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Abstract
Projection-free online learning has drawn increasing inter-
est due to its efficiency in solving high-dimensional prob-
lems with complicated constraints. However, most existing
projection-free online methods focus on minimizing the static
regret, which unfortunately fails to capture the challenge of
changing environments. In this paper, we investigate non-
stationary projection-free online learning, and choose dy-
namic regret and adaptive regret to measure the performance.
Specifically, we first provide a novel dynamic regret analysis
for an existing projection-free method named BOGDIP, and
establish an O(T 3/4(1 + PT )) dynamic regret bound, where
PT denotes the path-length of the comparator sequence.
Then, we improve the upper bound to O(T 3/4(1 + PT )

1/4)
by running multiple BOGDIP algorithms with different step
sizes in parallel, and tracking the best one on the fly. Our
results are the first general-case dynamic regret bounds for
projection-free online learning, and can recover the existing
O(T 3/4) static regret by setting PT = 0. Furthermore, we
propose a projection-free method to attain an Õ(τ3/4) adap-
tive regret bound for any interval with length τ , which nearly
matches the static regret over that interval. The essential idea
is to maintain a set of BOGDIP algorithms dynamically, and
combine them by a meta algorithm. Moreover, we demon-
strate that it is also equipped with an O(T 3/4(1 + PT )

1/4)
dynamic regret bound. Finally, empirical studies verify our
theoretical findings.

Introduction
In many online learning problems, the decision constraint
sets are often high-dimensional and complicated, render-
ing optimization over such sets challenging. In these cases,
traditional projection-based methods, such as Online Gra-
dient Descent (OGD) (Zinkevich 2003), often suffer heavy
computational costs due to the time-consuming or even in-
tractable projection operations. To address this limitation,
projection-free online methods, which replace projections
with less expensive computations (e.g., linear optimizations)
and thus can be implemented efficiently in many cases of in-
terest, have drawn considerable attention in the online learn-
ing community (Hazan and Kale 2012; Garber and Hazan
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2016; Huang et al. 2016; Levy and Krause 2019; Chen,
Zhang, and Karbasi 2019; Hazan and Minasyan 2020; Wan,
Tu, and Zhang 2020; Molinaro 2020; Kalhan et al. 2021;
Wan and Zhang 2021; Wan, Xue, and Zhang 2021; Kretzu
and Garber 2021; Garber and Kretzu 2022; Mhammedi
2022; Wan et al. 2022; Wang et al. 2023a; Lu et al. 2023;
Wan, Zhang, and Song 2023; Garber and Kretzu 2023).

The studies of projection-free online methods follow the
framework of Online Convex Optimization (OCO), which
can be regarded as a repeated game between a learner against
an adversary (Shalev-Shwartz 2012). At round t, the learner
chooses an action xt from a convex domain set K, and then
suffers an instantaneous loss ft(xt), where the convex loss
function ft(·) : K → R is chosen by the adversary. The
majority of existing projection-free methods, e.g., Online
Frank-Wolfe (OFW) (Hazan and Kale 2012), minimize the
static regret:

RegretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x), (1)

which benchmarks the cumulative loss of the online method
against that of the best fixed action in hindsight. However,
in real-world scenarios such as online recommendation and
online traffic scheduling (Hazan 2016), this static metric is
unsuitable as the environments are non-stationary and the
best action is drifting over time. To tackle this issue, two
novel metrics: dynamic regret and adaptive regret, are pro-
posed independently (Zinkevich 2003; Hazan and Seshadhri
2007; Daniely, Gonen, and Shalev-Shwartz 2015).

The dynamic regret stems from Zinkevich (2003), who
defines

D-RegretT (u1, · · · ,uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut), (2)

where u1, · · · ,uT ∈ K are any possible comparators. Un-
fortunately, obtaining a sublinear dynamic regret with arbi-
trarily varying sequences is impossible. As a result, to es-
tablish a meaningful bound, it is common to introduce some
regularities of the comparator sequence, such as the path-
length

PT =
T∑
t=2

‖ut−1 − ut‖2.
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The adaptive regret is originally introduced by Hazan and
Seshadhri (2007), and further strengthened by Daniely, Go-
nen, and Shalev-Shwartz (2015). Formally, it is defined as

SA-RegretT (τ)

= max
[s,s+τ−1]⊆[T ]

{
s+τ−1∑
t=s

ft(xt)−min
x∈K

s+τ−1∑
t=s

ft(x)

}
,

(3)

which is the maximum static regret over any interval with
the length τ . Since in different intervals the best actions can
be different, (3) essentially measures the performance of the
online method against changing comparators.

