
Gradient-Based Nonlinear Rehearsal Learning with Multivariate Alterations

Tian Qin, Tian-Zuo Wang, Zhi-Hua Zhou
National Key Laboratory for Novel Software Technology, Nanjing University, China

School of Artifcial Intelligence, Nanjing University, China
{qint, wangtz, zhouzh}@lamda.nju.edu.cn

Abstract

Machine learning (ML) has made significant advancements
across various domains, with a shifting focus from purely
predictive tasks to decision-making. The recent proposal by
Zhou (2022b) introduced a line of research known as rehearsal
learning, which provides a novel perspective on modeling
decision-making tasks. However, previous studies mainly fo-
cused on the linear Gaussian setting to constrain the modeling
complexity. Furthermore, it has been demonstrated that find-
ing exact optimal multivariate decisions within the sampling-
based rehearsal framework is computationally infeasible in
polynomial time, necessitating the development of approx-
imate methods. In this work, we present Grad-Rh, the first
gradient-based rehearsal learning method that can efficiently
find multivariate decisions under nonlinear and non-Gaussian
settings. We address the uncertainty in decision-making tasks
using flexible and expressive conditional normalizing flow
models and derive four surrogate loss functions to enable effi-
cient gradient-based optimization. Experimental results show
that Grad-Rh performs comparably to exact baselines on linear
data and significantly outperforms them on nonlinear data in
both decision quality and running time.

1 Introduction
Machine learning (ML) has been successfully applied in vari-
ous fields, including computer vision (LeCun, Bengio, and
Hinton 2015), natural language processing (Vaswani et al.
2017; Brown et al. 2020), autonomous driving (Chen et al.
2015; Chitta et al. 2023), recommender systems (Cheng et al.
2016), etc. As the predictive abilities of machine learning
methods have been substantially enhanced by vast datasets,
accelerated hardware, and advanced algorithms, more atten-
tion has been paid to enabling ML models to make decisions
rather than merely provide predictions (Zhou 2022b).

Typically, ML models capture the correlation between fea-
ture variables and the label variable, which suffices for predic-
tions in stationary distributions. However, decision-making
requires more concrete variable relationships that elucidate
how data are generated through concrete physical processes,
so that the model could identify the appropriate variables to
act upon to achieve decision goals. Researchers often turn to
causal relations (Lattimore, Lattimore, and Reid 2016; Lee

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Bareinboim 2018), which describe stable cause-effect
relationships among variables (Pearl 2009; Imbens and Rubin
2015). However, as noted by Zhou (2022b), a comprehen-
sive understanding of causal surroundings is not always nec-
essary for effective decision-making, and identifying exact
causal relations from data is challenging (Spirtes, Glymour,
and Scheines 2000) and often computationally impractical
(Chickering 1995). Additionally, real-world decision environ-
ments can be open and dynamic (Zhou 2022a), which can
undermine the stability of causal relations. Thus, the concept
of the influence relation was proposed (Zhou 2022b, 2023),
which lies between correlation and causation. Influence re-
lations can model mutually influenced variables, and take
into account the dynamic and time-varying decision environ-
ments, which makes it a more natural modeling choice for
decision-making tasks.

Building on the influence relation, Qin, Wang, and Zhou
(2023b) introduced an effective decision-making framework
known as rehearsal learning, aimed at avoiding undesired
future events. For instance, if a machine learning model pre-
dicts a decline in future sales, a sales manager might seek to
prevent it, and rehearsal learning can leverage past data to
recommend effective actions to achieve that. They proposed
structural rehearsal models (SRM) to encode influence rela-
tions among variables and describe the data-generating pro-
cess in such problems. A sampling-based method is then used
to execute rehearsals of potential decision outcomes given
the learned SRM, from which an optimal decision could be
found to achieve the decision goal. They derived an efficient
solution for the case with a single decision variable and linear
SRMs, but left the more practically important multi-variate
nonlinear case untouched. The main challenge lies in effi-
ciently finding effective decisions given the structural model:
It has been proven that even for the simplest linear case, the
sampling-based approach does not permit polynomial-time
solutions if the number of decision variables is larger than
one (Qin, Wang, and Zhou 2023b), which highlights the need
for approximate solutions. Recently, Du et al. (2024) further
considered decision costs for the linear Gaussian case. The
nonlinear and non-Gaussian settings remain unexplored.

In this work, we propose the first gradient-based rehearsal
learning method that achieves efficient and effective nonlin-
ear modeling and decision-finding with multi-variate deci-
sion variables. Specifically, we extend rehearsal learning to

nonlinear and non-Gaussian settings using the conditional
normalizing flow model (Papamakarios et al. 2021). The flow
model can effectively capture the uncertainty in the data-
generating process and drop the Gaussian assumption by
transforming a given noise distribution to another that best
fits the observed distribution with invertible transformations.
For the complicated decision-finding step involving multiple
decision variables in rehearsal learning (Qin, Wang, and Zhou
2023b), we develop an efficient approximate gradient-based
solution that optimizes a surrogate loss function related to
the Chebyshev center (Boyd and Vandenberghe 2004) of the
desired outcome region. We propose two classes of surrogate
losses: one focusing on the Chebyshev center and the other
on the largest inscribed ball in the desired region. Experi-
ments on both linear and nonlinear datasets demonstrate that
our method is effective and efficient, achieving performance
comparable to exact baselines on linear data and significantly
better results on nonlinear data with improved scalability.

