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Abstract

Matrix concentration inequalities have attracted much
attention in diverse applications such as linear algebra,
statistical estimation, combinatorial optimization, etc.
In this paper, we present new Bernstein concentration
inequalities depending only on the first moments of ran-
dom matrices, whereas previous Bernstein inequalities
are heavily relevant to the first and second moments.
Based on those results, we analyze the empirical risk
minimization in the presence of label noise. We find that
many popular losses used in risk minimization can be
decomposed into two parts, where the first part won’t
be affected and only the second part will be affected by
noisy labels. We show that the influence of noisy labels
on the second part can be reduced by our proposed LICS
(Labeled Instance Centroid Smoothing) approach. The
effectiveness of the LICS algorithm is justified both the-
oretically and empirically.

Introduction
Matrix concentration inequalities measure the spectral-norm
deviation of a random matrix to its expected mean, and rele-
vant researches have attracted much attention in diverse ap-
plications such as statistical estimation (Koltchinskii 2011),
linear algebra (Tropp 2011), combinatorial optimization (So
2011), matrix completion (Recht 2011) etc. Various tech-
niques have been developed to study the sum of indepen-
dent random matrices and matrix martingales (Tropp 2011;
2012; Hsu, Kakade, and Zhang 2012; Mackey et al. 2014).
Tropp (2015) made a comprehensive introduction on matrix
concentration inequalities.

Empirical risk minimization (Vapnik 1998) has been a
popular methodology in diverse learning tasks such as re-
gression, classification, density estimation, etc. In many real
applications, the training data often contain noisy labels,
e.g., a document may be mis-classified manually due to hu-
man error or bias, a doctor may make incorrect diagnoses for
patients because of his knowledge and experience, a spanner
can manipulate the data to mislead the outcome of span-filter
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systems, etc. Generally speaking, an empirical risk mini-
mization procedure may be misled by noisy labels. For ex-
ample, the random noise (Long and Servedio 2010) defeats
all convex potential boosters, and support vector machines
(SVMs) tend to overfit for noisy labels. It is important to
develop effective approaches to make sure that the learning
procedure is not misled by noisy data.

In this paper, we first present new matrix Bernstein con-
centration inequalities depending only on the first moments
of random matrices, while previous Bernstein inequalities
are heavily relevant to the first and second moments. We
further present dimension-free concentration inequalities,
which can be used for infinite-dimension matrices. Our new
concentration inequalities show tighter bounds for small
spectral norm on the first moments of random matrices.

As an application, we utilize new matrix Bernstein con-
centration inequalities to study the risk minimization of bi-
nary classification in the presence of random label noise
(also called random classification noise). Specifically, the
training labels have been flipped with some certain proba-
bility instead of seeing true labels. We consider the empiri-
cal risk minimization of decomposable losses such as least
square loss, logistic loss, etc. The advantage of using such
losses is that we can divide empirical risks into two parts,
where the first part won’t be affected and only the second
part will be affected by noisy labels. Further, the risk min-
imization in the presence of label noise can be converted
to the estimation of the statistics labeled instance centroid.
We prove that label noise can increase the covariance of la-
beled instance centroid, or even cause heavy-tailed distribu-
tion, which makes noisy tasks difficult to learn. We propose
the Labeled Instance Centroid Smoothing (LICS) approach
to reduce the influence of noisy labels through incorporating
labeled instance centroid and its covariance. The effective-
ness of LICS is justified both theoretically and empirically.

Related Work
Ahlswede and Winter (2002) possibly proved the first Cher-
noff concentration inequalities for matrix trace, and sim-
ilar techniques has been adapted for Bernstein concentra-
tion inequalities (Oliveira 2010; Gross 2011). Tropp (2011;
2012; 2015) made fundamental concentration inequalities
for random matrices due to (Lieb 1973, Theorem 6). Hsu,
Kakade, and Zhang (2012) presented dimension-free con-



centration inequalities, where the explicit matrix dimension
is replaced by trace quantity. Mackey et al. (2014) derived
new exponential concentration inequalities based on the
scalar concentration (Chatterjee 2007) via Stein’s method of
exchangeable pairs.