In the literature, only a few projection-free online meth-
ods (Kalhan et al. 2021; Wan, Xue, and Zhang 2021; Wan,
Zhang, and Song 2023) have investigated dynamic regret
minimization, but all of them focus on the worst case of
(2), where ut ∈ arg minu∈K ft(u) is a minimizer of ft(·).
However, the worst-case dynamic regret is too pessimistic,
and cannot recover the static regret bound of previous meth-
ods (Hazan and Kale 2012; Hazan and Minasyan 2020).
Besides, there exist two studies (Garber and Kretzu 2022;
Lu et al. 2023) that propose projection-free methods for
adaptive regret minimization. However, Garber and Kretzu
(2022) only consider a weak form of (3) which does not
respect short intervals well, and the method of Lu et al.
(2023) could be time-consuming in many popular domains,
e.g., bounded trace norm matrices and matroid polytopes
(Mhammedi 2022).

In this paper, we choose (2) and (3) as the performance
metrics, and propose two novel methods for non-stationary
projection-free online learning. Specifically, in the dynamic
regret minimization, we first establish a novel dynamic re-
gret bound of O(T 3/4(1 + PT )) for an existing projection-
free variant of Online Gradient Descent, termed as BOGDIP
(Garber and Kretzu 2022).1 Then, we improve the upper
bound to O(T 3/4(1 + PT )1/4) by proposing a two-layer
method named POLD, which maintains multiple BOGDIP
algorithms with different step sizes, and tracks the best one
on the fly by a meta algorithm. In the adaptive regret mini-
mization, we propose a novel projection-free method named
POLA, which attains an Õ(τ3/4) adaptive regret bound for
any interval with the length τ . The key idea is to construct
a set of intervals dynamically, run a BOGDIP algorithm that
aims to minimize the static regret for each interval, and com-
bine them by a meta algorithm. Moreover, we show that our
POLA can also minimize the dynamic regret, and ensures an
O(T 3/4(1 + PT )1/4) bound. Notably, although POLA can
achieve the same dynamic regret bound as POLD, the lat-
ter one is still valuable in the sense that it employs a clearer
structure and a simpler meta algorithm, rendering it much
easier to comprehend and implement.

Contributions. We summarize the contributions of this
work below.

1In Garber and Kretzu (2022), BOGDIP is referred to as
Blocked Online Gradient Descent with Linear Optimization Ora-
cle (LOO-BOGD).

• For dynamic regret, we first provide a novel analysis
for BOGDIP (Garber and Kretzu 2022), and establish an
O(T 3/4(1+PT )) dynamic regret. Then, we improve this
bound to O(T 3/4(1 + PT )1/4) by proposing a two-layer
method named POLD. Note that the obtained bounds
can recover the previous O(T 3/4) static regret (Hazan
and Kale 2012) by setting PT = 0. To the best of our
knowledge, these are the first general-case dynamic re-
gret bounds in projection-free online learning.

• For adaptive regret, based on BOGDIP, we propose a
novel projection-free method named POLA and obtain
an Õ(τ3/4) adaptive regret which nearly matches previ-
ous static results. Moreover, we show that POLA can also
ensure anO(T 3/4(1+PT )1/4) dynamic regret bound. In
other words, it can minimize dynamic regret and adaptive
regret simultaneously.

• We conduct experiments on practical problems to ver-
ify our theoretical findings in dynamic regret and adap-
tive regret minimization. Empirical results demonstrate
the advantage of proposed methods.

Related Work
In this section, we briefly review related work in dynamic
regret and adaptive regret.

Dynamic Regret
In the literature, dynamic regret has two different forms. One
is the general case (2) introduced by Zinkevich (2003), who
defines it as the difference between the cumulative loss of
the online method and that of any possible comparator se-
quence. In this seminal work, Zinkevich (2003) establishes
the first general-case bound of O(

√
T (1 + PT )) for OGD.

Later, Zhang, Lu, and Zhou (2018) improve the upper bound
to O(

√
T (1 + PT )), motivated by the strategy of maintain-

ing multiple step sizes in MetaGrad (van Erven and Koolen
2016; Mhammedi, Koolen, and van Erven 2019; van Erven,
Koolen, and van der Hoeven 2021). In recent years, several
studies have further investigated the general-case dynamic
regret by leveraging the curvature of loss functions, such
as exponential concavity (Baby and Wang 2021) and strong
convexity (Baby and Wang 2022).

