− γ

2γ
.

Therefore, we have D ≤ 2γ log(T )
1−γ . Then, ignoring logarithmic

factors in time horizon T , and let λ = d log(T )/cµ, we finally
obtain that,

D-REGT

≤ Õ
(

1

1− γ
ΓT +

(
1√
d

1

1− γ

1

T
+

√
d

)√
d(1− γ)T

)
≤ Õ

(
1

1− γ
ΓT +

1√
1− γ

+ d
√
(1− γ)T

)
.

When ΓT < d/
√
T (which corresponds a small amount of

non-stationarity), we simply set γ = 1 − 1/T and achieve
an Õ(d

√
T ) regret bound. Besides, when coming to the non-

degenerate case of ΓT > d/
√
T , We set the discounted
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factor optimally as 1 − γ = (ΓT /(dT ))
2/3 and attain an

Õ(d
2/3Γ

1/3
T T

2/3) regret, which completes the proof.

APPENDIX E
ANALYSIS OF WEIGHTUCRL

A. Proof of Lemma 4

Proof. Fix h ∈ [H], based on the reward model assump-
tion (22) and the estimator (23), the estimation error of reward
estimation can be decomposed as

θ̂kh − θkh

=
(
Λk−1
h

)−1

k−1∑
j=1

wk−1,jr
j
h(s

j
h, a

j
h)ϕ(s

j
h, a

j
h)

− θkh

=
(
Λk−1
h

)−1

k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)

⊤θjhϕ(s
j
h, a

j
h)

− θkh

=
(
Λk−1
h

)−1

k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤θjh


−
(
Λk−1
h

)−1

λθId + k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤

 θkh

=
(
Λk−1
h

)−1

k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤
(
θjh − θkh

)
︸ ︷︷ ︸

bias part

−
(
Λk−1
h

)−1
λθθ

k
h︸ ︷︷ ︸

variance part

.

Then, by the Cauchy-Schwarz inequality, we know that for
any s ∈ S, a ∈ A,∣∣∣ϕ(s, a)⊤ (θ̂kh − θkh

)∣∣∣ = ∥ϕ(s, a)∥(Λk−1
h )

−1

(
Akh +Bkh

)
,

(55)

where

Akh =

∥∥∥∥∥∥
k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤
(
θjh − θkh

)∥∥∥∥∥∥
(Λk−1

h )
−1

,

Bkh =
∥∥λθθkh∥∥(Λk−1

h )
−1 .

The above two terms can be bounded separately,

Term Akh. The first step is to extract the variations of the
parameter θkh as follows,∥∥∥∥∥∥

k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤
(
θjh − θkh

)∥∥∥∥∥∥
(Λk−1

h )
−1

=

∥∥∥∥∥∥
k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤
k−1∑
p=j

(
θph − θp+1

h

)∥∥∥∥∥∥
(Λk−1

h )
−1

=

∥∥∥∥∥∥
k−1∑
p=1

p∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤
(
θph − θp+1

h

)∥∥∥∥∥∥
(Λk−1

h )
−1

≤
k−1∑
p=1

∥∥∥∥∥∥
p∑
j=1

wk−1,jϕ(s
j
h, a

j
h)
∥∥∥ϕ(sjh, ajh)∥∥∥

2

∥∥∥θph − θp+1
h

∥∥∥
2

∥∥∥∥∥∥
(Λk−1

h )
−1

≤ Lϕ

k−1∑
p=1

p∑
j=1

wk−1,j

∥∥∥ϕ(sjh, ajh)∥∥∥(Λk−1
h )

−1

∥∥∥θph − θp+1
h

∥∥∥
2
,

and term
∑p
j=1 wk−1,j

∥∥∥ϕ(sjh, ajh)∥∥∥(Λk−1
h )

−1
can be able to

further derive an expression about weight wk−1,j as follows,
p∑
j=1

wk−1,j

∥∥∥ϕ(sjh, ajh)∥∥∥(Λk−1
h )

−1

≤

√√√√ p∑
j=1

wk−1,j

√√√√ p∑
j=1

wk−1,j

∥∥∥ϕ(sjh, ajh)∥∥∥2(Λk−1
h )

−1

≤
√
d

√√√√ p∑
j=1

wk−1,j .

In above, the first step holds by the Cauchy-Schwarz inequal-
ity. Besides, the last step follows the Lemma 25 by letting
Xj =

√
wk−1,jϕ(s

j
h, a

j
h) and Uk−1 = Λk−1

h , which means for
Term 1 we have∥∥∥∥∥∥

k−1∑
j=1

wk−1,jϕ(s
j
h, a

j
h)ϕ(s

j
h, a

j
h)

⊤
(
θjh − θkh

)∥∥∥∥∥∥
(Λk−1

h )
−1

≤ Lϕ
√
d

k−1∑
p=1

√√√√ p∑
j=1

wk−1,j

∥∥∥θph − θp+1
h

∥∥∥
2
, (56)

Term Bkh.∥∥λθθkh∥∥(Λk−1
h )

−1 ≤ λθ√
λmin(Λ

k−1
h )

∥∥θkh∥∥2 ≤
√
λθSθ. (57)

Plug Eq (56) and Eq (57) into Eq (55) and we have∥∥∥θ̂kh − θkh

∥∥∥
Λk−1

h

≤ Lϕ
√
d

k−1∑
p=1

√√√√ p∑
j=1

wk−1,j

∥∥∥θph − θp+1
h

∥∥∥
2
+
√
λθSθ,

further we have∣∣∣ϕ(s, a)⊤ (θ̂kh − θkh

)∣∣∣
≤ ∥ϕ(s, a)∥(Λk−1

h )
−1

·

(
Lϕ

√
d

k−1∑
p=1

√√√√ p∑
j=1

wk−1,j

∥∥∥θph − θp+1
h

∥∥∥
2
+
√
λθSθ

)

≤ L2
ϕ

√
d

λθ

k−1∑
p=1

√√√√ p∑
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wk−1,j

∥∥∥θph − θp+1
h

∥∥∥
2

+ βθ ∥ϕ(s, a)∥(Λk−1
h )

−1 ,

where ∥ϕ(s, a)∥(Λk−1
h )

−1 ≤ ∥ϕ(s, a)∥2 /
√
λθ and βθ ≜

√
λθSθ, which completes the proof.
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B. Proof of Lemma 5

Proof. Fix h ∈ [H], based on the model assumption (22) and
estimator (25), we have