Angluin and Laird (1988) first proposed the random noise
model, and the sample complexity of noise-tolerant learn-
ing was studied in (Cesa-Bianchi et al. 1999). Ben-David,
Pál, and Shalev-Shwartz (2009) proved that the Little-Stone
dimension characterizes the learnability of the online noise
learning model. Kearns (1993) introduced the famous statis-
tical query (SQ) model, and Bshouty et al. (1998) presented
a SQ algorithm to learn a geometric class in noise-tolerant
and distribution-free classification.

Many online approaches have been developed to deal
with noise labels, e.g., linear threshold learning (Bylan-
der 1994), passive-aggressive perceptrons (Crammer et al.
2006), confidence-weighted learning (Dredze, Crammer,
and Pereira 2008), AROW (Crammer, Kulesza, and Mark
2009), etc. Various non-convex risk minimizations (Xu,
Crammer, and Schuurmans 2006; Masnadi-Shirazi and Vas-
concelos 2009; 2009; Freund 2009; Denchev et al. 2012)
have been developed for noisy labels, and more relevant
work can be found in (Frénay and Verleysen 2014). Most of
them, however, are heuristic without theoretical guarantees.
Manwani and Sastry (2013) made theoretical analysis on the
noise-tolerant property of risk minimization of 0/1 loss and
least square loss. Natarajan et al. (2013) suggested unbiased
losses for empirical risk minimization, whereas those stud-
ies do not consider the influence of variance.

Preliminaries
Let X and Y = {+1,−1} denote the input and output
space, respectively. Let D be an unknown (noise-free) dis-
tribution over X × Y . Assume that the training data Sn =
{(x1, y1), (x2, y2), . . . , (xn, yn)} are drawn identically and
independently (i.i.d) according to distribution D.

In the random noise model, each true label yi is corrupted
independently by random noise with rate η, and we denote
ỹi the corrupted label,

ỹi =

{
yi with probability 1− η
−yi with probability η

Here η is assumed to be a prior, and it can be estimated via
cross-validation in experiments (Natarajan et al. 2013). We
focus on uniform noise

Pr[ỹi = −1|yi = +1] = Pr[ỹi = +1|yi = −1] = η,

and it can be easily generalized to the non-uniform case.
Let Dη be the corrupted distribution, and denote S̃n =
{(x1, ỹ1), (x2, ỹ2), . . . , (xn, ỹn)} the corrupted sample by
random noise. LetH = {h : X → R} be a real-valued func-
tion space. For each h ∈ H, we define the expected risk w.r.t.
loss ` and true distribution D as

R(h,D) = E(x,y)∼D[`(h(x), y)],

where ` is a loss function such as least square loss, logistic

loss, hinge loss, etc. Further, we define the empirical loss as

R̂(h, Sn) =
1

n

n∑
i=1

`(h(xi), yi)

for h ∈ H and Sn = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Finally, we introduce some notations used in this paper.

Let symbol > denote the transpose operation on vectors
and matrices. For a symmetric matrix X , let λmax(X) and
λmin(X) be the largest and smallest eigenvalue, respectively,
and ‖X‖ denotes the spectral norm. For two matrices X1

and X2, X1 � X2 implies that X2 − X1 is positive semi-
definite. For a real number r, let dre be the smallest integer
which is larger than r, and we set [n] = {1, . . . , n} for an
integer n ≥ 0.

New Concentration Inequalities

We begin with new concentration inequalities for random
matrix as follows:

Theorem 1 Let x1,x2, . . . ,xn be i.i.d. random vectors s.t.
‖xi‖2 ≤ B, and write Xi = x>i xi. For any t > 0, we have

Pr

[∥∥∥∥∥
n∑
i=1

Xi − E[Xi]

∥∥∥∥∥ ≥ t
]
≤ 2de

− t2

2Bnλmax(E[X1])+Bt .

This theorem gives new Bernstein concentration inequalities
depending only on the first moments of random matrices,
whereas previous Bernstein concentration inequalities (Git-
tens and Tropp 2011; Tropp 2012) are heavily relevant to
the first and second moments. This theorem shows tighter
bounds for small λmax(E[X1]), i.e., small spectral norm on
the first moments of random matrices.
Proof: This proof uses the properties of matrices x>i xi and
techniques in (Tropp 2012). For θ > 0 and i ∈ [n], we have

E[eθXi ] = Id + θE[Xi] +
∞∑
k=2

θkE[Xk
i ]

k!

