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Problem setting The ACI Algorithm Theoretical analysis
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In th1s paper, we aim to identify the causal f’ffECtS of each . Part 1: Granh Decombosition Under the interventional-faithfulness assumption, the
variable X. (covariates) on. the response variable Y ' P o P o ancestor causal structure is identifiable, which leads to the
(target/ outcome/ reward) in Pearl’s causal framework. > Causal disc()very in each chain identifiability of the causal effect of each variable on Y.
* Basicassumptions: PCalg, component is independent; * Intervention times analysis
. + Fai | — ,
o T . Causal suff1c1ency Faithfulness. ” Ign.ore the Chalr} component Ratio of Inter. times Ours Eberhardt (2007)
nput: | | 2| which has no directed path to Comblete
. By(:)bservatlonal data of full variables (X and Y). ® o n‘componentZ Y in the chain graph. Causal%raph Y is at the last position 2/3 2/3
Discovering related causal relations by introducing Truth causal graph A B e Y is in random position >/6 1/3
interventions (causal discovery with both observational * Part 2: Structure Inference.
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 How to use the interventional data:

 Part 3: Intervention Variable Selection.
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* An active intervention strategy to identify causal effects:
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