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laureate Edgar F. Codd [2 ]: ‘in order 
to exploit fully a fast computer... the 
construction of a schedule entails de- 
termining which programs are to be run 
concurrently and which sequentially with 
respect to each other... tends to minimize 
the time for executing the entire pending 
workload, subject to external constraints 
such as precedence, urgency, etc.’ with 
a scheduling mechanism executing each 
program in some order, for some time, 
not necessarily to completion. 

We believe that the concerns of time- 
sharing computational resources should 
be taken into account in machine learn- 
ing theories. On the one hand, users wish 
to get the result of training a satisfac- 
tory model within a certain time bud- 
get; this corresponds to user efficiency. 
On the other hand, computational re- 
sources should be wisely exploited; this 
corresponds to hardware efficiency. A 
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learning theory with time-sharing com- 
putational resource concerns wi l l not as- 
sume that all received data can be handled 
in time, where scheduling is crucial. 

For this purpose, we define ‘computa- 
tional resource efficient learning’ (CoRE 

learning) and present a theoretical frame- 
work. 

First, we introduce the notion of ma- 
chine learning throughput . Throughput is 
a basic concept in computer networking, 
defined as the amount of data per second 
that can be transferred [3 ]; it is also used 
in database systems to measure the av- 
erage number of transactions completed 
within a given time [4 ]. The introduction 
of throughput enables us to theoretically 
formulate the influence of computational 
resource and scheduling at an abstract 
level. 

Our proposed machine learning 
throughput involves two components. 
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onventional machine learning theories 
enerally assume explicitly or implicitly 
hat there are enough or even infinitely 
upplied computational resources such 
hat all received data can be handled . In real 
ractice, however, this is not the case. For 
xample, in stream learning the incoming 
ata streams can be potentially endless 
ith overwhelming size and it is imprac- 
ical to assume that all received data can 
e handled in time. Indeed, the perfor- 
ance of machine learning depends not 
nly on how many data have been re- 
eived, but also on how many data can 
e handled subject to the computational 
esource available; this is beyond the 
onsideration of conventional learning 
heories. 
Current ‘intelligent supercomputing’ 

acilities generally work in an exclusive 
ay: a user is allocated a pre-set amount 
f resources to run her machine learn- 
ng task. Because the amount is pre-set, 
t can be too optimistic such that the 
ask could not complete, or too pes- 
imistic such that fewer resources are re- 
lly needed and some resources should 
ave been allocated to other users. This 
ooks like early computer systems that 
ere only able to serve a single user 
rogram. With great effort of computer 
cience pioneers, our computer systems 
re able to provide reasonable service to 
ach program, where the key technique is 
ime-sharing . 
Time-sharing has two meanings 

ccording to Turing award laureate Fer- 
ando J. Corbató [1 ]. One is concerned 
ith user efficiency , trying to help a user 
et a fast response from the system. 
he other is concerned with hardware 

fficiency . As explained by Turing award Figure 1. Illustrations of CoRE learning. 
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he first component is data throughput . 
s i l lustrated in Fig. 1 a, data throughput 
epresents the percentage of data that can 
e learned per time unit . For example, 
alf of the received data can be timely 
xploited in the time unit t0 ∼ t1 in 
ig. 1 a, corresponding to a data through- 
ut η = 50% . In the time unit t1 ∼ t2 , 
he data volume doubles such that only 
5% of received data can be timely 
xploited with current resource, and, 
hus, η becomes 25% . In the time unit 
2 ∼ t3 , the resource doubles such that 
becomes 50% again. It is evident that 

he influence of data volume as well as 
he computational resource budget can 
e involved by introducing the notion of 
ata throughput into machine learning 
tudies. The above discussion does not 
ake into account the fact that the diffi- 
ulty of learning from the data may vary 
ince unknown changes may occur; this 
s related to open-environment machine 
earning [5 ], which can be explored in 
urther studies. 
We call a machine learning task re- 

eived by the supercomputing facility as 
 thread . It is associated with two time 
oints: a beginning time and a dead- 
ine time, specifying the lifespan of the 
hread. If the thread can be well learned 
i.e. the performance reaches user’s de- 
ands) within its timespan, we call it a 
uccessful thread , and a failure thread oth- 
rwise. Note that if we set the deadline 
ime according to user’s learning rapid- 
ty requirement about the thread then a 
hread is successful if a satisfactory model 
an be learned within our given time 
udget. 
Now, we introduce the second com- 

onent of machine learning throughput, 
.e. thread throughput , defined as the per- 
entage of threads that can be learned well in 
 time period , calculated by the percentage 
f successful threads in all threads during 
hat time period. As i l lustrated in Fig. 1 b, 
he thread throughput is κ = 60% . 
Let S = ({Tk }K k=1 , { Nt }T t=1 ) denote a 