The other is the worst case of (2), which specializes the
comparators as the minimizers of loss functions (Besbes,
Gur, and Zeevi 2015; Jadbabaie et al. 2015; Mokhtari et al.
2016; Yang et al. 2016; Baby and Wang 2019):

D-RegretT (u∗1, · · · ,u∗T ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(u
∗
t ), (4)

where u∗t ∈ arg minu∈K ft(u) is a minimizer of ft(·). How-
ever, as pointed out by Zhang, Lu, and Zhou (2018), the
worst-case dynamic regret (4) is too pessimistic and could
lead to overfitting in the stationary problems.

In projection-free online learning, several studies (Kalhan
et al. 2021; Wan, Xue, and Zhang 2021; Wan, Zhang,
and Song 2023) have investigated the dynamic regret re-
cently, but they only consider the worst-case formulation
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Method Loss Operation Metric Bound

Kalhan et al. (2021) smooth & convex LO WD-R O(
√
T (1 + FT +

√
DT ))

Wan, Zhang, and Song (2023) smooth & convex LO WD-R O(
√
T (1 + FT ))

Wan, Xue, and Zhang (2021) convex LO WD-R O(max{T 2/3F
1/3
T ,
√
T})

strongly convex LO WD-R O(max{
√
TFT log T , log T})

BOGDIP (this work) convex LO D-R O(T 3/4(1 + PT ))
POLD (this work) convex LO D-R O(T 3/4(1 + PT )1/4)
POLA (this work) convex LO D-R O(T 3/4(1 + PT )1/4)

Garber and Kretzu (2022) convex LO A-R O(T 3/4)

Lu et al. (2023) convex MO SA-R Õ(
√
τ)

POLA (this work) convex LO SA-R Õ(τ3/4)

Table 1: Summary of existing methods in non-stationary projection-free online learning. Abbreviations: linear optimization→
LO, membership operation → MO, worst-case dynamic regret (4) → WD-R, general-case dynamic regret (2) → D-R, weak
adaptive regret (5)→ A-R, strongly adaptive regret (3)→ SA-R. τ denotes the length of an interval I , i.e., τ = |I|.

(4). Specifically, for smooth and convex losses, Kalhan et al.
(2021) establish an O(

√
T (1 + FT +

√
DT )) worst-case

bound2, where FT denotes the functional variation (Besbes,
Gur, and Zeevi 2015)

FT =

T∑
t=2

sup
x∈K
|ft(x)− ft−1(x)|,

and DT denotes the gradient variation (Chiang et al. 2012)

DT =
T∑
t=2

‖∇ft(xt)−∇ft−1(xt−1)‖22.

For convex losses and strongly convex losses, Wan, Xue, and
Zhang (2021) develop the O(max{T 2/3F

1/3
T ,
√
T}) and

O(max{
√
TFT log T , log T}) worst-case bounds, respec-

tively. Very recently, Wan, Zhang, and Song (2023) refine
the analysis of Kalhan et al. (2021), achieving an improved
O(
√
T (1 + FT )) bound. However, due to the weakness of

(4), their bounds can be very loose for any other compara-
tors, and cannot recover the static regret of existing methods,
e.g., O(T 3/4) for convex losses (Hazan and Kale 2012).

Adaptive Regret
Prior studies in adaptive regret minimization mainly focus
on the setting of Prediction with Expert Advice (PEA) (Lit-
tlestone and Warmuth 1994; Freund et al. 1997; György,
Linder, and Lugosi 2012; Luo and Schapire 2015; Adamskiy
et al. 2016), and OCO (Hazan and Seshadhri 2007; Daniely,
Gonen, and Shalev-Shwartz 2015; Jun et al. 2017a,b; Zhang,
Liu, and Zhou 2019). In this section, we specifically intro-
duce the related work of the latter one.