2 Background
In this section, we provide some necessary background infor-
mation about the structural rehearsal model that encodes the
influence relation and the normalizing flow model.

2.1 Structural Rehearsal Model
A structural rehearsal model (SRM) consists of a set of poten-
tially time-varying rehearsal graphs and corresponding struc-
tural equations (Qin, Wang, and Zhou 2023b). The qualitative
relations among variables are described by a rehearsal graph,
where a vertex corresponds to a variable and a directed edge
depicts that the downstream variables are generated by their
parents. Of notice is that rehearsal graphs use bi-directional
edges to connect variables that are mutually influenced. The
formal definitions of rehearsal graphs are given below (Qin,
Wang, and Zhou 2023b).
Definition 1 (Mixed graph). Let G = (V,E) be a graph,
where V denotes the vertices and E the edges. G is a mixed
graph if for any distinct vertices u, v ∈ V, there is at most
one edge connecting them, and the edge is either directional
(u→ v or u← v) or bi-directional (u↔ v).
Definition 2 (Bi-directional clique). A bi-directional clique
C = (Vc,Ec) of a mixed graph G = (V,E) is a complete
subgraph induced by Vc ⊆ V such that any edge e ∈ Ec is
bi-directional. C is maximal if adding any other vertex does
not induce a bi-directional clique.
Definition 3 (Rehearsal graph). Let G = (V,E) be a mixed
graph. Let {Ci}li=1 denote all maximal bi-directional cliques
of G, where Ci = (Vc

i ,E
c
i). G is a rehearsal graph if:

1. Vc
i ∩Vc

j = ∅ for any i ̸= j.
2. ∀i ∈ [l], u ∈ V \Vc

i , if there is any edge pointing from
u to Vc

i , then ∀v ∈ Vc
i , u→ v.

3. The directional edges permit a topological ordering for
{Ci}li=1.

Associated with the graphical representation is a set of
structural equations, which characterizes the generating pro-
cess of variables quantitatively. Given a rehearsal graph G,
the structural equations accompanying the rehearsal graph

are defined over bi-directional cliques {(Vc
i ,E

c
i)}li=1. Let

PAG
i ≜ {u | ∃v ∈ Vc

i , u → v in G} denote the parents of
Vc

i . Assuming additive noise models, the structural equation
describing the generation process of Vc

i is

Vc
i := fi(PA

G
i , εi;βi), (1)

where fi : R|PAG
i |+|εi| → R|Vc

i | is parameterized by βi and
εi denotes the unobserved noise.

F

G E

DC

B

A

(a) G

F

G E

DC

B

A

(b) GF

F

G E

DC

B

A

(c) GB,E,F

Figure 1: The figure is adapted from Qin, Wang, and Zhou
(2023b). (a) displays an example rehearsal graph. (b) and (c)
display the alteration graph after rehearsal operations Rh(F)
and Rh(B,E, F), respectively, which characterize how the
data will be generated after certain alterations are performed
on relevant variables.

The rehearsal model describes how the data are gener-
ated in a decision task. One can perform rehearsal operations
Rh(·) on certain variables in the model to simulate a decision,
which is equivalent to altering the decision variables to certain
values and removing the associated incoming edges, then gen-
erating the data following the new graph, the alteration graph,
as shown in Fig. 1. Since decision-making tasks typically
involve great uncertainties, properly accounting for and han-
dling the uncertainty raised by unobserved noise is important
in rehearsal learning. Specifically, the linear-Gaussian case
was explored in the work of Qin, Wang, and Zhou (2023b).
The full SRM allows dynamic modeling by defining both the
graphs and equations over time, which accounts for possible
evolutions of the environment.

2.2 Normalizing Flows
Normalizing flows are a class of generative models that allow
for efficient density estimation and sampling by transforming
a simple distribution into a more complex one through a se-
ries of invertible and differentiable mappings (Papamakarios
2019; Kobyzev, Prince, and Brubaker 2021; Papamakarios
et al. 2021). The core idea is to start with a base distribution
pV (v) (e.g., Gaussian) and apply a sequence of transforma-
tions g parameterized by θ to obtain a complex distribution
pU (u). Mathematically, this is represented as:

u = g(v; θ).

The change of variables formula allows us to compute

pU (u) = pV (v)

∣∣∣∣det ∂g−1(u)

∂u

∣∣∣∣ ,
where v = g−1(u) and

∣∣∣det ∂g−1(u)
∂u

∣∣∣ is the Jacobian deter-
minant of the inverse transformation. Usually, simple invert-
ible neural networks are sequentially connected to form the

transformation (Dinh, Krueger, and Bengio 2015; Dinh, Sohl-
Dickstein, and Bengio 2017; Kingma and Dhariwal 2018).

Conditional flows extend the concept of normalizing flows
to conditional distributions (Ardizzone et al. 2019; Winkler
et al. 2023). In a conditional flow model, the transformation
is conditioned on some external variable w, allowing for
modeling pU (u | w). The transformation now depends on
both v and w:

u = g(v, w; θ).

The density is then given by

pU (u | w) = pV (v)

∣∣∣∣det ∂g−1(u | w)
∂u

∣∣∣∣ ,
where v = g−1(u,w). This enables learning flexible condi-
tional distributions and allows for properly characterizing
the uncertainties in an SRM and consequently leads to more
flexible rehearsal learning.