ŵk
h =

(
Σk−1
h

)−1

k−1∑
j=1

αk−1,jV
j
h+1(s

j
h+1)ψ

j
h+1

(
sjh, a

j
h

)
=
(
Σk−1
h

)−1

(
k−1∑
j=1

αk−1,j

(
ψjh+1

(
sjh, a

j
h

)⊤
wj
h + ηjh+1

)

· ψjh+1

(
sjh, a

j
h

))
, (58)

where we define the noise as ηjh+1 ≜ V jh+1

(
sjh+1

)
−[

PjhV
j
h+1

] (
sjh, a

j
h

)
, and we have

wk
h =

(
Σk−1
h

)−1

(
λwId

+

k−1∑
j=1

αk−1,jψ
j
h+1

(
sjh, a

j
h

)
ψjh+1

(
sjh, a

j
h

)⊤)
wk
h,

(59)

combine Eq (58) and Eq (59) and we have the estimation error

ŵk
h −wk

h

=

(
Σk−1
h

)−1

(
k−1∑
j=1

αk−1,jψ
j
h+1

(
sjh, a

j
h

)
ψjh+1

(
sjh, a

j
h

)⊤
·
(
wj
h −wk

h

))
︸ ︷︷ ︸

bias part

+
(
Σk−1
h

)−1

k−1∑
j=1

αk−1,jη
j
h+1ψ

j
h+1

(
sjh, a

j
h

)
− λwwk

h


︸ ︷︷ ︸

variance part

.

Then, by the Cauchy-Schwarz inequality, we know that for
any s ∈ S, a ∈ A,∣∣∣ψkh+1 (s, a)

⊤ (
ŵk
h −wk

h

)∣∣∣
≤
∥∥ψkh+1 (s, a)

∥∥
(Σk−1

h )
−1

(
Ckh +Dk

h

)
,

(60)

where

Ckh =

∥∥∥∥∥
k−1∑
j=1

αk−1,j

· ψjh+1

(
sjh, a

j
h

)
ψjh+1

(
sjh, a

j
h

)⊤ (
wj
h −wk

h

)∥∥∥∥∥
(Σk−1

h )
−1

Dk
h =

∥∥∥∥∥∥
k−1∑
j=1

αk−1,jη
j
h+1ψ

j
h+1

(
sjh, a

j
h

)
− λwwk

h

∥∥∥∥∥∥
(Σk−1

h )
−1

.

The above two terms can be bounded separately, as summa-
rized in the following two lemmas,

Lemma 15. For any k ∈ [K], we have

Ckh ≤ HLψ
√
d

k−1∑
p=1

√√√√ p∑
j=1

αk−1,j

∥∥∥wp
h −wp+1

h

∥∥∥
2
.

Lemma 16. If ∀k, j ∈ [K], αk−1,j ≤ 1, for any δ ∈ (0, 1),
with probability at least 1 − δ, the following holds for all
k ∈ [K],

Dk
h ≤ H

√√√√1

2
log

1

δ
+
d

4
log

(
1 +

H2L2
ψ

∑k−1
j=1 αk−1,j

λwd

)
+
√
λwSw.

Based on the inequality (60), Lemma 15, Lemma 16,
and

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1 ≤

∥∥ψkh+1 (s, a)
∥∥
2
/
√
λw ≤

HLψ/
√
λw, with probability at least 1−δ, the following holds

for all k ∈ [K],∣∣∣ψkh+1 (s, a)
⊤ (

ŵk
h −wk

h

)∣∣∣
≤ Γk−1
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w

∥∥ψkh+1 (s, a)
∥∥
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h )
−1 ,

where
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√
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4
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(
1 +
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ψ

∑k−1
j=1 αk−1,j

λwd

)
+
√
λwSw,

which completes the proof.

Proof of Lemma 15. The first step is to extract the variations
of the parameter wk

h as follows,∥∥∥∥∥
k−1∑
j=1

αk−1,jψ
j
h+1

(
sjh, a

j
h

)
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(
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∥∥∥∥∥
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≤
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∥∥∥∥∥
p∑
j=1

αk−1,jψ
j
h+1

(
sjh, a

j
h

)
· ψjh+1

(
sjh, a

j
h

)⊤ (
wp
h −wp+1

h

)∥∥∥∥∥
(Σk−1

h )
−1



WANG et al.: REVISITING WEIGHTED STRATEGY FOR NON-STATIONARY PARAMETRIC BANDITS AND MDPS 29

≤ HLψ

k−1∑
p=1

p∑
j=1

αk−1,j

∥∥∥ψjh+1

(
sjh, a

j
h

)∥∥∥
(Σk−1

h )
−1

·
∥∥∥wp

h −wp+1
h

∥∥∥
2
,

and term
∑p
j=1 αk−1,j

∥∥∥ψjh+1

(
sjh, a

j
h

)∥∥∥
(Σk−1

h )
−1

can be able

to further derive an expression about weight αk−1,j as follows,

p∑
j=1

αk−1,j

∥∥∥ψjh+1

(
sjh, a

j
h

)∥∥∥
(Σk−1

h )
−1

≤
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√√√√ p∑
j=1

αk−1,j
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(
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j
h

)∥∥∥2
(Σk−1

h )
−1

≤
√
d

√√√√ p∑
j=1

αk−1,j .

In above, the second last step holds by the Cauchy-Schwarz
inequality. Besides, the last step follows the Lemma 25 by
letting Xj =

√
αk−1,jψ

j
h+1

(
sjh, a

j
h

)
and Uk−1 = Σk−1

h .
Hence we complete the proof.

Proof of Lemma 16.∥∥∥∥∥∥
k−1∑
j=1

αk−1,jη
j
h+1ψ

j
h+1

(
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j
h
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∥∥∥∥∥∥
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Let η̃jh+1 ≜
√
αk−1,jη

j
h+1 and Xj ≜

√
αk−1,jψ

j
h+1

(
sjh, a

j
h

)
,

then we have notice that since the reward r ∈ [0, 1], and
αk−1,j ≤ 1, the noise η̃jh+1 is bounded by:

η̃jh+1 =
√
αk−1,j

(
V jh+1

(
sjh+1

)
−
[
PhV jh+1

] (
sjh, a

j
h

))
≤ H,

based on Lemma 23, we find that the noise η̃jh+1 is H
2 -sub-

Gaussian. Then, by Theorem 7, we have with probability at
least 1− δ, the following holds for all k ∈ [K].∥∥∥∥∥∥
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2
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(
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1
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d
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j
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(
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so we have∥∥∥∥∥∥
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αk−1,jη
j
h+1ψ
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(
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j
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2
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1

δ
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d

4
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(
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which completes the proof.