E[Xk
i ] = E

[
‖xi‖k−12 Xi

]
� Bk−1E[Xi]

for ‖xi‖2 ≤ B and λmax(Xi) ≥ 0. If θ < 2/B, we have

∞∑
k=2

θkE[Xk
i ]

k!
�
∞∑
k=2

θkBk−1

k!
E[Xi]

� θ
∞∑
k=1

(θB/2)kE[Xi] =
θ2B

2− θB
E[Xi]

and

E[eθXi ] � Id +
θ2B

2− θB
E[Xi] � eθE[Xi]+

θ2B
2−θBE[Xi].



This yields that E[eθ(Xi−E[Xi])] � e
θ2B
2−θBE[Xi] and

Pr

[
λmax

(
n∑
i=1

Xi − E[Xi]

)
≥ t

]

≤ inf
θ>0

e−θttr exp

(
n∑
i=1

logE[eθ(Xi−E[Xi])]

)
≤ inf

θ>0
e−θttr exp

(
nθ2B
2−θBE[X1]

)
≤ d inf

θ>0
exp

(
−θt+ nθ2B

2−θBλmax(E[X1])
)
.

By selecting θ = 2t/(2Bnλmax(E[X1]) +Bt), it holds that

Pr

[
λmax

( n∑
i=1

Xi − E[Xi]
)
≥ t

]
≤ de−

t2

2Bnλmax(E[X1])+Bt .

We bound Pr[λmin(
∑n
i=1Xi − E[Xi]) ≤ −t] similarly.

Theorem 1 presents matrix concentration inequalities,
which are explicitly dependent on the matrix dimension d;
therefore, those bounds may be looser for high-dimensional
matrix. We now present new dimension-free concentration
inequalities as follows:
Theorem 2 Let x1,x2, . . . ,xn denote i.i.d random vec-
tors such that ‖xi‖2 ≤ B. For any t > 0, denote by
Xi = x>i xi, γ = E[λmax(X1)], α = λmin(E[X1]) and
n0 = max(1, d2t/(γ − α)e). For n ≥ n0, we have

Pr

[∥∥∥∥∥
n∑
i=1

Xi − E[Xi]

∥∥∥∥∥ ≥ t
]
≤ 2e−

t2

Bn(α+γ)+Bt .

Proof: By Markov’s inequality and for any θ > 0, we have

Pr

[
λmax

(∑
i

Xi − E[Xi]
)
≥ t

]
≤ e−θtE

[
eθλmax(

∑
iXi−E[Xi])

]
. (1)

From λmax(A1 +A2) ≤ λmax(A1) + λmax(A2), we have

λmax

(∑
i

(Xi − E[Xi])
)
≤
∑
i

λmax(Xi)

+ λmax

(
−
∑
i

E[Xi]
)
≤
∑
i

λmax(Xi)− nα

where the last inequality holds from λmax(−
∑
iE[Xi]) =

−λmin(
∑
iE[Xi]) = −nα. Based on Taylor’s expansion, it

holds that

eθλmax(Xi) = 1 + θλmax(Xi) +
∑
k≥2

θkλkmax(Xi)

k!

≤ 1 + θγ +
∑
k≥2

θkBk−1γ

k!

where the inequality holds from λkmax(Xi) = λmax(Xk
i ) =

λmax(‖xi‖2(k−1)Xi) ≤ Bk−1γ. For Bθ ≤ 2, we have

1 +
∑
k≥2

(Bθ)k−1

k!
≤ 1 +

∑
k≥1

(
Bθ

2

)l
=

1

1−Bθ/2
.

This follows that E[eθλmax(Xi)] ≤ eθγ/(1−Bθ/2), and

e−θtE
[
eθλmax(

∑
i(Xi−E[Xi]))

]
≤ e−θt−θnα+

θnγ
1−Bθ/2 . (2)

By Eqs. 1 and 2 and setting θ = 2(1−
√
nγ/(t+ nα))/B,

it holds that, for n ≥ n0,

Pr

[
λmax

(∑
i

Xi − E[Xi]
)
≥ t

]

≤ e−
2
B (
√
t+nα−√nγ)2 ≤ e−

t2

Bn(α+γ)+Bt .

We bound Pr[λmin(
∑
i(Xi − E[Xi])) ≤ −t] similarly.