3 Problem Setup
In this section, we formulate the avoiding undesired future
(AUF) problem, which is the specific decision goal that re-
hearsal learning tries to achieve. Previous work (Qin, Wang,
and Zhou 2023b; Du et al. 2024) considered multiple deci-
sion rounds. In this work, we focus on a single-round setting
and design efficient methods, which can be directly extended
to multi-round settings.

Specifically, the variables observable in a decision-making
task are divided into three disjoint sets X = {Xi}i,Z =
{Zj}j , and Y = {Yk}k following the time order. X contains
contextual variables that are observed before a decision is
made and Y denotes the outcomes that will happen after
the decision. We consider decisions in the form of altering
the values of certain decision variables in the intermediate
set Z, in which the variables appear after the context is ob-
served and before the outcome is realized. For instance, after
observing the sales data of last month (X), a sales manager
decides to change the discount level (Z) to avoid the potential
sales decrease in this month (Y). We assume the variables
in this problem are generated from an SRM associated with
a rehearsal graph G and the structural equations in Eq. (1).
The whole decision-making process is illustrated in Fig. 2.

X1

X2

X3

Y1

Y3

X Z Y

Z2 Z3

Z4

Z1

time

observe X
︸ ︷︷ ︸

conduct alterations observe Y
︸ ︷︷ ︸ ︸ ︷︷ ︸

Y2

Figure 2: The rehearsal graph G describes the data-generating
process qualitatively. The timeline shows the order in which
the three sets of variables are generated.

Let A = {ai}i and ZA = {Za1
, . . . ,Za|A|} denote the al-

terable variables in the intermediate stage and ∆(Zi) denote
the alterable range of Zi. A decision can then be represented

as zA = (za1 , . . . , za|A|)
T where zai ∈ ∆(Zai). We focus

on avoiding undesired events, i.e., the decisions should pre-
vent Y from falling outside a desired set S. The desired set
is assumed to be a convex polytope, i.e.,

S = {y ∈ R|Y| |My ⪯ d}, (2)

where d ∈ Rq and M ∈ Rq×|Y| are known parameters that
describe the decision objective. For simplicity, we asssume a
known graph G, which could be obtained via domain knowl-
edge (Wang, Qin, and Zhou 2023b) or learning (Qin, Wang,
and Zhou 2023a; Wang, Du, and Zhou 2024).

The AUF task is then given some historically observed data
D = {(xi, zi,yi)}mi=1 and G, we want to find a decision ξ
that maximizes the probability of the outcome Y falling into
the desired set S after observing the context X. Formally, we
want to solve

max
zA

P (Y ∈ S | X = x, Rh(ZA = zA))

s.t. za ∈ ∆(Za), ∀a ∈ A.
(3)

We assume ∆(Zai
) = [lai

, hai
] is a closed interval with

non-empty interior. Note that the objective function in (3)
cannot be evaluated since we do not have the true structural
equations. Therefore, we have to learn the SRM first and then
approximate the objectives. Moreover, even if we are pro-
vided with the complete SRM and a formula for computing
the objective (Wang, Qin, and Zhou 2023a; Qin et al. 2024),
optimizing for it could still be computationally infeasible
because we allow the unknown structural equations to take
nonlinear forms and do not restrict the noise distribution,
which is in stark contrast to the linear setting considered in
related work (Qin, Wang, and Zhou 2023b; Du et al. 2024).

4 Proposed Method
In this section, we present a gradient-based approximate
method for tackling the problem in (3). The overall method
can be divided into two parts. The first part is about learning
an SRM from the given rehearsal graph G and observational
data D by properly accounting for the uncertainty raised by
unobserved noise. The second part approximates the original
problem in (3) with a sampling-based unconstrained continu-
ous optimization problem, which permits the use of efficient
gradient-based optimization techniques.

4.1 Learning Structural Equations
Learning structural equations can be decomposed into learn-
ing the equations associated with each maximal bi-directional
clique Vc

i in G, which is equivalent to learning the multi-
output function fi and the distribution of εi (see Eq. 1). Let
C, PA, and ε denote a maximal bi-directional clique, its par-
ents, and the unobserved noise, respectively. The observed
data subset in D corresponding to C and PA are denoted by
{(ci,pai)}mi=1. In the following, we only need to focus on
learning the structural equations on C.

We use conditional normalizing flows to fit

p (c | pa) ,
which is the consequence of the structural equations and un-
observed noise. Roughly, a conditional flow can be seen as a

deep neural network that takes a condition pai and a random
Gaussian noise u ∼ N (0, I|C|) as inputs and then converts
the distribution from a Gaussian to the target distribution. The
network layers form an invertible and differentiable mapping
that transforms the Gaussian noise to the target. The model is
typically learned by minimizing the KL divergence between
the target distribution and the transformed distribution. It is
noteworthy that although the noise u is sampled from a Gaus-
sian distribution, the flow model has strong expressiveness
and can transform it into more complex ones (Hyvärinen and
Pajunen 1999; Bogachev, Kolesnikov, and Medvedev 2005).
Therefore, the model proposed here applies to problems with
nonlinear or non-Gaussian SRMs.

Let g denote the transformation encoded by a conditional
normalizing flow and θ its parameters. The output of the flow
model can be represented by

ĉ = g(pa,u;θ).