C. Proof of Theorem 5

Proof. To prove the theorem, we first introduce the following
lemma

Lemma 17. We define the model prediction error as

Ekh(s, a) = rkh(s, a) + PkhV kh+1(s, a)−Qkh(s, a), (61)

then with probability at least 1 − 2δ, the following holds for
all k ∈ [K], h ∈ [H] and ∀s ∈ S, a ∈ A,

− 2βθ ∥ϕ(s, a)∥(Λk−1
h )

−1 − 2βk−1
w

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1

− Γk−1
h,θ − Γk−1

h,w ≤ Ekh(s, a) ≤ Γk−1
h,θ + Γk−1

h,w .

We can further connect the dynamic regret to the model
prediction error, by the following Lemma.

Lemma 18. For the policies {πkh}h∈[H],k∈[K] with akh =
argmaxa∈AQ

k
h(s

k
h, a), and the optimal policies and δ ∈

(0, 1), we have the following decompostion holds with proba-
bility at least 1− 2δ,

D-REGT ≤
K∑
k=1

H∑
h=1

(
Eπk

∗,h

[
Ekh(s

k
h, a

k
h)
]
− Ekh(s

k
h, a

k
h)
)

+ 4H
√

2T log(1/δ).
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Based on Lemma 18 and notice that ∀s ∈ S, a ∈ A,∣∣Ekh(s, a)∣∣ ≤ 2H , we have

Eπk
∗,h

[
Ekh(s

k
h, a

k
h)
]
− Ekh(s

k
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k
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{
4H, 2Γk−1

h,θ + 2Γk−1
h,w + 2βθ
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}
,

the last inequality comes from that βθ > 1, βk−1
w ≥ H . so we

have with probability at least 1− 4δ,

D-REGT ≤ 4Hβθ
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H∑
h=1
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Bias. Now we set wk,j = γk−j , γ ∈ (0, 1),
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2
, (62)

then we set αk,j = γk−j , γ ∈ (0, 1) and have
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Variance. For variance part 1, we have

4Hβθ

K∑
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H∑
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Based on the Lemma 9 (Potential Lemma), and let Xk =
ϕ(skh, a

k
h), Uk = Λk−1

h , we know that ∀h ∈ [H], we have
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so we have
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For variance part 2, we have
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Based on potential lemma, we know that ∀h ∈ [H], we have
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,
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so we have

4
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Since there is a term HK
√
log(1/γ) in the regret bound,

we cannot let γ close to 0 , so we set γ ≥ 1/K and have
log(1/γ) ≤ C(1 − γ), where C = logK/(1 − 1/K). We set
λθ = d, and λw = H2d. Combining the upper bounds of the
bias and variance parts and with confidence level δ = 1/(4T ),
by union bound we have the following dynamic regret bound
with probability at least 1− 1/T ,
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(65)

Proof of Lemma 17. We first consider the upper bound of Ekh ,
based on the definition of Qkh (26) and model assumption (22)
and Eq. (24), we have ∀a ∈ A, s ∈ S,
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h

− βθ ∥ϕ(s, a)∥(Λk−1
h )

−1 − βk−1
w
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∥∥
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h )
−1

= ϕ(s, a)⊤
(
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)
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⊤ (
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h

)
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h )
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w

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1

≤ Γk−1
h,θ + Γk−1

h,w ,

where the last inequality comes from Lemma 4 and Lemma 5.
Similarly, we can get the lower bound of Ekh , ∀a ∈ A, s ∈ S,

Qkh(s, a)− rkh(s, a)−
[
PkhV kh+1

]
(s, a)

= ϕ(s, a)⊤θ̂kh + βθ ∥ϕ(s, a)∥(Λk−1
h )

−1 + ψkh+1 (s, a)
⊤
ŵk
h

+ βk−1
w

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1 − rkh(s, a)−

[
PkhV kh+1

]
(s, a)

= ϕ(s, a)⊤
(
θ̂kh − θkh

)
+ ψkh+1 (s, a)

⊤ (
ŵk
h −wk

h

)
+ βθ ∥ϕ(s, a)∥(Λk−1

h )
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w
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h )

−1

+ 2βk−1
w

∥∥ψkh+1 (s, a)
∥∥
(Σk−1

h )
−1 ,

thus completes the proof.

Proof of Lemma 18. We first decompose the one step dy-
namic regret,

V
k,πk

∗
1

(
sk1
)
− V k,π

k

1

(
sk1
)

= V
k,πk

∗
1

(
sk1
)
− V k1

(
sk1
)︸ ︷︷ ︸

TERM (1)

+V k1
(
sk1
)
− V k,π

k

1

(
sk1
)︸ ︷︷ ︸

TERM (2)

.

TERM (1). We first have ∀s ∈ S,

V
k,πk

∗
h (s)− V kh (s)

= Ea∼πk
∗,h(s)

[
Q
k,πk

∗
h (s, a)

]
− Ea∼πk

h(s)

[
Qkh(s, a)

]
= Ea∼πk

∗,h(s)

[
Q
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∗
h (s, a)

]
− Ea∼πk

∗,h(s)

[
Qkh(s, a)

]
+ Ea∼πk

∗,h(s)

[
Qkh(s, a)

]
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h(s)

[
Qkh(s, a)

]
≤ Ea∼πk

∗,h(s)

[
Q
k,πk

∗
h (s, a)−Qkh(s, a)

]
,

where the last inequality comes from πkh(s) =
argmaxa∈AQ

k
h(s, a). Then we have

Q
k,πk

∗
h (s, a)−Qkh(s, a)

= rkh(s, a) +
[
PkhV

k,πk
∗

h+1

]
(s, a)− rkh(s, a)−

[
PkhV kh+1

]
(s, a)

+ rkh(s, a) +
[
PkhV kh+1

]
(s, a)−Qkh(s, a)

=
[
Pkh
(
V
k,πk

∗
h+1 − V kh+1

)]
(s, a) + Ekh(s, a),

where the last equality comes from the definition of model
prediction error. For notational simplicity, we define the oper-
ators Jkhf(s) =

〈
f(x, ·), πk∗,h(· | s)

〉
, then we have

V
k,πk

∗
h (s)− V kh (s)

≤ JkhPkh
(
V
k,πk

∗
h+1 − V kh+1

)
(s, a) + JkhEkh(s, a),

recursively expanding the above inequality and we have

V
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(
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k
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k
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,

where the last inequality comes from that ∀π, V k,πH+1(·) =
0, V kH+1(·) = 0. Then we have
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V
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∗
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(
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(66)
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TERM (2). Based on Eq (61), we have ∀s ∈ S, a ∈ A,

Ekh(s, a) = rkh(s, a) +
[
PkhV kh+1

]
(s, a)−Qkh(s, a)

= rkh(s, a) +
[
PkhV kh+1

]
(s, a)−Qk,π

k
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k
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=
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]
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]
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)
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k
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By applying this equality, we further have
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(
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)
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k

h

(
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)
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k
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[
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k
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]
− Ea∼πk

h(s
k
h)

[
Qk,π

k

h (skh, a)
]

+ Ekh − Ekh

= Ea∼πk
h(s
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+
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k
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−
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(
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−
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,

then we have
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(
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k
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.