Theorem 2 gives dimension-free concentration inequal-
ities for random matrix, and can be used for large and
infinite-dimension matrix. Hsu, Kakade, and Zhang (2012)
presented dimension-free Bernstein concentration inequali-
ties for covariance matrices based on the first and second
moments of random matrices. In contrast, our bounds de-
pend only on the first moments of random matrix, and are
tighter for small E[λmax(X1)] and λmin(E[X1]).

Analysis of Label Noise
This section analyzes the risk minimization of decompos-
able loss, which is defined as follows:
Definition 1 A loss function ` is said to be decomposable
if there exist some function g : R → R and constant c such
that the following holds for each h ∈ H and Sn

R̂(h, Sn) =
1

n

n∑
i=1

g(h(xi)) +
c

n

n∑
i=1

yih(xi).

It is easy to show that many loss functions, such as logis-
tic loss and least square loss, are decomposable, and Patrini
et al. (Patrini et al. 2014) made similar decomposition for
label-proportion learning.

The main advantage of using decomposable losses is that
we can divide the empirical loss into two parts, where the
first part is not affected but the second part is affected by
noisy labels; therefore, it is sufficient to analyze and esti-
mate the influence of second part by noisy labels. For linear
classifier hw(x) = 〈w,x〉 and decomposable loss, we have

R̂(hw, Sn) =
1

n

n∑
i=1

g(〈xi,w〉) + c
〈 1

n

n∑
i=1

yixi,w
〉
.

We introduce a new statistics labeled instance centroid, with
respect to the true sample Sn and true distribution D, as

µ(Sn) =
n∑
i=1

yixi
n

and µ(D) = E(x,y)∼D[yx].

We further define the labeled instance centroid µ(S̃n) and
µ(Dη) with respect to the corrupted sample S̃n and cor-
rupted distribution Dη respectively. This follows

R̂(hw, Sn) = c 〈µ(Sn),w〉+
1

n

n∑
i=1

g(〈xi,w〉).



In the random noise model, the true sample Sn, true distri-
bution D and corrupted distribution Dη are unknown, and
what we can observe is a corrupted sample S̃n. Therefore,
the problem of random noise classification can be converted
to the estimation of µ(Sn) from the corrupted sample S̃n.
We present a proposition as follows:
Proposition 1 We have µ(Dη) = (1 − 2η)µ(D) for the
true distribution D and corrupted distribution Dη . We have
Eỹ1,...,ỹn [µ(S̃n)] = (1 − 2η)µ(Sn) for the true sample Sn
and corrupted sample S̃n.

Proof: From Eỹ[ỹx|(x, y)] = (1− 2η)yx, we have

µ(Dη) = E(x,ỹ)∼Dη [ỹx] = E(x,y)∼D[Eỹ[ỹx|(x, y)]]

= E(x,y)∼D[(1− 2η)yx] = (1− 2η)µ(D),

and E[µ(S̃n)] = (1− 2η)µ(Sn).

We can see that random noise changes labeled instance
centroid, and µ(S̃n)/(1 − 2η) is an unbiased estimation to
µ(Sn). Let Σ(D) denote the covariance matrix of the ran-
dom vector yx drawn i.i.d. from distribution D, i.e.,

Σ(D) = E(x,y)∼D
[
[yx]>yx

]
− [µ(D)]>µ(D),

and define Σ(Dη) similarly. We have
Proposition 2 We have

Σ(Dη) = Σ(D) + 4η(1− η)[µ(D)]>µ(D)

for the true distribution D and corrupted distribution Dη .

Proof: We have

Σ(Dη) = E(x,ỹ)∼Dη [(ỹx)>ỹx]− [µ(Dη)]>µ(Dη)

= E(x,ỹ)∼Dη [x>x]− (1− 2η)2[µ(D)]>µ(D)

= Σ(D) + 4η(1− η)[µ(D)]>µ(D),

which completes the proof.

This proposition shows that random noise increases the
covariance of yx, and may lead to heavy-tailed distributions.
For labeled instance centroid µ(S̃n), we consider its covari-
ance matrix Σ(µ(S̃n)), i.e.,

Σ(µ(S̃n)) = E[[µ(S̃n)]>µ(S̃n)]− [E[µ(S̃n)]]>E[µ(S̃n)].

We have the following proposition:

Proposition 3 The covariance matrix Σ(µ(S̃n)) equals to

E
[ n∑
i=1

x>i xi
n2

]
− E

[ n∑
i=1

x>i ỹi
n2

]
E
[ n∑
i=1

xiỹi
n

]
.