Hazan and Seshadhri (2007) first introduce the notion of
adaptive regret, but in a weak form:

A-RegretT = max
[s,e]⊆[T ]

{
e∑
t=s

ft(xt)−min
x∈K

e∑
t=s

ft(x)

}
,

(5)
2A recent study (Zhou, Xu, and Tzoumas 2023) obtains the

same regret bound while removing the smoothness assumption.

which is the maximum static regret over any contiguous in-
terval. To minimize (5), they propose Follow the Leading
History (FLH) with an O(d log2 T ) weak adaptive regret
bound for exponentially concave losses where d denotes the
dimensionality. However, (5) could be dominated by long
intervals and hence, cannot respect short intervals well. For
example, one may obtain an O(

√
T ) weak adaptive regret

for OGD, but this is vacuous for the intervals with length
o(
√
T ) (Hazan 2016). For this reason, Daniely, Gonen, and

Shalev-Shwartz (2015) put forth the (strongly) adaptive re-
gret (3), and design a two-layer algorithm named Strongly
Adaptive Online Learner (SAOL). The basic idea is first to
construct a set of Geometric Covering (GC) intervals and for
each interval, run an OGD algorithm that can obtain the opti-
mal static regret. Then, SAOL combines the actions of these
OGD algorithms by a meta algorithm. We observe that the
technique of constructing GC intervals can be traced back to
the prior studies (Willems and Krom 1997; György, Linder,
and Lugosi 2012).

In projection-free online learning, Garber and Kretzu
(2022) study the weak version of adaptive regret (5), and
propose a projection-free extension of OGD named BOGDIP
with anO(T 3/4) bound. Unfortunately, due to the limitation
of (5), their bound does not respect short intervals well. Very
recently, following the framework of SAOL, Lu et al. (2023)
propose a novel two-layer method to minimize (3). Dif-
ferent from previous projection-free algorithms, e.g., OFW
(Hazan and Kale 2012), their method circumvents the pro-
jections with membership operations (Mhammedi 2022).
However, such operations could be inefficient in many prac-
tical scenarios, e.g., bounded trace norm matrices and ma-
troid polytopes (Mhammedi 2022). Besides, in each round,
their method need to perform O(log T ) membership opera-
tions for each expert algorithm, which brings heavy compu-
tational costs when T is large.

Summary
While a few studies have investigated non-stationary
projection-free online learning (see Table 1 for details), they
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are still unsatisfactory in the following aspects:

• In the dynamic regret minimization, there is no study op-
timizing the general-case form (2), which is more chal-
lenging since it needs to build a universal guarantee over
any comparator sequences.

• In the adaptive regret minimization, although Lu et al.
(2023) have established bounds for (3), their method is
based on the membership operations, instead of the more
popular linear optimizations.

Main Results
In this section, we first introduce the basic assumptions.
Then, we present our proposed methods as well as their theo-
retical guarantees in dynamic regret and adaptive regret min-
imization. The proofs for theoretical results can be found in
the full version (Wang et al. 2023b).

Assumptions
Similar to previous studies on OCO, we adopt the following
standard assumptions (Shalev-Shwartz 2012; Hazan 2016).

Assumption 1. The convex decision set K contains the ori-
gin 0, and belongs to an Euclidean ballRB with the diameter
D = 2R, i.e.,

∀x,x′ ∈ K, ‖x− x′‖2 ≤ D. (6)

Assumption 2. At each round t, the loss function ft(·) is
G-Lipschitz over K, i.e.,

∀x,y ∈ K, |ft(x)− ft(y)| ≤ G‖x− y‖2. (7)

Assumption 3. At each round t, the loss function ft(·) is
convex over K, i.e.,

∀x,y ∈ K, ft(y) ≥ ft(x) +∇ft(x)>(y − x). (8)

Assumption 4. At each round t, the loss function value
ft(x) belongs to [0, 1] for any x ∈ K, i.e.,

∀x ∈ K, 0 ≤ ft(x) ≤ 1. (9)

Projection-Free Dynamic Regret
We first revisit BOGDIP (Garber and Kretzu 2022), of which
the key idea is to replace the projection operation with an
infeasible projection oracle OIP, defined as following.

Definition 1. LetOIP be an infeasible projection oracle over
K ⊆ RB, and ε be the error tolerance. Then, for any input
points (x0,y0) ∈ K × Rd, the infeasible projection oracle
returns

x, ỹ = OIP(K, ε,x0,y0),

where (x, ỹ) ∈ K × RB, and ‖x − ỹ‖2 ≤
√

3ε and ∀z ∈
K, ‖ỹ − z‖2 ≤ ‖y0 − z‖2.

Remark:OIP can be implemented efficiently by solving lin-
ear optimizations. We briefly introduce this implementation
in the supplementary material, and refer interested readers
to Garber and Kretzu (2022) for a deeper comprehension.