Summing up for k ∈ [K] and h ∈ [H], since V kH+1 = 0,
V k,πH+1 = 0, we have

K∑
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V k1
(
sk1
)
− V π
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1

(
sk1
)

≤
K∑
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H∑
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H∑
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Since Mk
h,V and Mk

h,Q are martingale difference which
bounded by 2H , then based on Lemma 24, we have the
following holds each with probability at least 1− δ,

K∑
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H∑
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h,V ≤ 2H

√
2T log(1/δ),

K∑
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H∑
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√
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where T = KH . Then the following holds with probability at
least 1− 2δ,
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(67)

Combining Eq (66) and Eq (67) and we have

V
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∗
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(
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(
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√
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APPENDIX F
ANALYSIS OF MNL-WEIGHTUCRL

A. Proof of Lemma 6

Proof. Based on Lemma 2 of [17], we know that∣∣∣[P̃khV ] (s, a)− [PkhV ] (s, a)∣∣∣
=

∣∣∣∣∣ ∑
s′∈Sk

h

pkh(ψ(s
′ | s, a)⊤w̃k

h)V (s′)

−
∑
s′∈Sk

h

pkh(ψ(s
′ | s, a)⊤wk

h)V (s′)

∣∣∣∣∣
≤ H max

s′∈Sk
h

∣∣ψ(s′ | s, a)⊤ (w̃k
h −wk

h

)∣∣ .
We first construct the following Lemma.

Lemma 19. For any x ∈ X , and δ ∈ (0, 1), ∀k, j ∈
[K], αk,j ≤ 1, with probability at least 1 − δ, the following
holds for all k ∈ [K], h ∈ [H]∣∣ψ(s′ | s, a)⊤ (w̃k

h −wk
h

)∣∣
≤ 1

κ

(
Γk−1
w + β̄k−1

w ∥ψ(s′ | s, a)∥(Σ̄k−1
h )
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)
.
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2
, and

β̄kw is the radius of confidence region set by
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2
log
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δ
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d

4
log
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+
√
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Then we have∣∣∣[P̃khV ] (s, a)− [PkhV ] (s, a)∣∣∣
≤ H
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,

where Γk−1
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√∑p
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,

β̄kw is the radius of confidence region set by

β̄kw ≜

√√√√1

2
log

1

δ
+
d

4
log

(
1 +

UL2
ψ

∑k
j=1 αk,j

λwd

)
+
√
λwκSw.
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Proof of Lemma 19. Fix h ∈ [H], based on the estimator (28),
we have

gkh(ŵ
k
h) = λwκŵ

k
h +

k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

pjh(ψ̄
j
h(s

′)⊤ŵk
h)ψ̄

j
h(s

′)

=

k−1∑
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αk−1,j

∑
s′∈Sj

h

yjh(s
′)ψ̄jh(s
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=
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∑
s′∈Sj

h

(
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j
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′)⊤wj
h) + ηjh(s

′)
)
ψ̄jh(s

′),

where we define ηjh(s
′) ≜ yjh(s

′)− pjh(ψ̄
j
h(s

′)⊤wj
h). Then by

the mean value theorem, we know that

gkh(w1)− gkh(w2) = Gkh(w1 −w2), (68)

where Gkh(w1 − w2) ≜
∫ 1

0
∇gkh (sw2 + (1− s)w1) ds ∈

Rd×d. Notice that for any w ∈ W , the gradient of gkh is
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Based on Lemma 5 of [17], we know that
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which clearly implies ∀w1,w2 ∈ W, Gkh(w1,w2) ⪰ κΣ̄k−1
h .

By Assumption 6, the mean value theorem (68) on gkh and the
projection (29), we have∣∣ψ(s′ | s, a)⊤ (w̃k
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we further have
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Then, by the Cauchy-Schwarz inequality, we know that for
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where
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The above two terms can be bounded separately, as summa-
rized in the following two lemmas,

Lemma 20. For any k ∈ [K], we have
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Based on the inequality (69), Lemma 20, Lemma 21, and
∥ψ(s′ | s, a)∥(Σ̄k−1

h )
−1 ≤ ∥ψ(s′ | s, a)∥2 /

√
λw ≤ Lψ/

√
λw,

with probability at least 1 − δ, the following holds for all
k ∈ [K], ∣∣ψ(s′ | s, a)⊤ (w̃k

h −wk
h

)∣∣
≤ 1

κ

(
Γk−1
w + β̄k−1

w ∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1

)
,

where

Γk−1
w ≜ L2

ψ

√
d

λw

k−1∑
p=1

√√√√ p∑
j=1

αk−1,j

∥∥∥wp
h −wp+1

h

∥∥∥
2

β̄k−1
w ≜

√√√√1

2
log

1

δ
+
d

4
log

(
1 +

UL2
ψ

∑k−1
j=1 αk−1,j

λwd

)
+
√
λwκSw,



34 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 1, NO. 1, DECEMBER 2025

which completes the proof.