Proof: We first have

E
[
[µ(S̃n)]>µ(S̃n)

]
= E

[[ 1

n

n∑
i=1

ỹixi

]> 1

n

n∑
i=1

ỹixi

]
=

1

n2

( n∑
i=1

E[x>i xi] +
∑
i6=j

E[ỹiỹjx
>
i xj ]

)
.

For i.i.d random variables x1ỹ1,x2ỹ2, . . . ,xnỹn,

E[ỹiỹjx
>
i xj ] = E

[ n∑
i=1

xiỹi
n

]>
E
[ n∑
i=1

xiỹi
n

]
which completes the proof by simple calculation.

Given a corrupted sample S̃n = {(x1, ỹ1), . . . , (xn, ỹn)},
we define the empirical covariance matrix as

Σ̂(µ(S̃n)) =
n∑
i=1

x>i xi
n2
− 1

n

n∑
i=1

x>i ỹi
n

n∑
i=1

xiỹi
n
. (3)

The following theorem shows that the empirical covariance
matrix Σ̂(µ(S̃n)) is a good approximation of the covariance
matrix Σ(µ(S̃n)).

Theorem 3 For sample S̃n, let Σ(µ(S̃n)) and Σ̂(µ(S̃n)) be
given by Proposition 3 and Eq. 3, respectively. Denote γ =
E[λmax(x

>
1 x1)], α = λmin(E[x>1 x1]), τ = tr(E[x>1 x1]).

For t > 0, we set n0 = max(1, d2t/(γ − α)e). For n ≥ n0,
it holds that, with probability at least 1− 3e−t∥∥∥Σ(µ(S̃n))− Σ̂(µ(S̃n))

∥∥∥
≤ 11Bt

3n2
+

√
Bt(α+ γ) +

√
2Bτ(1 +

√
8t)

n3/2
.

Proof: Based on Proposition 3 and Eq. 3, we first give the
upper bound for ‖Σ(µ(S̃n))− Σ̂(µ(S̃n))‖ as follows:

1

n3

∥∥∥E[ n∑
i=1

ỹix
>
i

]
E
[ n∑
i=1

ỹixi

]
−

n∑
i=1

ỹix
>
i

n∑
i=1

ỹixi

∥∥∥
+

1

n2

∥∥∥ n∑
i=1

(E[x>i xi]− x>i xi)
∥∥∥

For t > 0 and n ≥ n0, Theorem 2 shows that

1

n2

∥∥∥ n∑
i=1

(E[x>i xi]− x>i xi)
∥∥∥ ≤ Bt+

√
Bnt(α+ γ)

n2

with probability at least 1− 2e−t. For ‖xi‖2 ≤ B, we have∥∥∥E[ n∑
i=1

ỹix
>
i

]
E
[ n∑
i=1

ỹixi

]
−
[ n∑
i=1

ỹix
>
i

][ n∑
i=1

ỹixi

]∥∥∥
≤
√

2Bn
∥∥∥ n∑
i=1

ỹixi − E[ỹixi]
∥∥∥.

This follows E[ỹixi − E[ỹixi]] = 0, ‖ỹixi − E[ỹixi]‖ ≤√
2B and E[‖ỹixi − E[ỹixi]‖2] ≤ τ . By Bernstein bounds

(Hsu, Kakade, and Zhang 2012), we have, with probability
at least 1− e−t∥∥∥ n∑

i=1

(ỹixi −E[ỹixi])
∥∥∥ ≤ √nτ(1 +

√
8t) +

4
√

2B

3
t. (4)

This completes the proof by simple calculations.



Algorithm 1 Median-of-means estimator of label mean

Input: The corrupted sample S̃n, number of groups k ≥ 1.
Output: Median-of-means estimator µ̂(S̃n).

1: Randomly partition S̃n into k groups S̃[1]
n , S̃

[2]
n , . . . , S̃

[k]
n

such that each group has almost equal size.
2: Calculate the standard empirical mean µ(S̃

[i]
n ) for each

i ∈ [k] and each group S̃[i]
n .

3: Calculate ri = medianj{‖µ(S̃
[i]
n ) − µ(S̃

[j]
n )‖} for each

i ∈ [k], and then set i∗ = arg mini∈[k] ri.
4: Return µ̂(S̃n) = µ(S̃

[i∗]
n ).