ask bundle , i.e. a set of task threads dur- 
ng the concerned time period, where 
k = (Dk , bk , dk ) denotes the kth thread 
ith data distribution Dk , beginning time 
k and deadline time dk . Here Nt is the 
mount of data that can be handled at 
ime t given the total budget of the com- 
utational resource; K is the total num- 
er of threads in the task bundle and T is 
he total number of time slots. Note that if 
i = b j (for all i � = j) then all task threads 
rrive at the same time. 
A learning algorithm L receives 
as input. Algorithm L wi l l out- 

ut { (sk , Mk ) }K k=1 , where sk is the 
witching time determined by the 
lgorithm and Mk is the learned 
odel for the kth thread. We use 
t to denote the set of alive threads, 
.e. At = { k | bk ≤ t ≤ dk and k ∈ [ K] } . 
he learning process proceeds as follows. 

1: for time t = 1 , . . . , T , the learner 
do ; 

2: collects at most ηk,t Nt samples for 
thread k ∈ At , where ηk,t is the data 
throughput for thread k at time t ; 

3: updates model Mk for thread k; 
4: if thread k completes, set sk ← t ; 
5: end for . 

Now we introduce ‘CoRE learnabil- 
ty’, with η and κ denoting data through- 
ut and thread throughput, respectively. 

Definition 1 ( (η, κ, L ) -CoRE 

earnability ) . A task bundle S = 

{Tk }K k=1 , { Nt }T t=1 ) is (η, κ, L ) -CoRE 
earnable if there exists a computational 
esource scheduling strategy ψ that enables 
 to output { (sk , Mk ) }K k=1 , running in 
olynomial time in 1 /ε and 1 /δ such that, 
or some small ε and δ, with probability at 
east 1 − δ, 

1) for all t ∈ [ T ] , 
∑ 

k∈ At 
ηk,t ≤ η; 

2) | Isucc | ≥ κK, 
(2a) sk ≤ dk for all k ∈ Isucc , 
(2b) Rk (Mk ) ≤ ε for all k ∈ Isucc , 

here Isucc (or Ifail ) is the set of successful 
or failure) threads, Isucc ∩ Ifail = ∅ , Isucc ∪ 

fail = [ K] . 

Condition (1) concerns data through- 
ut, constraining that the overall resource 
uota of threads in the alive set never 
xceeds the maximum resource budget. 
ondition (2) concerns thread through- 
ut, demanding the scheduling strat- 
gy ψ to enable L to learn as many 
hreads well as possible: the learning of 
he thread should be completed before 
he deadline, as indicated by condition 
2a); and the learning performance of 
he thread should be within a small er- 
Page 2 of 3
or level, as indicated by condition (2b). 
he learning performance is measured by 
k : Hk �→ R , and Rk (Mk ) ≤ ε evalu- 
tes whether the learning performance is 
cceptable according to a predetermined 
when the algorithm exploits data re- 
eived in the time slot (bk , sk ) and com- 
letes learning by the time point sk . Note 
hat condition (1) is related to user ef- 
ciency, while condition (2) is related 
o hardware efficiency; the scheduling 
trategy should balance the two aspects 
arefully. 
The CoRE-learnability definition em- 

loys an (ε, δ) language similar to the 
robably approximately correct (PAC) 
earning theory [6 ]. It is worth noting 
owever that PAC learning theory fo- 
uses on learning from data sampled from 

n underlying data distribution, assum- 
ng that all training data can be exploited 
n time; thus, it allows for an arbitrar- 
 ly smal l error ε and an arbitrarily high 
onfidence 1 − δ given that the num- 
er of samples is sufficiently large (but 
an sti l l be wel l exploited in time). In
ontrast, CoRE-learning theory consid- 
rs the influence of the resource schedul- 
ng strategy ψ , and demands only accept- 
ble (ε, δ) for L with (η, κ) throughput 
oncerns. 
Figure 1 c presents an i l lustration, 

here the task bundle consists of K = 5 
hreads. For simplicity, assume that 
n each time unit Nt = N = 64 data 
nits can be handled. Note that CoRE 

earning allows the beginning time bk 
nd deadline time dk of the task thread 
k = (Dk , bk , dk ) to be any real value, 
hile in this figure we assume that they 
re rounded up for a better i l lustration. 
or a given algorithm L , the task bundle 
s (0 . 5 , 0 . 6 , L ) -CoRE learnable, because
here exists a scheduling strategy ψ that 
nables L to successfully learn three 
ut of the total five threads given a data 
hroughput η = 50% . As Fig. 1 c shows, 
allocates resources that can handle 

