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Abstract

We investigate constrained online convex optimization, in
which decisions must belong to a fixed and typically compli-
cated domain, and are required to approximately satisfy addi-
tional time-varying constraints over the long term. In this set-
ting, the commonly used projection operations are often com-
putationally expensive or even intractable. To avoid the time-
consuming operation, several projection-free methods have
been proposed with an O(T 3/4√log T ) regret bound and an
O(T 7/8) cumulative constraint violation (CCV) bound for
general convex losses. In this paper, we improve this result
and further establish novel regret and CCV bounds when loss
functions are strongly convex. The primary idea is to first con-
struct a composite surrogate loss, involving the original loss
and constraint functions, by utilizing the Lyapunov-based
technique. Then, we propose a parameter-free variant of the
classical projection-free method, namely online Frank-Wolfe
(OFW), and run this new extension over the online-generated
surrogate loss. Theoretically, for general convex losses, we
achieve an O(T 3/4) regret bound and an O(T 3/4 log T )
CCV bound, both of which are order-wise tighter than exist-
ing results. For strongly convex losses, we establish new guar-
antees of an O(T 2/3) regret bound and an O(T 5/6) CCV
bound. Moreover, we also extend our methods to a more
challenging setting with bandit feedback, obtaining similar
theoretical findings. Empirically, experiments on real-world
datasets have demonstrated the effectiveness of our methods.

Introduction
Online convex optimization (OCO) has become a popular
paradigm for modeling online decision-making problems
(Shalev-Shwartz 2012; Hazan 2016; Orabona 2019), such as
online portfolio optimization (Agarwal et al. 2006) and on-
line advertisement system (McMahan et al. 2013). Formally,
OCO can be viewed as a structured iterative game between
a learner and an adversary. Specifically, at each round t, the
learner first chooses a decision xt from a convex and fixed
domain K ⊆ Rd. Then, the adversary reveals a convex loss
function ft(·) : K 7→ R, and the learner suffers the cost
ft(xt). The goal of the learner is to minimize the regret:

RegretT =
∑T

t=1
ft(xt)−min

x∈K

∑T

t=1
ft(x), (1)

*Corresponding author

defined as the difference between the cumulative loss of the
learner and that of the best fixed decision.

In the literature, there have been abundant theoretical ap-
peals for OCO, such as the O(

√
T ) regret bound for gen-

eral convex losses (Zinkevich 2003) and the O(log T ) regret
bound for strongly convex losses (Hazan, Agarwal, and Kale
2007). In practice, besides the hard and fixed domain K, the
decisions made by the learner are typically governed by a
series of soft and time-varying constraints, which may be
violated in several rounds but should be satisfied on average
over the long term. For example, in wireless communica-
tion systems, operators manage varying transmission power
consumption to ensure the reception of messages (Mannor,
Tsitsiklis, and Yu 2009); in online advertisement systems,
advertisers employ dynamic budgets to maximize the click-
through-rates for their advertisements (Liakopoulos et al.
2019). These practical applications thus motivate the devel-
opment of constrained online convex optimization (COCO)
(Mahdavi, Jin, and Yang 2012; Neely and Yu 2017).

In the framework of COCO, the time-varying constraints
are typically captured by the inequality gt(x) ≤ 0 where
gt(·) : K 7→ R is a convex function revealed by the adver-
sary at the end of each round t. Consequently, in addition to
minimizing (1), the learner also aims to ensure the cumula-
tive constraint violation (CCV):

QT =
∑T

t=1
g+t (xt) (2)

to be sublinear with respect to the time horizon T , where
g+t (x) ≜ max{0, gt(x)}. To optimize (1) and (2) concur-
rently, various efforts have been made recently (Cao and Liu
2019; Yu and Neely 2020; Yi et al. 2021; Guo et al. 2022; Yi
et al. 2023; Sinha and Vaze 2024), and established plentiful
guarantees, including the regret and CCV bounds of O(

√
T )

for general convex losses (Yu, Neely, and Wei 2017).
The key operation in these COCO methods is the pro-

jection that pulls an infeasible decision back into the hard
constraint K. In many practical scenarios, the domain K is
typically high-dimensional and complex, rendering projec-
tions onto K computationally expensive or even intractable,
which significantly limits the applicability of these meth-
ods. To address this issue, several studies (Lee, Ho-Nguyen,
and Lee 2023; Garber and Kretzu 2024) propose projection-
free methods for COCO, which replace the time-consuming
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projection with the more efficient linear optimization oper-
ation. One prominent example is online semidefinite opti-
mization, where the hard constraint is a positive semidef-
inite cone with the bounded trace. In this case, the linear
optimization has been proven at least an order of magni-
tude faster than projection (Hazan and Kale 2012). Unfor-
tunately, existing projection-free methods can only guaran-
tee the O(T 3/4

√
log T ) regret bound and the O(T 7/8) CCV

bound for general convex losses (Garber and Kretzu 2024).
In this paper, we improve the above bounds and intro-

duce new theoretical guarantees for strongly convex losses.
The key idea is to first construct a composite surrogate
loss that consists of the original loss ft(·) and the time-
varying constraint gt(·), based on a carefully designed Lya-
punov function. Rigorous analysis reveals that both (1) and
(2) are simultaneously controlled by the regret in terms of
the surrogate losses, so that we can directly apply classical
projection-free methods, e.g., online Frank-Wolfe (OFW)
(Hazan and Kale 2012), over the surrogate losses to min-
imize the two metrics. Notably, since the surrogate loss is
generated in an online manner, essential prior knowledge for
OFW (e.g., the gradient norm bound) is unavailable before-
hand. Therefore, we need to employ the methods that are
agnostic to the prior parameters about the surrogate loss. To
this end, we propose the first parameter-free variant of OFW
for general convex losses based on the doubling trick tech-
nique (Cesa-Bianchi et al. 1997). By running the parameter-
free variant over the composite surrogate losses, we estab-
lish an O(T 3/4) regret bound and an O(T 3/4 log T ) CCV
bound for the general convex loss. Both of our results are
better than the state-of-the-art bounds achieved by Garber
and Kretzu (2024). Additionally, we further investigate the
strongly convex loss and achieve an O(T 2/3) regret bound
and an O(T 5/6) CCV bound, by constructing the surrogate
loss based on a different Lyapunov function and running the
strongly convex variant of OFW (Wan and Zhang 2021).