The LICS Algorithm
Proposition 2 shows that random noise increases the co-
variance of yx, and may lead to heavy-tailed distributions.
We adopt the recent generalized median-of-means estima-
tor (Hsu and Sabato 2014), rather than using the standard
empirical mean, to estimate the corrupted labeled instance
centroid µ(S̃n). The basic idea is to randomly partition the
corrupted sample S̃n into k groups with almost equal size,
and return the generalized median of sample means for each
group under L2-norm metric. The detailed description is
presented in Algorithm 1.

We further consider a rangeR for µ(S̃n) as follows:

R = {µ : (µ− µ̂(S̃n))>Σ̂(µ(S̃n))(µ− µ̂(S̃n)) ≤ β} (5)

where µ̂(S̃) is the output of Algorithm 1, Σ̂(µ(S̃)) is defined
by Eq. 3, and β is a parameter estimated by cross-validation.
Our optimization problem can be formalized as

min
w,µ

1

n

n∑
i=1

g(〈xi,w〉) +
c 〈w, µ〉
1− 2η

+ λ‖w‖2 (6)

s.t. (µ− µ̂(S̃n))>Σ̂(µ(S̃n))(µ− µ̂(S̃n)) ≤ β.
We will employ an alternating method to address such opti-
mization. Specifically, when µ is fixed, we need to solve

min
w

1

n

n∑
i=1

g(〈xi,w〉) +
c 〈w, µ〉
1− 2η

+ λ‖w‖2.

This minimization can be optimized by standard and simple
gradient descent algorithm. For fixed w, it sufficient to solve

min
µ

c 〈w, µ〉 (7)

s.t. (µ− µ̂(S̃n))>Σ̂(µ(S̃n))(µ− µ̂(S̃n)) ≤ β,
and we can give a closed-form solution for this problem. By
introducing a Lagrange variable ρ, we have

L(µ, β) = c 〈w, µ〉
− ρ(µ− µ̂(S̃n))>Σ̂(µ(S̃n))(µ− µ̂(S̃n)) + ρβ.

By solving ∂L(µ, β)/∂µ = 0, we have

µ =
c

2ρ

(
Σ̂(µ(S̃n))

)−1
w + µ̂(S̃n) (8)

Algorithm 2 The Labeled Instance Centroid Smooth (LICS)
algorithm

Input: The corrupted sample S̃n = {(x1, ỹ1), (x2, ỹ2), . . .,
(xn, ỹn)}, the noisy parameter η, the regularization param-
eter λ, the approximation parameter β.
Output: The classifier wt.

1: Call Algorithm 1 to give an estimation of µ̂ = µ̂(S̃n).
2: Calculate Σ̂ = Σ̂(µ(S̃n)) by Eq. 3.
3: Initialize t = 1 and w0.

4: Calculate µ = µ̂+ Σ̂−1wt−1

√
β/wt−1Σ̂−1w>t−1.

5: Update t = t+ 1 and solve

wt = arg min
w

n∑
i=1

g(〈xi,w〉)
n

+
c 〈w, µ〉
1− 2η

+ λ‖w‖2.

6: Repeat Steps 4 and 5 until convergence.
7: Return wt

Substituting Eq.(8) into Eq.(7) and ignoring some constant
terms, we have,

min
ρ

c2

2ρ
w>
(
Σ̂(µ(S̃n))

)−1
w

s.t.
c2

4ρ2
w>
(
Σ̂(µ(S̃n))

)−1
w ≤ β.

We get ρ = − c
2 (w>

(
Σ̂(µ(S̃n))

)−1
w/β)1/2. Substituting

to Eq.(8), we derive the optimal solution of Eq.(7) as

µ = µ̂(S̃n) +
(
Σ̂(µ(S̃n))

)−1
w

√
β/w>

(
Σ̂(µ(S̃n))

)−1
w.

Algorithm 2 shows the detail procedures of our algorithm.