The transformed distribution is then

p̂(c | pa;θ) = pu(g
−1(c,pa))

∣∣∣∣det ∂g−1(c,pa)

∂c

∣∣∣∣ .
The KL divergence between the true distribution and the
transformed distribution is

KL (p (c | pa) ∥ p̂(c | pa;θ))
=− Ep(c|pa) [log p̂(c | pa;θ)] + const.

=− Ep(c|pa)
[
log pu(g

−1(c,pa)) + log Jg−1(c)
]
+ const.

where Jg−1 = ∂g−1(c,pa)
∂c . The model is fitted by minimizing

an empirical version of the KL divergence, i.e., minimizing

ℓ(θ) = − 1

m

m∑
i=1

log pu(g
−1(ci,pai)) + log Jg−1(ci).

For the design of g, we chain multiple transformations
g1, . . . , gK and set g = gK ◦ · · · ◦ g1. With a slight abuse
of notations, let z0 = u and zk ∈ R|C| denote the out-
put of gk. Then gk(z

k−1) = zk. Let d = ⌊|C|/2⌋ and
wk = concat

(
zk1:d,pa

)
for k = 0, . . . ,K − 1. We use a

transformation based on the one introduced in Dinh, Sohl-
Dickstein, and Bengio (2017) such that

zk1:d = zk−1
1:d ,

zkd+1:|C| = zk−1
d+1:|C| ⊙ exp

(
s(wk)

)
+ t(wk),

where s(·) and t(·) are two multi-layer perceptrons that map
from Rd to R|C|−d, and ⊙ denotes the Hadamard product. In
this way, g is a differentiable and invertible, and the associ-
ated Jacobian is a triangular matrix, whose determinant can
be easily determined by multiplying the diagonal elements.
We also perform permutation on dimensions for the output of
each layer to increase the expressiveness, which is omitted in
the formula for simplicity.

By fitting the conditional normalizing flows for each maxi-
mal bi-directional clique, we have an estimated SRM, which
characterizes the data-generating process and can be used to
generate samples that reflect the consequences of decisions.

The overall procedure for learning the SRM is given in Algo-
rithm 1, where the optimization on line 4 is done by applying
standard neural network training techniques.

Algorithm 1 Learning the SRM
Input: Rehearsal graph G, dataset D
1: for maximal bi-directional clique Vc

i ∈ G do
2: DC = {ξ[Vc

i] | ξ ∈ D} ▷ Data on selected variables
3: DPA = {ξ[PAi] | ξ ∈ D}
4: θi ← argmin

θ
ℓ(θ) ▷ Calculated with DC and DPA

5: end for
Output: {g(·, ·;θi)}i

4.2 Approximating Optimal Decisions
In this part, we try to solve the optimization problem in
(3). With the learned SRM, we effectively have a generative
model for how the outcomes will evolve after a decision.
Recall the AUF problem in Section 3, the possible outcome
after the decision can be represented by

ŷ = h (zA;x,U,Θ) ,

where x is the observed context, U = {ui}i is the noise,
Θ = {θi}i is the parameters of the SRM, and h denotes
the function that generates the outcome, which is a composi-
tion of related gis following the alteration graph GA. Since
the distribution of U is known, ideally one can obtain the
estimated distribution after the decision, i.e.,

p̂ (y | x, Rh(ZA = zA)) .

However, the above distribution is implicitly encoded in the
learned flow models and does not have a simple analyti-
cal form to compute with. Hence, we use a sampling-based
Monte Carlo approach: We randomly sample U1, . . . ,Un

and use them to estimate the probability of ŷ ∈ S . We try to
solve the empirical version of (3):

max
zA

1

n

n∑
i=1

I (h (zA;x,Ui,Θ) ∈ S)

s.t. la ≤ za ≤ ha, ∀a ∈ A,

(4)

where I(·) is the indicator function. When |A| is greater than
one and h is a linear function, it has been proved that the
problem in (4) cannot be solved within polynomial time if
P ̸= NP (Qin, Wang, and Zhou 2023b). Since h can take
arbitrary forms that are encoded by a deep neural network,
solving (4) would be more challenging: Obtaining an exact
optimal solution for (4) would be computationally unrealistic.
Instead, we present an approximate solution using gradient-
based optimization and surrogate loss functions.

We first convert (4) into an unconstrained problem. Since
tanh(·) takes values between −1 and 1, by setting

ea(λa) =
ha − la

2
tanh(λa) +

ha + la
2

, ∀a ∈ A,

we can ensure that the value is between la and ha for any
λa ∈ R. By replacing the optimization variables zA with

λ = (λa1 , . . . , λa|A|), we can drop the constraints in (4) and
form an equivalent programming:

max
λ∈R|A|

1

n

n∑
i=1

I (h (e(λ);x,Ui,Θ) ∈ S) , (5)

where e(λ) = (ea1
(λa1

), . . . , ea|A|(λa|A|)). Still, the prob-
lem does not admit efficient solutions due to the discrete
indicator function in the objective. In the following, we ap-
proximate the objective with differentiable surrogate losses
that are connected to the Chebyshev center of S.

The Chebyshev center of a polytope is the center of its
largest inscribed ball. Let o denote the Chebyshev center of
S and r denote the radius of the corresponding inscribed
ball. Recall the definition of S in Eq. 2, o and r can be
found by solving the following linear programming (Boyd
and Vandenberghe 2004):

max
o,r

r

s.t. r∥Mi∥+M⊤
i o ≤ di, i = 1, . . . , q,

(6)

where the M⊤
i denotes the i-th row vector of M and di is the

i-th element of d. The above programming can be efficiently
solved by many optimization toolboxes. The objective func-
tion in (5) aims to maximize the number of points that fall in
S . Noticing that the Chebyshev center and the corresponding
inscribed ball are always inside S , we substitute the objective
function with two classes of surrogate loss functions, namely
the center-based and the ball-based ones.