Besides, BOGDIP utilizes the blocking technique (Garber
and Kretzu 2020; Hazan and Minasyan 2020), which divides

Algorithm 1: Blocked Online Gradient Descent with
Infeasible Projections (BOGDIP)
Input: Number of rounds T , domain set K, step size η, in-
feasible projection oracle OIP
Initialization: Choose arbitrary point x1 ∈ K and set ỹ1 =
x1,m = 1, block size K = η−2/3 and error tolerance ε =
η2/3.

1: for t = 1 to T do
2: Submit xt = xm, observe ft(xt) and obtain∇ft(xt)
3: if t mod K = 0 then
4: Update ym+1 according to (10)
5: Set xm+1, ỹm+1 according to (11), and m =

bt/Kc+ 1
6: end if
7: end for

the time horizon T into equally-sized blocks and only con-
ducts updating at the end of each block. In other words, for
each block m, BOGDIP maintains (xm, ỹm) ∈ K × RB,
and updates them at the last round of block m. To be pre-
cise, BOGDIP first performs gradient descent on ỹm with
the step size η:

ym+1 = ỹm − η
mK∑

r=(m−1)K+1

∇fr(xm), (10)

where K is the block size and
∑mK
r=(m−1)K+1∇fr(xm) is

the sum of all gradients during the block m. Then, BOGDIP
invokes OIP to obtain xm+1 and ỹm+1 for the next block:

xm+1, ỹm+1 = OIP(K, ε,xm,ym+1). (11)

With appropriate parameters, we can prove that BOGDIP
requires O(T 1/2) invocations of OIP, and each invocation
solves O(T 1/2) linear optimizations. As a result, there are
at most O(T ) linear optimizations for the time horizon T .
We summarize the detailed procedure in Algorithm 1.

In the prior study, Garber and Kretzu (2022) have inves-
tigated the weak adaptive regret (5). Different from them,
we focus on minimizing the general-case dynamic regret (2)
and establish an O(T 3/4(1 + PT )) bound for BOGDIP as
shown in Theorem 1. The intuition lies in that BOGDIP is
a projection-free variant of OGD, which is very suitable for
dynamic regret minimization (Zinkevich 2003).

Theorem 1. Let η = T−3/4, K = η−2/3 = T 1/2 and ε =
η2/3 = T−1/2. Under Assumptions 1, 2 and 3, Algorithm 1
guarantees

D-RegretT (u1, · · · ,uT ) ≤ O
(
η1/3T + η−1 (1 + PT )

)
= O

(
T 3/4 (1 + PT )

)
.

Moreover, the overall number of solving linear optimizations
is O(T ).
Remark: Our result is the first general-case dynamic re-
gret bound in projection-free online learning, and can auto-
matically adapt to the nature of environments. For example,
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Algorithm 2: Projection-free Online Learning with Dynamic
Regret (POLD)
Input: A learning rate α, a set H containing step size ηi for
each expert Ei
Initialization: Activate a set of experts {Ei | ηi ∈ H} by
invoking BOGDIP for each ηi ∈ H.

1: For each expert Ei, set wi1 = C
i(i+1) where C = 1 + 1

N

2: for t = 1 to T do
3: Receive xit from each expert Ei
4: Compute xt according to (14)
5: Submit xt, and update the weight wit+1 for each ex-

pert Ei according to (15)
6: Send ft(·) to each expert Ei
7: end for

when the comparators are fixed (i.e., PT = 0), our dynamic
regret degenerates to O(T 3/4), which matches the static re-
gret bound of Hazan and Kale (2012). To be specific, we
have the following corollary, which can also be derived from
Theorem 3 of Garber and Kretzu (2022)

Corollary 1. Under Assumptions 1, 2 3, Algorithm 1 with
the same parameter setting in Theorem 1 guarantees a static
regret bound of

RegretT ≤ O(T 3/4). (12)

Improved Projection-Free Dynamic Regret
Note that the linear dependency on PT in Theorem 1 is
too loose and the obtained bound can be vacuous with
PT = Ω(T 1/4). To address this issue, we propose a two-
layer method, termed as Projection-free Online Learning
with Dynamic Regret (POLD), with a tighter bound of
O(T 3/4(1+PT )1/4). To help understanding, we first briefly
introduce the motivation behind POLD.

