

Cost-effectively Identifying Causal Effects When Only Response Variable is Observable

Xi-Zhu Wu Sheng-Jun Huang Tian-Zuo Wang Zhi-Hua Zhou

National Key Lab for Novel Software Technology, Nanjing University, China {wangtz, wuxz, zhouzh}@lamda.nju.edu.cn huangsj@nuaa.edu.cn

Learning And Mining from DatA

http://www.lamda.nju.edu.cn

Problem setting

• Goal:

In this paper, we aim to identify the causal effects of each variable X_i (covariates) on the response variable Y (target/outcome/reward) in Pearl's causal framework.

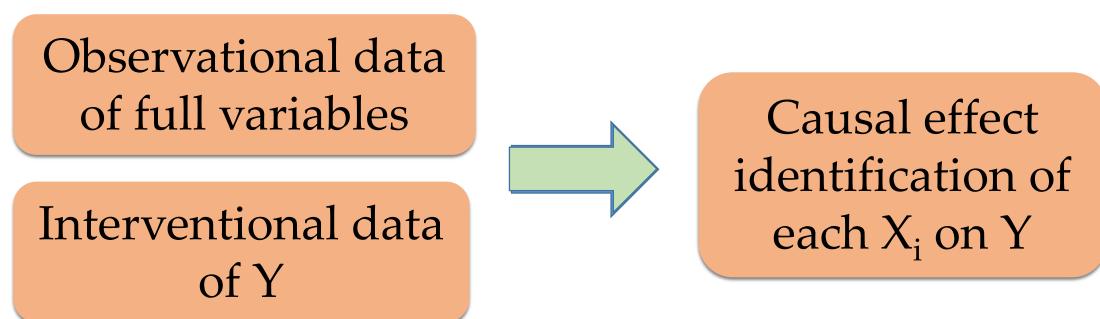
- **Basic assumptions:**
 - Causal sufficiency + Faithfulness.
- Input:
 - observational data of full variables (X and Y).
- **By**:

Discovering related causal relations by introducing interventions (causal discovery with both observational and interventional data) and estimate the causal effects by back-door (adjustment) criterion.

Main difference between ours and previous methods:

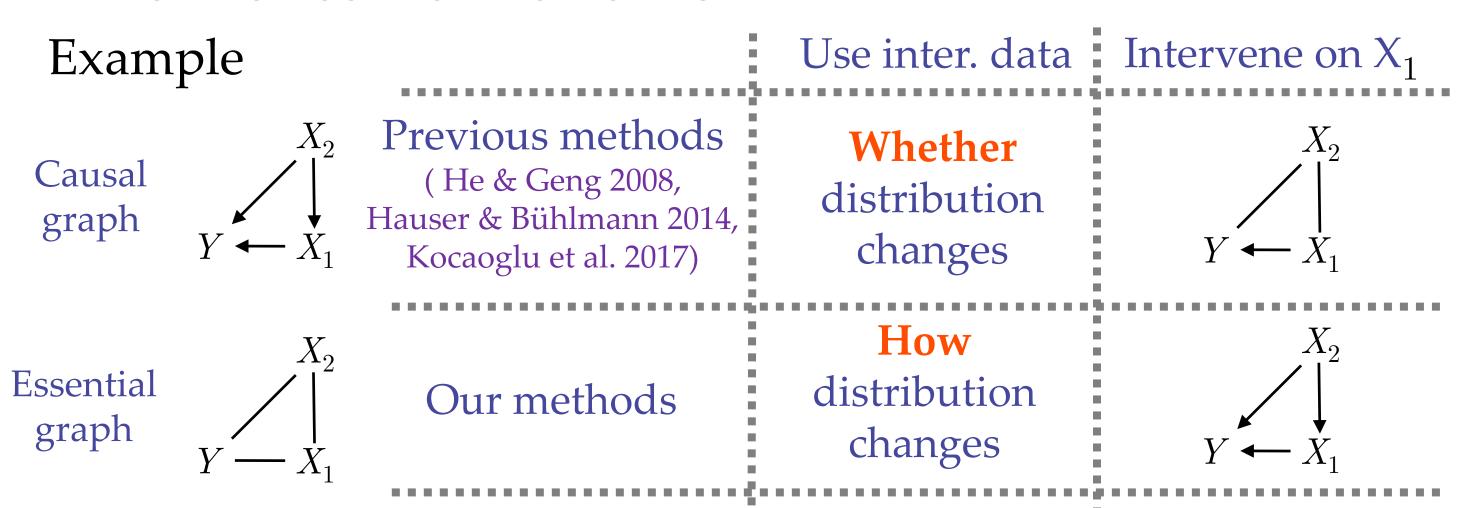
In real tasks, it is hard to observe full variables under intervention. We consider such a setting, that only response variable is observed under intervention.