The center-based surrogate losses make use of the Cheby-
shev center, and push the points to approach the center. We
provide two instances:
• Center MSE (Mean Squared Error):

ℓMSE(λ) =
1

n

n∑
i=1

∥h (e(λ);x,Ui,Θ)− o∥2

• Center MAE (Mean Absolute Error):

ℓMAE(λ) =
1

n

n∑
i=1

∥h (e(λ);x,Ui,Θ)− o∥1

The ball-based surrogate losses take the inscribed ball
into account, which could be more robust since they tolerate
points that are far from the center as long as the points are
inside the ball. We also provide two instances:
• r-insensitive loss:

ℓr(λ) =
1

n

n∑
i=1

max (0, ∥h (e(λ);x,Ui,Θ)− o∥2 − r)

• Huber loss:

ℓHuber(λ) =
1

n

n∑
i=1

Hr (∥h (e(λ);x,Ui,Θ)− o∥2) ,

where Hr(a) =

{
a2 for |a| ≤ r,

r · (2|a| − r) otherwise.

For points outside the ball, both of the above two losses
punish them with the absolute loss. For the points that have
already been in the ball, the r-insensitive loss ignores them
while the Huber loss punishes them with the squared loss. If
all the points coincide with the center o, which will maximize
the objective in (5), then all four surrogate loss functions
will give a zero loss, which indicates that there is certain
consistency between maximizing the original objective and
minimizing the surrogate losses.

With a differentiable surrogate loss function ℓsurrogate(·),
we approximate (5) with

min
λ∈R|A|

ℓsurrogate(λ). (7)

Noticing that the programming in (7) is unconstrained and
the objective is differentiable, we can efficiently solve the
problem, at least find a saddle point or local minima, with
gradient-based optimization techniques. We present the full
method Grad-Rh in Algorithm 2: As the structural equations
associated with the variables involved in the decision will not
take effect in determining the outcome, we only need to learn
the SRM associated with the alteration graph GA. Then we
sample n noise instances and solve the approximation in (7),
finally, we transform the results back to the decision space
and output the recommended decision. Although this method
does not ensure optimality, it has great running efficiency by
leveraging gradient-based optimization techniques.

The Grad-Rh method is quite flexible and does not have to
be bundled with the conditional flow models in Algorithm 1.
One can fit the SRMs with any other differentiable generative
models and plug them into Algorithm 1 seamlessly. As a
special case, the linear Gaussian SRM considered in Qin,
Wang, and Zhou (2023b), which is obviously differentiable,
can be solved by Grah-Rh as well: The {g(·, ·;θi)}i, which
is now a linear generative model, can be learned by simply
fitting linear regression models for each clique and estimating
the residual variances. Then the recommended decisions can
be found by running Algorithm 2 starting from line 3.

Algorithm 2 Grad-Rh
Input: Rehearsal graph G, alterable set A, dataset D, number

of rehearsal samples n, observed context x, parameter for the
desired set M and d

1: GA ← the alteration graph of G after a decision on A
2: {g(·, ·;θi)}i ← the outputs of Algorithm 1 given GA and D
3: h(·;x, ·,Θ) ← the function that generates the outcome com-

posited with {g(·, ·;θi)}i given x
4: o, r ← solution of the programming in (6)
5: Sample U1, . . . ,Un

6: λ⋆ ← solving (7) with certain surrogate loss
7: z⋆A ← e(λ∗)
Output: The recommended decision z⋆A

5 Experiments
We conducted experiments on both linear and nonlinear
datasets to evaluate the performance of the Grad-Rh method
against the baseline method QWZ23 (Qin, Wang, and Zhou
2023b). The baseline method gives exact solutions for the

linear Gaussian case by using the time-consuming mixed inte-
ger linear programming approach when the decision involves
multiple variables, while our Grad-Rh method provides ap-
proximate solutions via gradient-based optimization, which
could be very efficient. Therefore, we want to answer three
questions through the experiments: (1) How large is the gap
between the approximate solution generated by Grad-Rh and
the exact solution? (2) How does the running time scale for
both methods with an increased number of samples? (3) How
is the sensitivity of the performance of Grad-Rh concern-
ing the hyper-parameters, such as the learning rate in the
optimization process and the surrogate loss function? All
experiments were run on a Nvidia Tesla A100 GPU and two
Intel Xeon Platinum 8358 CPUs. In the following, we give
descriptions of the datasets and implementation details.

5.1 Datasets
Linear setting. We adopted the two datasets, Bermuda and
Ride-hailing, used in Qin, Wang, and Zhou (2023b) and two
additional synthetic datasets for the case with linear SRMs.
The Bermuda dataset (Courtney et al. 2017; Andersson and
Bates 2018) records some environmental variables, aiming to
maintain a high net coral ecosystem calcification level. The
graphical structure that generates the data is known (Courtney
et al. 2017), and the true structural equations are obtained
by fitting linear regression models. The ride-hailing data is
abstracted from a real scenario, where variables such as the
weather and traffic are considered and the goal of decision-
making is to achieve a high user rating for a ride-hailing
app. The synthetic datasets are generated via the following
procedure: First sampling a random rehearsal graph by ran-
domly sampling the number of variables in X,Z, and Y and
connecting each pair of variables with a given probability;
then we select the coefficients and bias of each linear struc-
tural equation uniformly at random between −1 and 1. We
manually inspect the observational outcome distribution and
select a region with a probability mass smaller than 0.1 as the
desired set. The total number of variables in the two synthetic
datasets is 20; the number of alterable variables is 4 and 3,
respectively. The range of alterable values is set to be [−3, 3].