Theoretical Guarantee for the LICS Algorithm
For ‖x‖2 ≤ B and H = {w : ‖w‖2 ≤ B0}, we denote by
R(H) = Exi,εi [supw∈H

1
n

∑n
i=1 εiw

>xi] the Rademacher
complexity. Kakade, Sridharan, and Tewari (2008) showed
that R(H) ≤

√
BB0/n. We have the following theoretical

guarantee for the proposed LICS algorithm:

Theorem 4 For corrupted sample S̃n such that ‖xi‖2 ≤
B, let (w̃, µ̃) be the optimal solution of Eq. 6 and set τ =
tr(E[x>1 x1]). For t > 0, there exists n0 > 0 such that, for
n ≥ n0, the following holds with probability at least 1−6e−t

R(w̃,D) ≤ min
w∈H

R(w,D) + 4L
√
BB0/n+

√
2t/n

+
δ1√
n

(1 +
√

8t) +
δ2
3n
t+

1

1− 2η

√
β

λmin(Σ̂(µ(S̃n)))

where δ1 = |c|(
√
τB0 +

√
kτB0)/(1 − 2η), δ2 = 4(1 +

k)
√

2B/((1− 2η)), k is the group number in Algorithm 1.
The parameter β is set as O(1/n) in experiments so as
to guarantee the convergence of proposed algorithm since
the covariances of labeled instance centroid converges at
O(1/n) rate.



Table 1: Comparison of test accuracies (mean±std.) for various approaches on UCI benchmark datasets. •/◦ indicates that LICS
is significantly better/worse than the corresponding method (paired t-tests at 95% significance level).

Dateset (#dim., #inst.) η LICS ULE AROW PA-II NTP

australian (14, 690)

0.1 0.8643±0.0280 0.8632±0.0282 0.8626±0.0307 0.8597±0.0286 0.8400±0.0492•
0.2 0.8530±0.0301 0.8538±0.0305 0.8507±0.0307 0.8580±0.0374 0.8275±0.0637•
0.3 0.8480±0.0328 0.8442±0.0386 0.8248±0.0426• 0.8441±0.0484 0.8052±0.0743•
0.4 0.8062±0.0489 0.7857±0.0660 0.7783±0.0546 0.7852±0.0853 0.7006±0.1322•

breast (10, 683)

0.1 0.9608±0.0134 0.9584±0.0150 0.9579± 0.0142 0.9555±0.0170 0.9491±0.0271
0.2 0.9557±0.0168 0.9546±0.0193 0.9526± 0.0198 0.9347±0.0238• 0.9470±0.0261
0.3 0.9473±0.0238 0.9258±0.0252• 0.9218± 0.0242• 0.9330±0.0282 0.9304±0.0437
0.4 0.9286±0.0310 0.9014±0.0508• 0.9025± 0.0353• 0.8946±0.0551• 0.8097±0.1016•

diabetes (8, 768)

0.1 0.7702±0.0342 0.7696±0.0406 0.7667±0.0381 0.7399±0.0399• 0.7380±0.0424•
0.2 0.7563±0.0349 0.7418±0.0391 0.7321±0.0384• 0.6982±0.0501• 0.7154±0.0430•
0.3 0.7492±0.0482 0.7238±0.0534• 0.7213±0.0530• 0.6634±0.0906• 0.6457±0.1211•
0.4 0.7202±0.0571 0.6809±0.0635• 0.6981 ± 0.0633 0.6286±0.1096• 0.5983±0.1305•

german (24, 1000)

0.1 0.7686±0.0186 0.7506±0.0207• 0.7568±0.0212 0.7356±0.0355• 0.7082±0.0768•
0.2 0.7499±0.0220 0.7426±0.0260 0.7424±0.0252 0.7280±0.0339• 0.6884±0.0721•
0.3 0.7280±0.0205 0.7048±0.0346• 0.7024±0.0335• 0.7026±0.0371• 0.6476±0.1366•
0.4 0.7071±0.0305 0.6918±0.0329 0.6584±0.0434• 0.7002±0.0323 0.5904±0.1475•

heart (13, 270)

0.1 0.8231±0.0332 0.8289±0.0448 0.8193±0.0488 0.8311±0.0442 0.8119±0.0544
0.2 0.8102±0.0412 0.8148±0.0507 0.7963±0.0431 0.8052±0.0490 0.7815±0.0600
0.3 0.8007±0.0546 0.7970±0.0567 0.7504±0.0596 0.7919±0.0608 0.7452±0.0880•
0.4 0.7538±0.0747 0.7178±0.0825• 0.6756±0.0823• 0.7059±0.0980• 0.6378±0.1332•

splice (60, 1000)