Proof of Lemma 20. The first step is to extract the variations
of the parameter wk

h as follows,∥∥∥∥∥
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pjh(ψ̄
j
h(s

′)⊤w̄p
h)
∑
s′′∈Sj

h
pjh(ψ̄

j
h(s

′′)⊤w̄p
h). Then we have∥∥∥∥∥

k−1∑
p=1

p∑
j=1

αk−1,j

∑
s′∈Sj

h

(
pjh(ψ̄

j
h(s

′)⊤wp
h)

− pjh(ψ̄
j
h(s

′)⊤wp+1
h )

)
ψ̄jh(s

′)

∥∥∥∥∥
(Σ̄k−1

h )
−1

≤ Lψ

k−1∑
p=1

∥∥∥∥∥∥
p∑
j=1

αk−1,j

∑
s′∈Sj

h

∇pjh(ψ̄
j
h(s

′)⊤w̄p
h)ψ̄

j
h(s

′)

∥∥∥∥∥∥
(Σ̄k−1

h )
−1

·
∥∥∥wp

h −wp+1
h

∥∥∥
2

≤ Lψ

k−1∑
p=1

p∑
j=1

αk−1,j

∣∣∣∣∣∣
∑
s′∈Sj

h

∇pjh(ψ̄
j
h(s

′)⊤w̄p
h)

∣∣∣∣∣∣
·

∥∥∥∥∥max
s′∈Sj

h

ψ̄jh(s
′)

∥∥∥∥∥
(Σ̄k−1

h )
−1

∥∥∥wp
h −wp+1

h

∥∥∥
2

≤ Lψ

k−1∑
p=1

p∑
j=1

αk−1,j

∥∥∥∥∥max
s′∈Sj

h

ψ̄jh(s
′)

∥∥∥∥∥
(Σ̄k−1

h )
−1

∥∥∥wp
h −wp+1

h

∥∥∥
2
,

where the last inequality comes from the fact that∣∣∣∑s′∈Sj
h
∇pjh(ψ̄

j
h(s

′)⊤w̄p
h)
∣∣∣ ≤ 1. Further, for the term∑p

j=1 αk−1,j

∥∥∥maxs′∈Sj
h
ψ̄jh(s

′)
∥∥∥
(Σ̄k−1

h )
−1

can be able to fur-

ther derive an expression about weight αk−1,j as follows,

p∑
j=1

αk−1,j

∥∥∥∥∥max
s′∈Sj

h

ψ̄jh(s
′)

∥∥∥∥∥
(Σ̄k−1

h )
−1

≤

√√√√ p∑
j=1

αk−1,j

√√√√√ p∑
j=1

αk−1,j

∥∥∥∥∥max
s′∈Sj

h

ψ̄jh(s
′)

∥∥∥∥∥
2

(Σ̄k−1
h )

−1

≤

√√√√ p∑
j=1

αk−1,j

√√√√√ p∑
j=1

∑
s′∈Sj

h

αk−1,j

∥∥∥ψ̄jh(s′)∥∥∥2(Σ̄k−1
h )

−1

≤
√
d

√√√√ p∑
j=1

αk−1,j .

In above, the second last step holds by the Cauchy-Schwarz
inequality. Besides, the last step follows that

p∑
j=1

∑
s′∈Sj

h

αk−1,j

∥∥∥ψ̄jh(s′)∥∥∥2(Σ̄k−1
h )

−1

p∑
j=1

∑
s′∈Sj

h

Tr(αk−1,jψ̄
j
h(s

′)⊤
(
Σ̄k−1
h

)−1
ψ̄jh(s

′))

= Tr

(Σ̄k−1
h

)−1
p∑
j=1

∑
s′∈Sj

h

αk−1,jψ̄
j
h(s

′)ψ̄jh(s
′)⊤


≤ Tr

(Σ̄k−1
h

)−1
k−1∑
j=1

∑
s′∈Sj

h

αk−1,jψ̄
j
h(s

′)ψ̄jh(s
′)⊤


+Tr

(
U−1
t−1λ

d∑
i=1

eie
⊤
i

)
= Tr(Id) = d.

Hence we complete the proof.

Proof of Lemma 21.∥∥∥∥∥∥−λwκwk
h +

k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

ηjh(s
′)ψ̄jh(s

′)

∥∥∥∥∥∥
(Σ̄k−1

h )
−1
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≤

∥∥∥∥∥∥
k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

ηjh(s
′)ψ̄jh(s

′)

∥∥∥∥∥∥
(Σ̄k−1

h )
−1

+
∥∥λwκwk

h

∥∥
(Σ̄k−1

h )
−1

≤

∥∥∥∥∥∥
k−1∑
j=1

αk−1,j

∑
s′∈Sj

h

ηjh(s
′)ψ̄jh(s

′)

∥∥∥∥∥∥
(Σ̄k−1

h )
−1

+
√
λwκSw.

we define η̃j =
√
αk−1,jηj and Xj =

√
αk−1,jψ̄

j
h(s

′), then
we have notice that since the reward r ∈ [0, 1], and αk−1,j ≤
1, the noise η̃j is bounded by:

η̃j =
√
αk−1,j

(
yjh(s

′)− pjh(ψ̄
j
h(s

′)⊤wj
h)
)
≤ 1,

based on Lemma 23, we find that the noise η̃j is 1
2 -sub-

Gaussian. Then, by Theorem 7, we have with probability at
least 1− δ, the following holds for all k ∈ [K].∥∥∥∥∥∥
k−1∑
j=1

η̃jXj

∥∥∥∥∥∥
(Σ̄k−1

h )
−1

≤

√√√√1

2
log

(
det(Σ̄k−1

h )
1
2 det(Σ̄0

h)
− 1

2

δ

)

where

det(Σ̄k−1
h ) ≤

(
trace(Σ̄k−1

h )

d

)d

=

dλw +
∑k−1
j=1

∑
s′∈Sj

h
αk−1,j

∥∥∥ψ̄jh(s′)∥∥∥2
2

d


d

=

(
dλw + UL2

ψ

∑k−1
j=1 αk−1,j

d

)d
det(Σ̄0

h) ≤ (λw)d,

so we have∥∥∥∥∥∥
k−1∑
j=1

αk−1,jηjψ̄
j
h+1

(
sjh, a

j
h

)∥∥∥∥∥∥
(Σ̄k−1

h )
−1

≤

√√√√1

2
log

1

δ
+
d

4
log

(
1 +

UL2
ψ

∑k−1
j=1 αk−1,j

λwd

)
.

which completes the proof.

B. Proof of Theorem 6

Proof. To prove the theorem, we first introduce the following
lemma

Lemma 22. We define the model prediction error as

Ekh(s, a) = rkh(s, a) + PkhV̄ kh+1(s, a)− Q̄kh(s, a), (70)

then with probability at least 1 − 2δ, the following holds for
all k ∈ [K], h ∈ [H] and ∀s ∈ S, a ∈ A,

− Γk−1
h,θ − H

κ
Γk−1
h,w − 2βθ ∥ϕ(s, a)∥(Λk−1

h )
−1

− 2
H

κ
β̄k−1
w max

s′∈Sk
h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1 ≤ Ekh(s, a)

≤ Γk−1
h,θ +

H

κ
Γk−1
h,w .