Nonlinear setting. As we cannot find real datasets with
known nonlinear SRMs, we generate four synthetic datasets.
For each dataset, we randomly sample a rehearsal graph
as described in the linear setting, then we instantiate the
structural equations with a randomly initialized three-layer
MLP (Multi-Layer Perceptron). We use the sigmoid function
as the activation function. The MLP parameters are uniformly
chosen from [−2,−0.5] and [0.5, 2]. The total number of
variables in the four datasets is 12, 13, 16 and 24, and the
number of alterable variables is 5, 5, 6 and 4, respectively.
The desired sets are regions with a probability mass below 0.1
and are manually determined by examining the observational
distributions. Since the scale of the variables can differ a
lot after the nonlinear mappings, for each alterable variable
Zai

, the alterable range is set to ∆(Zai
) = [µ − α · σ, µ +

α · σ], where µ and σ are respectively the empirical mean
and standard deviation estimates of Zai

, and α controls the
alterable range and is typically set to 1.0 or 2.0. Please refer
to the supplementary materials for detailed setups.

5.2 Implementations
Grad-Rh. Our proposed gradient-based rehearsal learning
method uses a unified network structure and training pro-
cedure to learn each structural equation in every nonlinear
experiment setup as in Algorithm 1. Specifically, the network
contains 16 blocks, each of which combines affine coupling,
permutation, and global affine transformation (Ardizzone
et al. 2018), to form an invertible flow. When fitting a struc-
tural equation, 70% observational data are used as the train-
ing set, and the left data are used as a validation set for
early stopping. We train each model for a maximum of 1,000
epochs with the Adam optimizer (Kingma and Ba 2015). The
learning rate is 0.001, and the batch size is 128. For linear
experiments, training a deep neural network is not necessary,
and we fit a simple network with one linear layer to reduce
computational overhead. For Algorithm 2, we experiment
with all four surrogate losses described in Section 4, and solv-
ing (7) with a maximum of 1,000 rounds of Adam optimizer
with 0.001 learning rate.

Experiment setups. For each experiment setup, the size
of initial observed dataset D is 1,000, and the number of de-
cision runs is 100. For each decision round and each method,
the number of rehearsal samples n is 1,000. After a decision
is found by a method, we evaluate the decision quality (the
probability that the decision successfully avoids the happen-
ing of undesired future) by sampling 10,000 trials from the
true altered SRM and counting the success frequency. Since
mixed-integer linear programming could be extremely time-
consuming in some cases, we limit the running time of each
method to 120 seconds. If a method cannot find a solution
within the constraints, we take a default all-zero vector as
the output. For each setup, we report the average success
probability and standard deviation.

5.3 Results
Tables 1 and 2 show the success probability of the baseline
and Grad-Rh with four surrogate losses in linear and nonlin-
ear settings, respectively. Grad-Rh has a significantly shorter
overall running time and maintains good decision quality. For
linear settings, Grad-Rh achieves almost as good decision
quality as the exact baseline approach while less than half
running time in three out of four settings. For nonlinear set-
tings, the baseline cannot perform well, and can struggle to
find a solution, whereas Grad-Rh significantly improves the
success probability and running time. The baseline method
runs faster on the MLP4 dataset, but that comes at the cost of
a significantly lower success probability, while our method
achieves a good balance between decision quality and run-
ning time. In addition, the center MAE loss produces the best
decisions among the surrogate losses, which could be due to
its robustness against extreme values.

We further compare the relation between the decision qual-
ity and the surrogate loss, as shown in Fig. 3 (a). It shows
that each surrogate loss has a monotonic relation with the
success probability, which indicates the consistency between
the decision objective and the loss function and justifies the
approximation procedure in Grad-Rh. The scalability of Grad-
Rh and baseline is illustrated in Fig. 3 (b), where Grad-Rh

Method Obs. QWZ23 Center MSE Center MAE r-insensitive Huber loss

Dataset prob. prob. time (s) prob. time (s) prob. time (s) prob. time (s) prob. time (s)

Bermuda .31±.07 .68±.01 0.8±0.2 .67±.02 0.2±0.1 .67±.01 0.2±0.1 .66±.02 0.2±0.1 .66±.02 0.2±0.1
Traffic .11±.11 .63±.20 0.2±0.2 .63±.19 0.1±0.1 .62±.19 0.1±0.1 .63±.19 0.1±0.1 .62±.19 0.1±0.1
Linear1 .09±.21 .96±.01 1.1±0.8 .94±.05 0.2±0.2 .95±.02 0.2±0.2 .94±.04 0.2±0.2 .95±.02 0.2±0.2
Linear2 .06±.18 .67±.37 0.3±0.1 .64±.36 0.6±0.3 .66±.36 0.6±0.2 .64±.36 0.6±0.3 .64±.36 0.6±0.3

Table 1: Results for linear SRM settings (avg. ± std.). The Obs. column shows the probability that undesired things will not
happen if no actions are taken. Results with the highest average success probability or shortest running time are shown in bold.