0.1 0.7986±0.0295 0.7968±0.0328 0.7970±0.0340 0.7712±0.0336 0.7256±0.0501•
0.2 0.7597±0.0316 0.7606±0.0331 0.7554±0.0325 0.7560±0.0396 0.6956±0.0656•
0.3 0.7208±0.0387 0.7003±0.0397• 0.7063±0.0388 0.7096±0.0419 0.6526±0.0572•
0.4 0.6613±0.0418 0.6398±0.0459• 0.6252±0.0426• 0.6544±0.0518 0.5722±0.0465•

Proof: Suppose that Sn is the corresponding true sam-
ple without corruption. Let ŵ = arg minw∈H R̂(w, Sn)
and w∗ = arg minw∈HR(w,D). Bartlett and Mendelson
(2002) proved that
R(w̃,D)−R(w∗,D)

≤ R̂(w̃, Sn)− R̂(ŵ, Sn) + 4LR(H) + 2
√
t/2n.

Let µ̂ denote the output of Algorithm 1 with input S̃n and
group number k. We have (1− 2η)E[µ(Sn)] = E[µ̂]. Write
R̃(w, µ) as the objective function in Eq. 6, i.e.,

R̃(w, µ) =
c〈H, µ〉
1− 2η

+
1

n

n∑
i=1

g(〈xi,H〉) + λ‖H‖2,

and (w̃, µ̃) = arg minw∈H,µ∈R R̃(w, µ). Similarly to the
proof of Eq. 4, it holds with probability at least 1− 2e−t,

‖(1− 2η)µ(Sn)− µ̂‖

≤
√
τ +
√
kτ√

n
(1 +

√
8t) +

4(1 + k)
√

2B

3n
t. (9)

Thus, there is a n0 > 0 such that (1 − 2η)µ(Sn) ∈ R for
n ≥ n0, which yields R̃(w̃, µ̃) ≤ R̂`(Ĥ, Sn). For µ̃ ∈ R,

we have ‖µ̂ − µ̃‖ ≤
√
β/λmin(Σ̂(µ(S̃n))). This completes

the proof by combining with Eq. 9.

Experiments
We evaluate the performance of the LICS algorithm on
six UCI1 datasets: australian, breast, diabetes, german,

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

heart and splice. Most of them have been investigated
in previous work, and all features are scaled to [−1, 1].
We compare the proposed LICS algorithm with four state-
of-the-art noisy approaches: unbiased logistic estimator
(ULE) classifier (Natarajan et al. 2013), AROW (Crammer,
Kulesza, and Mark 2009), passive-aggressive II algorithm
(PA-II) (Crammer et al. 2006) and noise-tolerant percetron
(NTP) (Khardon and Wachman 2007). In the proposed LICS
algorithm, five-fold cross-validation is executed to select
the regularized parameter nλ ∈ {2−12, 2−11, . . . , 22} (n
is size of training data), approximation parameter nβ ∈
{2−12, 2−12, . . . , 212}, noise rate η ∈ {0.1, 0.2, 0.3, 0.4},
and we set group number k = 3 in Algorithm 1. The param-
eters in all compared methods are chosen by cross-validation
in a similar manner.

The performance is evaluated by five trials of 5-fold cross
validation, and the test accuracies are obtained by averaging
over these 25 runs, as summarized in Table 1. We can see
that the proposed LICS achieves better or comparable per-
formance, as well as smaller variance, over all datasets. One
possible reason is that LICS considers a range R for esti-
mated labeled instance centroid (Eq. 5) and derives a smaller
empirical risk for noisy label, rather than simply taking the
estimated labeled instance centroid as the ground-truth.

Conclusion
Matrix concentration inequalities have attracted much atten-
tion in diverse applications. This paper presents new Bern-
stein concentration inequalities depending only on the first
moments of random matrices, whereas previous Bernstein
concentration inequalities are heavily relevant to the first and



second moments. We further analyze the empirical risk min-
imization in the presence of label noise. We find that many
popular losses used in empirical risk minimization can be
decomposed into two parts, where the first part won’t be af-
fected and only the second part will be affected by noisy la-
bels. We show that the influence of noisy labels on the sec-
ond part can be reduced by our proposed LICS approach,
and the effectiveness of LICS is justified both theoretically
and empirically. It is interesting to presents tighter matrix
concentration inequalities and extend the LICS approach to
other losses such as exponential loss and hinge loss for fu-
ture researches.
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