And notice that ∀s ∈ S, a ∈ A,
∣∣Ekh(s, a)∣∣ ≤ 2H , we have

Eπk
∗,h

[
Ekh(s

k
h, a

k
h)
]
− Ekh(s

k
h, a

k
h)

≤ min

{
4H, 2Γk−1

h,θ + 2
H

κ
Γk−1
h,w + 2βθ

∥∥ϕ(skh, akh)∥∥(Λk−1
h )

−1

+ 2
H

κ
β̄k−1
w max

s′∈Sk
h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}
≤ 2Γk−1

h,θ + 2
H

κ
Γk−1
h,w +min

{
4H, 2βθ

∥∥ϕ(skh, akh)∥∥(Λk−1
h )

−1

}
+min

{
4H, 2

H

κ
β̄k−1
w max

s′∈Sk
h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}
≤ 2Γk−1

h,θ + 2
H

κ
Γk−1
h,w + 4Hβθmin

{
1,
∥∥ϕ(skh, akh)∥∥(Λk−1

h )
−1

}
+ 4

H

κ
β̄k−1
w min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}
,

By Lemma 18, we can further connect the dynamic regret to
the model prediction error, we have with probability at least
1− 4δ,

D-REGT ≤ 4Hβθ

K∑
k=1

H∑
h=1

min
{
1,
∥∥ϕ(skh, akh)∥∥(Λk−1

h )
−1

}
︸ ︷︷ ︸

variance part1

+ 4
H

κ

K∑
k=1

H∑
h=1

β̄k−1
w min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}
︸ ︷︷ ︸

variance part2

+ 2

K∑
k=1

H∑
h=1

Γk−1
h,θ + 2

H

κ

K∑
k=1

H∑
h=1

Γk−1
h,w︸ ︷︷ ︸

bias part

+4H
√

2T log(1/δ).

Bias. Now we set wk,j = γk−j , γ ∈ (0, 1), same as Eq (62),

we have

2

K∑
k=1

H∑
h=1

Γk−1
h,θ ≤ 4L2

ϕ

√
d

λθ

1

(1− γ)3/2

K−1∑
p=1

H∑
h=1

∥∥∥θph − θp+1
h

∥∥∥
2
,

then we set αk,j = γk−j , γ ∈ (0, 1), similar to Eq (63), we
have

2
H

κ

K∑
k=1

H∑
h=1

Γk−1
h,w

≤ 4
H

κ
L2
ψ

√
d

λw

1

(1− γ)3/2

K−1∑
p=1

H∑
h=1

∥∥∥wp
h −wp+1

h

∥∥∥
2
,

Variance. Same as Eq (64), we have

4Hβθ

K∑
k=1

H∑
h=1

min
{
1,
∥∥ϕ(skh, akh)∥∥(Λk−1

h )
−1

}

≤ 4Hβθ
√
KH

√√√√H2d

(
K log

1

γ
+ log

(
1 +

L2
ϕ

λθd(1− γ)

))
.
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For the second term,

4
H

κ

K∑
k=1

H∑
h=1

β̄k−1
w min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}

≤ 4
H

κ
β̄Kw

K∑
k=1

H∑
h=1

min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}

≤ 4
H2

κ
β̄Kw

√
K

√√√√ K∑
k=1

min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥2(Σ̄k−1
h )

−1

}

≤ 4
H2

κ
β̄Kw

√
K

√√√√√ K∑
k=1

min

1,
∑
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥2(Σ̄k−1
h )

−1

.
Based on the Lemma 9 (Potential Lemma), we know that ∀h ∈
[H], we have

K∑
k=1

min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥2(Σ̄k−1
h )

−1

}

≤ 2d

(
K log

1

γ
+ log

(
1 +

UL2
ψ

λwd(1− γ)

))
,

so we have

4
H

κ

K∑
k=1

H∑
h=1

β̄k−1
w min

{
1, max
s′∈Sk

h

∥∥ψ(s′ | skh, akh)∥∥(Σ̄k−1
h )

−1

}

≤ 4
H2

κ
β̄Kw

√
K

√√√√2d

(
K log

1

γ
+ log

(
1 +

UL2
ψ

λwd(1− γ)

))
.

Since there is a term HK
√
log(1/γ) in the regret bound,

we cannot let γ close to 0 , so we set γ ≥ 1/K and have
log(1/γ) ≤ C(1 − γ), where C = logK/(1 − 1/K). We set
λθ = d, and λw = d. Combining the upper bounds of the bias
and variance parts and with confidence level δ = 1/(4T ), by
union bound we have the following dynamic regret bound with
probability at least 1− 1/T ,

D-REGT ≤ O

(
1

(1− γ)3/2
P θT +

H

κ

1

(1− γ)3/2
Pw
T

+ dH2K
√
1− γ +

dH2K

κ

√
1− γ +H3/2d

√
HK

)

≤ O
(
Hd

κ

(
1

(1− γ)3/2
∆+HK

√
1− γ

)
+H3/2d

√
HK

)
.

Furthermore, by setting the discounted factor optimally as γ =

1−max
{
1/K,

√
∆/T

}
, we have

D-REGT ≤

{
Õ
(
κ−1Hd∆1/4T 3/4

)
when ∆ ≥ H/K,

Õ
(
κ−1dH3/2

√
T
)

when ∆ < H/K.

Proof of Lemma 22. We first consider the upper bound of Ekh ,
based on the definition of Q̄kh (26) and model assumption (22)
and Eq. (24), we have ∀a ∈ A, s ∈ S,

rkh(s, a) +
[
PkhV̄ kh+1

]
(s, a)− Q̄kh(s, a)

= rkh(s, a) +
[
PkhV̄ kh+1

]
(s, a)− ϕ(s, a)⊤θ̂kh

− βθ ∥ϕ(s, a)∥(Λk−1
h )

−1 − [P̃khV̄ kh+1](s, a)

− H

κ
β̄k−1
w max

s′∈Sk
h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1

= ϕ(s, a)⊤
(
θkh − θ̂kh

)
− βθ ∥ϕ(s, a)∥(Λk−1

h )
−1

+
([

PkhV̄ kh+1

]
(s, a)−

[
P̃khV̄ kh+1

]
(s, a)

)
− H

κ
β̄k−1
w max

s′∈Sk
h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1

≤ Γk−1
h,θ +

H

κ
Γk−1
h,w ,

where the last inequality comes from Lemma 4 and Lemma 6.
Similarly, we can get the lower bound of Ekh , ∀a ∈ A, s ∈ S,

Q̄kh(s, a)− rkh(s, a)−
[
PkhV̄ kh+1

]
(s, a)