Method Obs. QWZ23 Center MSE Center MAE r-insensitive Huber loss

Dataset prob. prob. time (s) prob. time (s) prob. time (s) prob. time (s) prob. time (s)

MLP1 .10±.08 .00±.00 120.2±0.3 .15±.11 7.7±0.4 .26±.09 7.7±0.4 .17±.10 7.7±0.4 .18±.09 7.7±0.3
MLP2 .11±.03 .36±.15 42.5±8.8 .37±.18 12.0±0.5 .40±.16 12.0±0.5 .37±.17 12.1±0.5 .38±.17 12.1±0.5
MLP3 .14±.02 .27±.00 120.1±0.0 .42±.16 12.0±0.3 .42±.20 12.0±0.3 .41±.18 12.0±0.3 .41±.19 12.0±0.3
MLP4 .15±.15 .26±.18 0.9±0.6 .44±.17 19.8±0.7 .44±.18 19.9±1.1 .44±.18 20.1±1.2 .44±.18 20.0±1.0

Table 2: Results for nonlinear SRM settings (avg. ± std.). The Obs. column shows the probability that undesired things will not
happen if no actions are taken. Results with the highest average success probability or shortest running time are shown in bold.

enjoys the parallel computing power of GPUs and does not
significantly increase the computing time when the number
of rehearsal samples increases, whereas the running time
of baseline method drastically increases, showing the good
scalability of our method.

0.0 0.2 0.4 0.6
prob.

0

2

4

6

lo
ss

center MSE

center MAE

r-insensitive

Huber loss

(a)

0 1000 2000 3000 4000
n

0

200

400

600

800

T
im

e
(s

)

QWZ23

Grad-Rh

(b)

Figure 3: (a) The relation between the four surrogate losses
of a decision evaluated on the samples generated by the fitted
SRM and the probability of successfully avoiding Y ̸∈ S on
the Bermuda dataset. (b) The relation between the running
time and the number of samples on the MLP2 dataset.

We also examine the effect of the learning rate in Grad-
Rh, which is shown in Fig. 4 (a). Grad-Rh works well for
a wide range of learning rates and a larger learning rate
corresponds to faster convergence. Fig. 4 (b) shows how
the decision quality changes with the alteration range. One
may conjecture that a larger alteration range corresponds to
a larger decision space and therefore a method could make
better decisions. But that does not hold: The decision quality
decreases as the alteration range becomes winder, which we
attribute to the distribution difference between observation
and decision. The learned SRMs are fitted on observational
data, so one can expect that the model could perform well
on a range that has been observed, but the model could fail
to generalize when the altered variable is set to values in an

10−4 10−3 10−2 10−1 100 101

learning rate η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

prob.

time (s)

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
α

0.2

0.3

0.4

0.5

P
ro

b
.

(b)

Figure 4: (a) The relation between the success probabil-
ity/running time and the learning rate η on the Bermuda
dataset. (b) The probability of successfully avoiding the hap-
pening of Y ̸∈ S changes with varying alteration range
∆(Zi) = [µ− α · σ, µ+ α · σ] on the MLP2 dataset.

unobserved range. So there is a tradeoff between the search
space (the quality of optimal decisions) and the learnability
of the model, which we think is worth more exploration in
future studies.

6 Conclusion
In this work, we investigate the rehearsal learning problem, a
promising paradigm for decision-making tasks. We propose
the first method capable of addressing multi-variate decision-
making problems for nonlinear and non-Gaussian structural
rehearsal models. The proposed method, Grad-Rh, leverages
the strong expressive power of invertible flow models and
specifically designed surrogate loss functions to optimize
decision objectives. Grad-Rh demonstrates a superior ability
to identify high-quality decisions with significantly reduced
computational time compared to baseline methods. We hope
that this work will establish a new baseline for future research
in the promising field of rehearsal learning.

Acknowledgements
This research was supported by Jiangsu Science Foun-
dation Leading-edge Technology Program (BK20232003)
and National Postdoctoral Program for Innovative Talent
(BX20240162).

References
Andersson, A.; and Bates, N. 2018. In situ measure-
ments used for coral and reef-scale calcification structural
equation modeling including environmental and chemical
measurements, and coral calcification rates in Bermuda
from 2010 to 2012 (BEACON project). Http://lod.bco-
dmo.org/id/dataset/720788.
Ardizzone, L.; Bungert, T.; Draxler, F.; Köthe, U.; Kruse, J.;
Schmier, R.; and Sorrenson, P. 2018. Framework for Easily
Invertible Architectures (FrEIA).
Ardizzone, L.; Lüth, C.; Kruse, J.; Rother, C.; and Köthe, U.
2019. Guided Image Generation with Conditional Invertible
Neural Networks. arXiv:1907.02392.
Bogachev, V. I.; Kolesnikov, A. V.; and Medvedev, K. V.
2005. Triangular Transformations of Measures. Sbornik:
Mathematics, 196(3): 309.
Boyd, S.; and Vandenberghe, L. 2004. Convex Optimization.
Cambridge University Press.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In Advances in Neural Information
Processing Systems.
Chen, C.; Seff, A.; Kornhauser, A. L.; and Xiao, J. 2015.
DeepDriving: Learning Affordance for Direct Perception in
Autonomous Driving. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2722–2730.
Cheng, H.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.;
Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M.;
Anil, R.; Haque, Z.; Hong, L.; Jain, V.; Liu, X.; and Shah, H.
2016. Wide & Deep Learning for Recommender Systems.
In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, 7–10.
Chickering, D. M. 1995. Learning Bayesian Networks is NP-
Complete. Learning from Data. Lecture Notes in Statistics,
112: 121–130.
Chitta, K.; Prakash, A.; Jaeger, B.; Yu, Z.; Renz, K.; and
Geiger, A. 2023. TransFuser: Imitation With Transformer-
Based Sensor Fusion for Autonomous Driving. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 45(11):
12878–12895.
Courtney, T. A.; Lebrato, M.; Bates, N. R.; Collins, A.; de Pu-
tron, S. J.; Garley, R.; Johnson, R.; Molinero, J.-C.; Noyes,
T. J.; Sabine, C. L.; and Andersson, A. J. 2017. Environmen-
tal Controls on Modern Scleractinian Coral and Reef-scale
Calcification. Science Advances, 3(11): e1701356.