Mission:



Main innovation

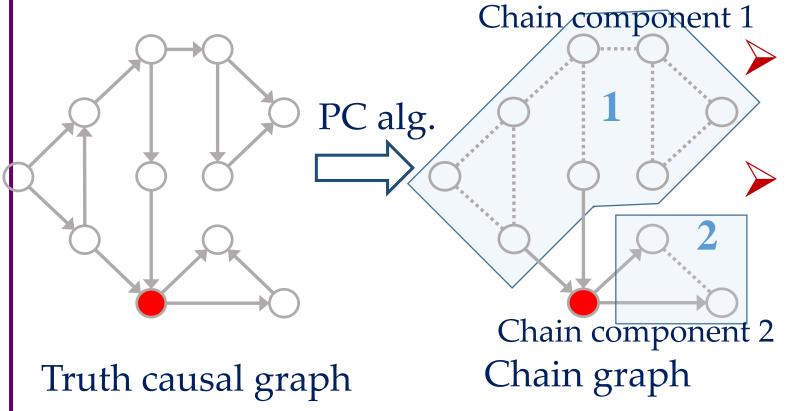
How to use the interventional data:



An active intervention strategy to identify causal effects:

The ACI Algorithm

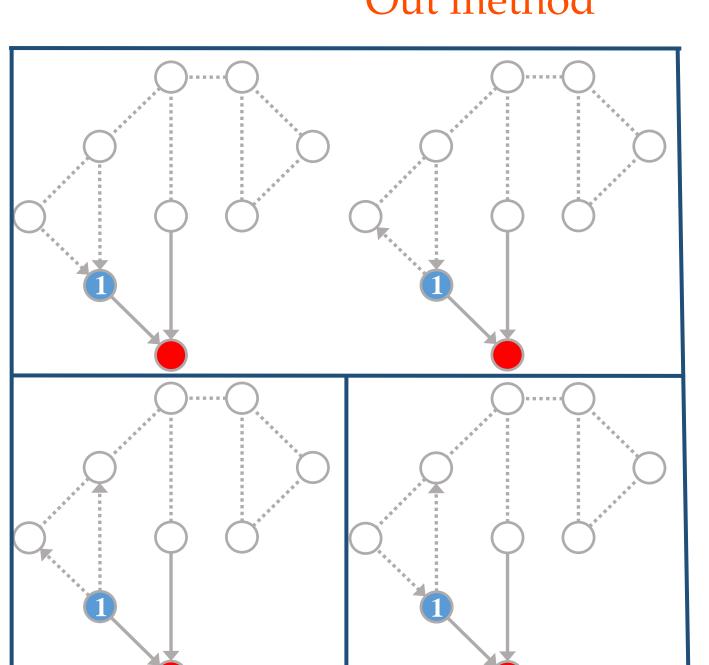
- Begin from Essential graph obtained by observational data.
- Part 1: Graph Decomposition.



Causal discovery in each chain component is independent; > Ignore the chain component which has no directed path to Y in the chain graph.

Part 2: Structure Inference.