Let us consider a given sequence ũ1, · · · , ũT ∈ K with
the path-length P̃T =

∑T
t=2 ‖ũt−1 − ũt‖2. According to

Theorem 1, we can choose the step size η̃ = O(T−3/4(1 +

P̃T )3/4) and achieve a tighter O(T 3/4(1 + P̃T )1/4) bound.
This indicates that if the path-length is known, we can actu-
ally tune the step size to obtain an improved bound. To deal
with the uncertainty of the path-length, we adopt the strategy
of maintaining multiple step sizes (van Erven and Koolen
2016; Zhang, Lu, and Zhou 2018), and leverage the two-
layer structure: running multiple BOGDIP algorithms with
different step sizes and combining them by a meta algorithm.
In the following, we describe the detailed procedure.

First, we create a set of step sizes

H =

{
ηi = 2i−1

(
7D2

2G2T

)3/4
∣∣∣∣∣ i = 1, · · · , N

}
, (13)

where N = d 34 log2(1 + 4T/7)e + 1. Then, we activate
a set of experts {Ei | ηi ∈ H}, each of which is an in-
stance of BOGDIP with the step size ηi chosen from H. For
each expert Ei, we initiate its weight wi1 = C

i(i+1) where

Algorithm 3: Projection-free Online Learning with Adaptive
Regret (POLA)

1: for t = 1 to T do
2: for I ∈ Ct do
3: Create an expert EI which runs BOGDIP from an

arbitrary initial point with η = |I|−3/4
4: For the expert EI , set Rt−1,I = Ct−1,I = 0
5: Add expert EI to the set of active experts At
6: end for
7: From At, remove all experts who end at the round t
8: Receive the action xt,I of each expert EI ∈ At and

calculate its weight wt,I according to (17)
9: Submit xt defined in (18) and then receive ft(·)

10: For each EI ∈ At, update

Rt,I = Rt−1,I + ft(xt)− ft(xt,I)
Ct,I = Ct−1,I + |ft(xt)− ft(xt,I)|

11: Send ft(·) to each expert EI ∈ At
12: end for

C = 1 + 1
N . Next, inspired by the Hedge algorithm (Fre-

und and Schapire 1997), we combine the actions of experts
in a weighted-average fashion. Concretely, in each round t,
POLD receives the action xit from expert Ei, and computes
the weighted average action:

xt =
∑
i∈H

witx
i
t, (14)

where wit is the weight assigned to Ei. After that, POLD
updates the weight of Ei by

wit+1 =
wite
−αft(xit)∑

µ∈H w
µ
t e
−αft(xµt )

, (15)

where α denotes the learning rate of the meta algorithm. Fi-
nally, POLD reveals the function ft(·) to all experts so that
they can update their actions for the next round. We sum-
marize all the procedure in Algorithm 2, and present the fol-
lowing theorem.

Theorem 2. Let α =
√

8/T and H be defined as (13).
Under Assumptions 1, 2, 3 and 4, Algorithm 2 guarantees

D-RegretT (u1, · · · ,uT ) ≤ O
(
T 3/4(1 + PT )1/4

)
.

Remark: Compared with the upper bound in Theorem 1, the
dependence on the path-length is reduced from PT to P 1/4

T .

Projection-Free Adaptive Regret
As mentioned before, besides the dynamic regret (2), there
do exist another metric called (strongly) adaptive regret (3)
in the non-stationary environments. In this section, we pro-
ceed to investigate minimizing (3) and present Projection-
free Online Learning with Adaptive Regret (POLA). Fol-
lowing existing studies on adaptive regret (Hazan and Se-
shadhri 2007; Daniely, Gonen, and Shalev-Shwartz 2015),
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 · · ·
I0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
I1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ · · ·
I2 [ ] [ ] [ ] [ ] [ · · ·
I3 [ ] [ · · ·

Figure 1: Geometric Covering (GC) intervals. In the figure, each interval is denoted by [ ].

POLA contains three parts: an expert algorithm, a set of in-
tervals, and a meta algorithm. In the following, we specify
them separately.

First, we take BOGDIP as the expert algorithm, since it is
projection-free and ensures an O(|I|3/4) static regret for a
given interval I as shown in Corollary 1. Then, we build the
GC intervals (Daniely, Gonen, and Shalev-Shwartz 2015)
shown in Figure 1:

I =
⋃

k∈N∪{0}

Ik, Ik =
{

[i · 2k, (i+ 1) · 2k − 1] : i ∈ N
}
.

(16)
For each interval I , we maintain an instance of BOGDIP,
denoted as the expert EI , to minimize the static regret over
that interval. According to Corollary 1, we set the step size
η = |I|−3/4 to obtain the O(|I|3/4) static regret bound over
the interval I .