Dinh, L.; Krueger, D.; and Bengio, Y. 2015. NICE: Non-
linear Independent Components Estimation. In Proceedings
of the 3rd International Conference on Learning Representa-
tions.
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2017. Density
Estimation Using Real NVP. In Proceedings of the 5th Inter-
national Conference on Learning Representations.
Du, W.-B.; Qin, T.; Wang, T.-Z.; and Zhou, Z.-H. 2024.
Avoiding Undesired Future with Minimal Cost in Non-
Stationary Environments. In Advances in Neural Information
Processing Systems.
Hyvärinen, A.; and Pajunen, P. 1999. Nonlinear Indepen-
dent Component Analysis: Existence and Uniqueness Results.
Neural Networks, 12(3): 429–439.
Imbens, G. W.; and Rubin, D. B. 2015. Causal Inference for
Statistics, Social, and Biomedical Sciences: An Introduction.
Cambridge University Press.
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for Stochas-
tic Optimization. In Proceedings of the 3rd International
Conference on Learning Representations.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative Flow
with Invertible 1x1 Convolutions. In Advances in Neural
Information Processing Systems, 10236–10245.
Kobyzev, I.; Prince, S. J. D.; and Brubaker, M. A. 2021.
Normalizing Flows: An Introduction and Review of Current
Methods. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 43(11): 3964–3979.
Lattimore, F.; Lattimore, T.; and Reid, M. D. 2016. Causal
Bandits: Learning Good Interventions via Causal Inference.
In Advances in Neural Information Processing Systems, 1181–
1189.
LeCun, Y.; Bengio, Y.; and Hinton, G. 2015. Deep learning.
Nature, 521: 436–444.
Lee, S.; and Bareinboim, E. 2018. Structural Causal Bandits:
Where to Intervene? In Advances in Neural Information
Processing Systems, 2573–2583.
Papamakarios, G. 2019. Neural Density Estimation and
Likelihood-free Inference. arXiv:1910.13233.
Papamakarios, G.; Nalisnick, E. T.; Rezende, D. J.; Mohamed,
S.; and Lakshminarayanan, B. 2021. Normalizing Flows for
Probabilistic Modeling and Inference. Journal of Machine
Learning Research, 22: 57:1–57:64.
Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition.
Qin, T.; Li, L.-F.; Wang, T.-Z.; and Zhou, Z.-H. 2024. Track-
ing Treatment Effect Heterogeneity in Evolving Environ-
ments. Machine Learning, 113(6): 3653–3673.
Qin, T.; Wang, T.-Z.; and Zhou, Z.-H. 2023a. Learning Causal
Structure on Mixed Data with Tree-structured Functional
Models. In Proceedings of the 23rd SIAM International
Conference on Data Mining, 613–621.
Qin, T.; Wang, T.-Z.; and Zhou, Z.-H. 2023b. Rehearsal
Learning for Avoiding Undesired Future. In Advances in
Neural Information Processing Systems, 80517–80542.
Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
Prediction, and Search. MIT press, 2nd edition.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is All you Need. In Advances in Neural Information
Processing Systems, 5998–6008.
Wang, T.-Z.; Du, W.-B.; and Zhou, Z.-H. 2024. An Efficient
Maximal Ancestral Graph Listing Algorithm. In Proceedings
of the 41st International Conference on Machine Learning.
Wang, T.-Z.; Qin, T.; and Zhou, Z.-H. 2023a. Estimating
Possible Causal Effects with Latent Variables via Adjust-
ment. In Proceedings of the 40th International Conference
on Machine Learning, 36308–36335.
Wang, T.-Z.; Qin, T.; and Zhou, Z.-H. 2023b. Sound and
Complete Causal Identification with Latent Variables Given
Local Background Knowledge. Artificial Intelligence, 322:
103964.
Winkler, C.; Worrall, D.; Hoogeboom, E.; and Welling, M.
2023. Learning Likelihoods with Conditional Normalizing
Flows. arXiv:1912.00042.
Zhou, Z.-H. 2022a. Open-environment Machine Learning.
National Science Review, 9(8).
Zhou, Z.-H. 2022b. Rehearsal: Learning From Prediction to
Decision. Frontiers of Computer Science, 16(4): 164352.
Zhou, Z.-H. 2023. Rehearsal: Learning from Prediction to
Decision. Keynote at the CCF Conference on AI, Urumqi,
China.