Back-door criterion Idea: use back-door Causal effect Causal graph criterion reversely Out method



- Orient undirect edges of the intervened variable;
- 2. Find Minimal parental back-door admissible set for each oriented graph and classify them by the
- Estimate the causal effects on Y in each class and compare them to interventional data of Y.
- Part 3: Intervention Variable Selection.
- Goal:
- > At least one ancestor edges can be identified;
- → ➤ Discover more undirected edges.
- Step 1:

sibling in the set

Select a set as the graph— Siblings of Undirected edges $\operatorname{Anc}_Y[\ddot{C}]$ between ${
m Anc}_Y$ • Step 2: $Y \in C$ Select the variable $\mathrm{Anc}_Y[\ddot{C}]$ Siblings of Y-with the maximum

Theoretical analysis

Identifiability

Under the interventional-faithfulness assumption, the ancestor causal structure is identifiable, which leads to the identifiability of the causal effect of each variable on Y.

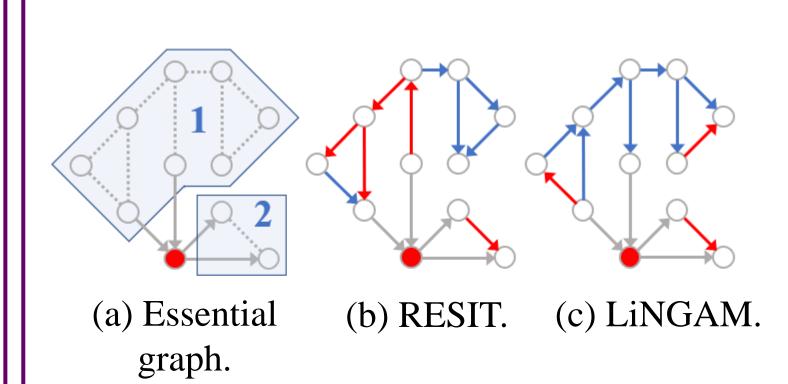
Intervention times analysis

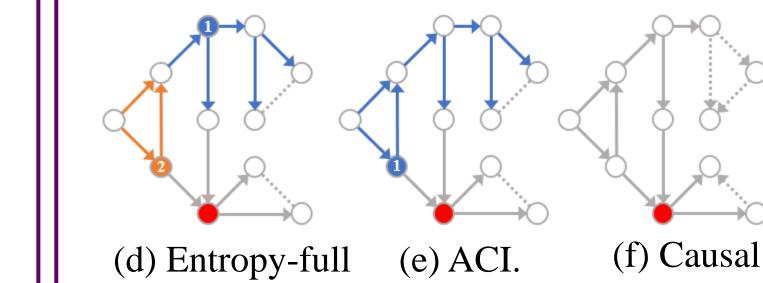
	Ratio o
Complete causal graph	Y is at th
	Y is in ra

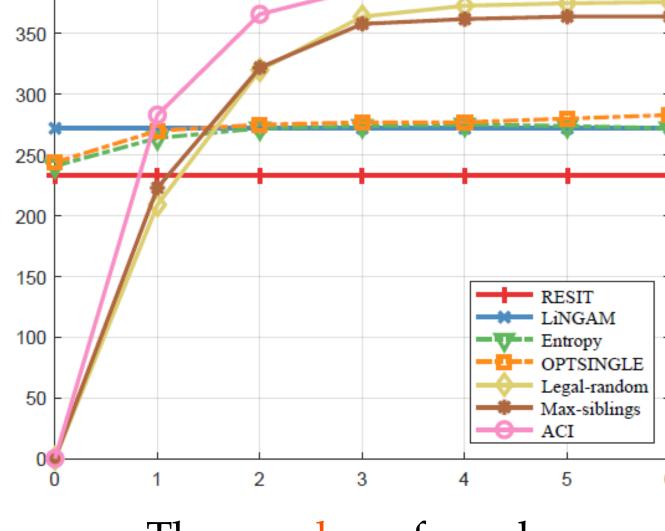
Ratio	of Inter. times	Ours	Eberhardt (2007)
Y is at	the last position	2/3	2/3
Y is in	random position	5/6	1/3

Experiments

Experimental process:







Simulation

The number of newly identified ancestor edges as the intervention times grow

Contact:

& OPTSINGLE-full

Paper

Personal web

Email: wangtz@lamda.nju.edu.cn, wangtz1994@gmail.com

graph.