N = 32 data units equally to threads 
 and 3 in t0 ∼ t1 . Thread 1 continues 
o receive resources that can handle 16 
ata units until it completes at t3 ; the 
emaining resources that can handle 16 
ata units are allocated to threads 2 and 
 equally in t1 ∼ t3 . In t3 ∼ t4 threads 
 and 3 each receive resources that can 
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andle eight more data units because 
hread 1 does not require anymore re- 
ource. Thread 4 comes at t4 , while ψ
ecides to al locate al l resources to threads 
 and 4 as it feels pessimistic about thread 
. At t5 , thread 5 comes, and because 
ts lifespan is quite short, ψ decides to 
llocate it as many resources as possible, 
ntil the learning of thread 5 fails at t7 . At 
6 , ψ feels very optimistic about thread 3, 
nd therefore it decides to give it all the 
emaining resources, at the cost of sacri- 
cing thread 4 temporarily. At t7 there are 
nly threads 2 and 4 alive. Finally, threads 
 and 5 fail for different reasons: thread 
 fails because of unsatisfactory learning 
erformance, violating condition (2b), 
hereas thread 5 fails to complete before 
he deadline, violating condition (2a). 
The resource scheduling strategy ψ

s able to allocate resources adaptively, 
ased on perceiving the learning status 
nd foreseeing the learning progress of 
he threads. Intuitively, if L is based on 
radient calculation, then the allocation 
f more computational resources to a 
ask implies that more gradient calcu- 
ations can be executed for that task. 
s Fig. 1 d i l lustrates, assume that the 
wo task threads are allocated the same 
mount of resources initially. At iteration 
1 , ψ perceives that thread 1 arrives at 
 flat convergence area where its error 
as not significantly dropped during the 
ast five rounds of gradient calculation, 
hereas thread 2 goes into a slope area 
ith a faster error drop. Then, ψ de- 
ides to reduce the resources for thread 1 
nd reallocates them to thread 2. At the 
nal iteration τ3 , thread 2 reaches sta- 
us b rather than b′ , with the sacrifice of 
hread 1 that reaches status a rather than 
′ , leading to a better overall throughput 
f 0.5 (i.e. thread 2 is judged to be suc- 
essful according to threshold ε0 ) rather 
han 0.0 (i.e. neither threads reach ε0 if 
he computational resources continue to 
The Author(s) 2024. Published by Oxford University Press on
ommons Attribution License ( https://creativecommons.org/l
ork is properly cited. 
e evenly allocated). Indeed, even if one 
onsiders another definition for thread 
hroughput, such as defining it accord- 
ng to the average error, the helpfulness 
f ψ is sti l l visible from the improve- 
ent from (εa′ + εb′ ) / 2 to (εa + εb ) / 2 . 
erely maximizing thread throughput 
ay lead ψ to prefer learning easier 
hreads; this can be repaired by assigning 
riority or importance weights to threads 
hen needed. 
The CoRE learning discussed in this 

rticle enables the influence and schedul- 
ng of computational resources be taken 
nto account in learning theory. One of 
he fundamental goals is to, by introduc- 
ng scheduling , enable computational re- 
ources for machine learning to be used in 
 time-sharing style rather than the current 
lusive style. For example, even though 
he scaling law in training large language 
odels is well known, resources used to 
rain such models are sti l l used in an elu- 
ive way, leading to big waste because it is 
ard to pre-set a just-right amount. Dis- 
ributed machine learning [7 ] tries to par- 
ition a learning task for distributed com- 
uting, where at each distributed site the 
esource is sti l l exploited in an elusive 
ay with a pre-set amount of resources, 
nd the focus is on how to minimize the 
ommunication cost and guarantee the 
onvergence by adequately synchroniz- 
ng calculations. 
Note that resource scheduling in ma- 

hine learning is very different from that 
n other fields such as computer systems 
nd databases. For example, the amount 
f resources required for accomplishing a 
ask in computer systems and databases 
s generally known once the task is re- 
eived, whereas in machine learning this 
nformation is unknown and can only 
e estimated by spying on the learning 
rocess online. This raises new research 
ssues that might have been overlooked 
efore, such as how to govern a ma- 
 behalf of China Science Publishing & Media Ltd. This is an Ope
icenses/by/4.0/), which permits unrestricted reuse, distributio
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hine learning process and estimate its 
tatus and progress online effectively and 
fficiently. It is even more complicated 
hen noticing that the online govern- 
ng and status estimation require commu- 
ication and computational resources. 
hus, CoRE learning naturally involves 
n ex ploration-ex ploitation balance with 
esource scheduling. CoRE learnability of 
oncrete CoRE-learning algorithms can 
e proved once such algorithms are devel- 
ped. 
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