= ϕ(s, a)⊤θ̂kh + βθ ∥ϕ(s, a)∥(Λk−1
h )

−1 + [P̃khV̄ kh+1](s, a)

+
H

κ
β̄k−1
w max

s′∈Sk
h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1

− rkh(s, a)−
[
PkhV̄ kh+1

]
(s, a)

= ϕ(s, a)⊤
(
θ̂kh − θkh

)
+
([

P̃khV̄ kh+1

]
(s, a)−

[
PkhV̄ kh+1

]
(s, a)

)
+ βθ ∥ϕ(s, a)∥(Λk−1

h )
−1

+
H

κ
β̄k−1
w max

s′∈Sk
h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1

≤ Γk−1
h,θ +

H

κ
Γk−1
h,w + 2βθ ∥ϕ(s, a)∥(Λk−1

h )
−1

+ 2
H

κ
β̄k−1
w max

s′∈Sk
h

∥ψ(s′ | s, a)∥(Σ̄k−1
h )

−1 ,

thus completes the proof.

APPENDIX G
TECHNICAL LEMMAS

In this section, we provide several useful lemmas, mainly
about concentrations, and some derivatives of self-concordant
property.

A. Concentration inequalities

Lemma 23 (Hoeffding’s Lemma). Let Z be a real random
variable such that Z ∈ [a, b] almost surely. Then

∀λ ∈ R E
[
eλ(Z−E[Z])

]
≤ exp

(
λ2(b− a)2

8

)
,

or variable (Z − E[Z]) is (b−a)
2 -sub-Gaussian.

Lemma 24 (Azuma-Hoeffding inequality). Let M > 0 be
a constant. Let {xi}ni=1 be a martingale difference sequence
with respect to a filtration {Gi}i (E [xi | Gi] = 0 a.s. and xi
is Gi+1-measurable) such that for all i ∈ [n], |xi| ≤M holds
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almost surely. Then, for any 0 < δ < 1, with probability at
least 1− δ, we have

n∑
i=1

xi ≤M
√

2n log(1/δ).

Theorem 7 (Self-normalized concentration inequality for lin-
ear bandits [32, Theorem 1]). Let {Ft}∞t=0 be a filtration.
Let {ηt}∞t=0 be a real-valued stochastic process such that ηt
is Ft-measurable and ηt is conditionally R-sub-Gaussian for
some R ≥ 0 i.e., ∀λ ∈ R, E

[
eληt | Ft−1

]
≤ exp(λ

2R2

2 ). Let
{Xt}∞t=1 be an Rd-valued stochastic process such that Xt is
Ft−1-measurable. Assume that V is a d × d positive definite
matrix. For any t ≥ 0, define

Vt = V0 +

t∑
s=1

XsX
⊤
s , St =

t∑
s=1

ηsXs.

Then, for any δ > 0, with probability at least 1 − δ, for all
t ≥ 0,

∥St∥V −1
t

≤

√√√√2R2 log

(
det(Vt)

1
2 det(V0)−

1
2

δ

)
.

Theorem 8 (Self-normalized concentration inequality for self-
-concordant bandits [33, Theorem 1]). Let {Ft}∞t=0 be a
filtration. Let {ηt}∞t=0 be a martingale difference sequence
such that ηt is Ft measurable. Let {Xt}∞t=0 be a stochas-
tic process on Rd such that Xt is Ft−1 measurable and
∥Xt∥2 ≤ 1. Furthermore, assume that conditionally on Ft
we have |ηt| ≤ 1 a.s., and denote σ2

t = E
[
η2t | Ft−1

]
. For

any t ≥ 0, define

Ht =

t∑
s=1

σ2
sXsX

⊤
s + λId, St =

t∑
s=1

ηsXs,

with λ > 0. Then, for any δ > 0, with probability at least
1− δ, for all t ≥ 0,

∥St∥H−1
t

≤
√
λ

2
+

2√
λ
log

(
det (Ht)

1/2

δλd/2

)
+

2√
λ
d log(2).

Lemma 25. Suppose U0 = λId, Ut = Ut−1 + AtA
⊤
t , and

At ∈ Rd, then

∀p ∈ [t− 1],

p∑
s=1

∥As∥2U−1
t−1

≤ d. (71)

Proof of Lemma 25.
p∑
s=1

∥As∥2U−1
t−1

=

p∑
s=1

Tr(A⊤
s U

−1
t−1As) = Tr

(
U−1
t−1

p∑
s=1

AsA
⊤
s

)
≤ Tr

(
U−1
t−1

p∑
s=1

AsA
⊤
s

)
+Tr

(
U−1
t−1

t−1∑
s=p+1

AsA
⊤
s

)
+Tr

(
U−1
t−1λ

d∑
i=1

eie
⊤
i

)
= Tr(Id) = d.

Lemma 26 (Determinant inequality). We let the Vt =∑t
s=1 wt,sXsX

⊤
s + λId, V0 = λId. Assume ∥x∥2 ≤ L and

we have,

det(Vt) ≤

(
λ+

L2
∑t
s=1 wt,s
d

)d
.

Proof. Now we have Vt =
∑t
s=1 wt,sXsX

⊤
s + λId, take the

trace on both sides, and get the upper bound of Tr(Vt)

Tr(Vt) = Tr(λId) +

t∑
s=1

wt,sTr
(
XsX

⊤
s

)
= λd+

t∑
s=1

wt,s∥Xs∥22 ≤ λd+ L2
t∑

s=1

wt,s.

(72)

Base on the definition of determinant and the upper bound of
Tr(Vt) (72), we can get the upper bound for det(Vt),

det(Vt) =

d∏
i=1

λi ≤

(∑d
i=1 λi
d

)d
=

(
Tr(Vt)

d

)d

≤

(
λ+

L2
∑t
s=1 wt,s
d

)d
.

B. Self-Concordant Properties

Based on the generalized self-concordant property of the
(inverse) link function µ(·), we have the following lemma,
which will be later used to derive Lemma 28.

Lemma 27 (Lemma 9 of [33]). For any z1, z2 ∈ R, we have
the following inequality:

µ′(z1)
1− exp(−|z1 − z2|)

|z1 − z2|
≤
∫ 1

0

µ′(z1 + v(z2 − z1))dv

≤ µ′(z1)
exp(|z1 − z2|)− 1

|z1 − z2|
.

Furthermore,
∫ 1

0
µ′(z1 + v(z2 − z1))dv ≥ µ′(z1)(1 + |z1 −

z2|)−1.