Next, to track the best expert on the fly, we choose
AdaNormalHedge (Luo and Schapire 2015) as the meta
algorithm since it naturally supports the setting that the
number of experts varies over time (Zhang, Liu, and Zhou
2019). The key ingredient of AdaNormalHedge is the po-
tential function: Φ(R,C) = exp ([R]2+/3C), where [x]+ =
max(0, x), Φ(0, 0) = 1 and R, C are two variables main-
tained by each expert. Based on Φ(R,C), we can compute
the weight for each expert according to the following weight
function:

w(R,C) =
1

2
(Φ(R+ 1, C + 1)− Φ(R+ 1, C − 1)) .

Putting all pieces together, we obtain POLA for adaptive
regret minimization. Below, we describe the detailed proce-
dure, which is also summarized in Algorithm 3.

For brevity, we denote the set of all active experts as
At for the round t, and the set of intervals that start from
the round t as Ct = {I | I ∈ I, t ∈ I, (t − 1) /∈ I}.
In Step 3, we create an instance of BOGDIP as the expert
EI for each I ∈ Ct, and initiate it from an arbitrary initial
point with the step size η = |I|−3/4. In Step 4, we set the
variables Rt−1,I = Ct−1,I = 0 for EI , where Rt−1,I =∑t−1
u=min I ft(xt) − ft(xt,I) denotes the regret of EI up to

round t− 1, and Ct−1,I =
∑t−1
u=min I |ft(xt)− ft(xt,I)| de-

notes the sum of the absolute value of instantaneous regrets,
and min I denotes the beginning round of I . In Step 5, the
new expert EI is added to At. Then, we remove all experts
fromAt, who end at the round t (Step 7). After receiving the
action xt,I from EI , we update its corresponding weight as
following:

wt,I =
w(Rt−1,I , Ct−1,I)∑

EI∈At w(Rt−1,I , Ct−1,I)
. (17)

In Step 9, we submit the weighted action

xt =
∑
EI∈At

wt,Ixt,I , (18)

and receive the loss function ft(·). In Step 10, for eachEI ∈
At, we compute its corresponding variables Rt,I and Ct,I .
At the end, we reveal ft(·) to all active experts, so that they
can update their actions for the next round (Step 11). We
present the adaptive regret bound of POLA below.
Theorem 3. Under Assumptions 1, 2, 3 and 4, Algorithm 3
guarantees

SA-RegretT (τ) ≤ O(
√
τ log T + τ3/4) = Õ

(
τ3/4

)
.

Remark: Compared to existing methods (Garber and Kretzu
2022; Lu et al. 2023) for adaptive regret minimization,
POLA has following advantages.

• POLA enjoys an Õ(τ3/4) strongly adaptive regret, and
thus can still perform well on short intervals. In contrast,
Garber and Kretzu (2022) minimize the weak adaptive
regret (5), which only promises a performance guarantee
on long intervals.

• For each expert, POLA performs only O(1) linear opti-
mizations per round on average, whereas Lu et al. (2023)
require a significantly higher number of O(log T ) mem-
bership operations. Moreover, their operations could be
inefficient compared to linear optimizations in many pop-
ular domains. For example, the trace norm constraints
K = {X|‖X‖∗ ≤ δ,X ⊂ Rm×n} incurs a membership
operation cost of O(mn2) while the linear optimization
cost is O(nnz(X)), where nnz(X) denotes the number
of non-zero entries (Mhammedi 2022).

Moreover, we note that previous studies on projection-
based online learning (Zhang, Lu, and Yang 2020; Zhang
et al. 2022; Cutkosky 2020) have shown that it is possi-
ble to design a single algorithm to minimize dynamic re-
gret and adaptive regret simultaneously. In particular, our
POLA shares a similar two-layer structure with the method
of Zhang, Lu, and Yang (2020), inspiring us to investigate
the performance of POLA for dynamic regret minimization.
The following theorem shows that POLA also enjoys an
O(T 3/4(1 + PT )1/4) dynamic regret bound.
Theorem 4. Under Assumptions 1, 2, 3 and 4, Algorithm 3
guarantees

D-RegretT (u1, · · · ,uT ) ≤ O
(
T 3/4(1 + PT )1/4

)
.

Remark: Although POLA achieves the same dynamic re-
gret bound as POLD, this does not imply that the latter one is
insignificant. Compared with POLA, POLD employs a sim-
pler meta algorithm and does not need to construct GC inter-
vals, making it much easier to comprehend and implement.
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Figure 2: Experimental results for dynamic regret minimization.