The following lemma provides a weighted version of
Lemma 10 of [33] which can be easily proven.

Lemma 28. With Gt defined in (49) and Ht defined in (50),
the following inequalities hold

∀θ1, θ2 ∈ Θ, Gt(θ1, θ2) ≥ (1 + 2S)−1Ht(θ1),

Gt(θ1, θ2) ≥ (1 + 2S)−1Ht(θ2).

Lemma 29 (Lemma 7 of [36]). Denote by Li the abso-
lute value of cumulative rewards for episode i, i.e., Li ≜∣∣∣∑i∆

t=(i−1)∆+1 rt (Xt)
∣∣∣, then

Pr

[
∀i ∈ [⌈T/∆⌉], Li ≤ LS∆+ 2R

√
∆ ln

T√
∆

]
≥ 1− 2

T
.
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APPENDIX H
BANDITS OVER BANDITS

A. BOB Algorithm

We divide the T rounds into equal-length episodes of
size ∆, such that ∆ = ⌈d

√
T ⌉. In each episode, we run

LB-WeightUCB with different discounted factors γ. Specif-
ically, the γ comes from the candidate set W ,

W =
{
γi = 1− d−

1
2 21−i | i ∈ [N ]

}
, (73)

where N = ⌈log2(T/
√
d)⌉ + 1 is the number of candidate

values, and recall that S is the upper bound on the norm of
the underlying regression parameters.

To adaptively select the optimal γ, we model the selection
procedure as an adversarial bandit problem. In this formu-
lation, each step corresponds to one episode of length ∆,
such that has total ⌈T/∆⌉ rounds. At each step, a bandit
algorithm selects a γ from the candidate set W , observes the
cumulative reward from the LB-WeightUCB with correspond-
ing discounted factor, and uses it as feedback to update its
selection strategy.

Let γmin (γmax) be the minimal (maximal) discounted factor
in the candidate set W , then it is evident to verify that

γmin = 1− 1√
d
, 1 > γmax ≥ 1− 1

T
.

B. Regret Analysis

Theorem 9. LB-WeightUCB without the knowledge of path-
length PT , together with Bandits-over-Bandits mechanism
satisfies with probability at least 1− 3/T ,

D-REGT =

T∑
t=1

max
x∈X

x⊤θt −
T∑
t=1

X⊤
t θt = Õ

(
d

3/4P
1/4
T T

3/4
)
.

Proof of Theorem 9. We begin by decomposing the dynamic
regret. Let X∗

t ≜ argmaxx∈X x⊤θt and we have

D-REGT =

T∑
t=1

(
X∗⊤
t θt −X⊤

t θt
)

=

T∑
t=1

X∗⊤
t θt −

⌈T/∆⌉∑
i=1

i∆∑
t=(i−1)∆+1

X γ̃∗⊤
t θt︸ ︷︷ ︸

base-regret

+

⌈T/∆⌉∑
i=1

i∆∑
t=(i−1)∆+1

(
X γ̃∗⊤
t θt −Xγi⊤

t θt

)
︸ ︷︷ ︸

meta-regret

,

where γ̃∗ is the best discounted factor in the candidate set
to approximate the optimal discounted factor γ∗ = 1 −
max{1/T,

√
PT /(dT )}.

Base-regret. Based on (37), and the union bound, we have
with probability at least 1− 2Nδ,

base-regret =

T∑
t=1

X∗⊤
t θt −

⌈T/∆⌉∑
i=1

i∆∑
t=(i−1)∆+1

X γ̃∗⊤
t θt

≤
⌈T/∆⌉∑
i=1

Õ
(

1

(1− γ̃∗)3/2
Pi + d(1− γ̃∗)

1/2∆

)
≤ Õ

(
1

(1− γ̃∗)3/2
PT + d(1− γ̃∗)

1/2T

)
≤ Õ

(
1

23/2(1− γ∗)3/2
PT + d(1− γ∗)

1/2T

)
≤ Õ(d

3/4P
1/4
T T

3/4). (74)

We know that γ∗ = 1−max{1/T,
√
PT /(dT )} is the optimal

discounted factor. Since γ∗ ∈ [γmin, γmax], the candidate set
W covers γ∗. Furthermore, due to the geometric spacing of
W , there exists some γ̃∗ ∈ W such that

1− γ̃∗ ≤ 1− γ∗ ≤ 2(1− γ̃∗).

Meta-regret. The analysis of meta-regret follows the proof for
window-based algorithm [52, Proposition 1].

meta-regret

=

⌈T/∆⌉∑
i=1

i∆∑
t=(i−1)∆+1

(
X γ̃∗⊤
t θt −Xγi⊤

t θt

)

=

⌈T/∆⌉∑
i=1

i∆∑
t=(i−1)∆+1

(
X γ̃∗⊤
t θt + ηt −Xγi⊤

t θt − ηt

)

=

⌈T/∆⌉∑
i=1

i∆∑
t=(i−1)∆+1

(
rγ̃

∗

t − rγit

)

=

⌈T/∆⌉∑
i=1

(
Lγ̃

∗

i − Lγii

)
,

Based on Lemma 29, we know that with probability at least
1 − 2

T , we have ∀i ∈ [⌈T/∆⌉], Li ≤ LS∆ + 2R
√
∆ ln T√

∆

we define Lmax ≜ LS∆ + 2R
√
∆ ln T√

∆
. We choose

Exp3.IX [53] as the meta algorithm. Then we have with
probability at least 1− δ,

⌈T/∆⌉∑
i=1

(
Lγ̃

∗

i − Lγii

)
= Õ

(
Lmax

√
T

∆
N

)
= Õ

(√
∆TN

)
= d

1/2T
3/4.

(75)

Combining the upper bounds of base-regret (74) and meta-
regret (75), by the union bound, and let δ = 1

(2N+1)T , we
have with probability at least 1− 3/T ,

D-REGT = Õ
(
d

3/4P
1/4
T T

3/4 + d
1/2T

3/4
)
.

Thus we complete the proof.
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[4] Y. Russac, O. Cappé, and A. Garivier, “Algorithms for non-stationary
generalized linear bandits,” ArXiv preprint, vol. arXiv:2003.10113, 2020.

[5] B. Kim and A. Tewari, “Randomized exploration for non-stationary
stochastic linear bandits,” in Proceedings of the 36th Conference on
Uncertainty in Artificial Intelligence (UAI), 2020, pp. 71–80.

[6] L. Faury, Y. Russac, M. Abeille, and C. Calauzènes, “Regret bounds for
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