Experiments
In this section, we present experimental results that verify
our theoretical findings in dynamic regret. Empirical studies
on adaptive regret can be found in the full version (Wang
et al. 2023b).

Setup. To evaluate our methods (i.e. BOGDIP, POLD and
POLA) in dynamic regret minimization, we study the prob-
lem of online matrix completion, of which the goal is to
produce a matrix X from the trace norm ball in an on-
line fashion to approximate the target matrix M ∈ Rm×n.
Specifically, in each round t, the learner receive a sampled
data (i, j) with the value Mij from the entry set OB of
M . Then, the learner chooses X from the trace norm ball
K = {X|‖X‖∗ ≤ δ,X ⊂ Rm×n} where δ is the parameter,
and suffers the online loss ft(X) =

∑
(i,j)∈OB |Xij−Mij |.

We conduct the experiments with δ = 104 on the pub-
lic dataset: MovieLens 100K3, which contains 100000 rat-
ings from 943 users on 1682 movies. Following Wan, Xue,
and Zhang (2021), we slightly modify the dataset to simu-
late the non-stationary environments. Concretely, we gener-
ate an extended datasets {(ik, jk,Mikjk)}300000k=1 by merging
three copies of MovieLens 100K. For entries corresponding
to k = 100001, · · · , 200000, we negate the original values
Mikjk to obtain −Mikjk . For simplicity, we divide the ex-
tended datasets into T = 3000 partitions. In this way, the
target matrix M drifts every 1000 rounds.

Contenders. We choose the projection-free algorithm:
Multi-OCG (Wan, Xue, and Zhang 2021), and the
projection-based algorithm: Ader (Zhang et al. 2018) as the
contenders. All parameters of each method are set accord-
ing to the theoretical suggestions. For instance, the learning
rate of the i-th expert is set as ηi = c(2i−1)−1/2 in Multi-
OCG, and ηi = c2i−1T−1/2 in Ader, and ηi = c2i−1T−3/4

in POLD, where c is the hyper-parameters selected from
{10−1, 100, · · · , 106}.

Results. We report the average instantaneous loss, the cu-
mulative loss and the runtime (in seconds) against the num-
ber of rounds for each method in Figure 2. As evident from

3https://grouplens.org/datasets/movielens/100k/

the results, projection-free methods are significantly more
efficient compared to the projection-based approach (i.e.
Ader), albeit with a slight compromise on cumulative loss.
This observation is reasonable in the sense that (i) the cost of
linear optimization over the trace norm ball is O(nnz(X))
whereas projection operation suffers a much higherO(mn2)
cost; (ii) our methods ensure anO(T 3/4(1 +PT )1/4) bound
against theO(

√
T (1 + PT )) bound of Ader. Moreover, ow-

ing to the inherent advantage in minimizing the general-case
dynamic regret, our methods yield a lower cumulative loss
compared to the projection-free contender Multi-OCG.

Conclusion and Future Work

In this paper, we investigate non-stationary projection-
free online learning with dynamic regret and adaptive re-
gret guarantees. Specifically, in the dynamic regret mini-
mization, we provide a novel dynamic regret analysis for
BOGDIP (Garber and Kretzu 2022), and establish the first
O(T 3/4(1 + PT )) general-case dynamic regret. Then, we
improve this bound to O(T 3/4(1 + PT )1/4) by proposing
POLD, which runs a set of BOGDIP algorithms with differ-
ent step sizes in parallel and tracks the best one on the fly.
In the adaptive regret minimization, we present our method
POLA with an Õ(τ3/4) strongly adaptive regret bound. The
essential idea is to construct the GC intervals, maintain an
instance of BOGDIP to minimize the static regret for each
interval, and then combine actions of instances by a meta
algorithm. Furthermore, we show that POLA can also mini-
mize the dynamic regret and achieve the same bound as that
of POLD. Empirical studies on dynamic regret and adaptive
regret minimization have verified our theoretical findings.

Currently, both POLD and POLA need to maintain
O(log T ) experts, which leads to O(log T ) linear optimiza-
tions per round. Therefore, a natural question arises: is it
possible to further reduce the number of linear optimizations
in each round, i.e., from O(log T ) to O(1)? We note that in
non-stationary projection-based online learning, O(log T )
projection operations can indeed be reduced to O(1) (Zhao
et al. 2022). But in the projection-free setting, it seems
highly non-trivial and we leave it as a future work.
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