Furthermore, to handle the more challenging bandit set-
ting, we combine our proposed methods with the classical
one-point estimator (Flaxman, Kalai, and McMahan 2005),
which can approximate the gradient with only the loss value.
Theoretically, for general convex losses, we establish the
O(T 3/4) regret bound and the O(T 3/4 log T ) CCV bound.
For strongly convex losses, we achieve the O(T 2/3 log T )
regret bound and the O(T 5/6 log T ) CCV bound.

Contributions. We summarize our contributions below.

• For general convex losses, we deliver an O(T 3/4) re-
gret bound and an O(T 3/4 log T ) CCV bound, both
of which improve the previous results of Garber and
Kretzu (2024). During the analysis, we propose the first
parameter-free variant of OFW, which may be an inde-
pendent of interest;

• For strongly convex losses, we establish the novel results
of an O(T 2/3) regret bound and an O(T 5/6) CCV bound
for projection-free COCO;

• We extend our methods to the bandit setting and achieve
similar bounds as those in the full-information setting;

• We verify our theoretical findings by conducting experi-
ments on real-world datasets. The empirical results have
demonstrated the effectiveness of our methods.

Related Work
In this section, we briefly overview the recent progress on
projection-free and constrained online convex optimization.

Projection-Free Online Convex Optimization
The pioneering work of Hazan and Kale (2012) introduces
the first projection-free online method, namely online Frank-
Wolfe (OFW), which is an online extension of the classical
Frank-Wolfe algorithm (Frank and Wolfe 1956). The basic
idea is to replace the time-consuming projection with the
following linear optimization steps:

vt = argmin
x∈K

⟨∇Ft(xt),x⟩ , xt+1 = xt + σt(vt − xt)

where σt > 0 denotes the step size, and Ft(x) is defined as

Ft(x) = η
∑t−1

τ=1
∇fτ (xτ )

⊤x+ ∥x− x1∥22

parameterized by η > 0. With the prior knowledge about
ft(·) (e.g., the gradient norm bound) and appropriate con-
figurations on η and σt, OFW ensures an O(T 3/4) regret
bound for general convex losses.

Based on OFW, plenty of investigations deliver tighter
regret bounds by utilizing additional properties on ft(·),
such as the smoothness (Hazan and Minasyan 2020), the
strong convexity (Wan and Zhang 2021; Kretzu and Gar-
ber 2021), and the exponential concavity (Garber and Kretzu
2023; Mhammedi 2024). Moreover, several efforts improve
the regret bounds by leveraging special structures of K
(Garber and Hazan 2016; Levy and Krause 2019; Molinaro
2020; Wan and Zhang 2021; Mhammedi 2022; Gatmiry and
Mhammedi 2023). Additionally, there exist other studies ex-
ploring more practical scenarios, e.g., the bandit feedback
(Chen, Zhang, and Karbasi 2019; Garber and Kretzu 2020;
Zhang et al. 2024), the delayed feedback (Wan et al. 2022b),
the distributed setting (Zhang et al. 2017; Wan, Tu, and
Zhang 2020; Wan et al. 2022a; Wang et al. 2023; Wan et al.
2024) and non-stationary environments (Kalhan et al. 2021;
Wan, Xue, and Zhang 2021; Garber and Kretzu 2022; Lu
et al. 2023; Wan, Zhang, and Song 2023; Wang et al. 2024).

Constrained Online Convex Optimization
In the literature, there are two lines of research for COCO.
One is the time-invariant setting, where the soft constraints
are assumed to be fixed, i.e., gt(·) = g(·), and known to the
learner at the beginning round. In this setting, for general
convex losses, Mahdavi, Jin, and Yang (2012) originally de-
velop an O(

√
T ) regret bound and an O(T 3/4) CCV bound.

Then, subsequent studies generalize the results, and obtain
tighter bounds for both regret and CCV under additional
conditions (Jenatton, Huang, and Archambeau 2016; Yuan
and Lamperski 2018; Yu and Neely 2020; Yi et al. 2021).

The other is the time-variant setting, where the soft con-
straints change over time and are only revealed after the



Methods Losses Constraints Feedback Regret CCV

Lee, Ho-Nguyen, and Lee (2023) cvx sto full-info O(T 5/6) O(T 5/6)
cvx adv full-info O(T 5/6+α) O(T 11/12−α/2)

Garber and Kretzu (2024) cvx adv full-info O(T 3/4
√
log T ) O(T 7/8)

Theorem 1 (this work) cvx adv full-info O(T 3/4) O(T 3/4 log T )
Theorem 2 (this work) str-cvx adv full-info O(T 2/3) O(T 5/6)

Garber and Kretzu (2024) cvx adv bandits O(T 3/4
√
log T ) O(T 7/8 log T )

Theorem 3 (this work) cvx adv bandits O(T 3/4) O(T 3/4 log T )
Theorem 4 (this work) str-cvx adv bandits O(T 2/3 log T ) O(T 5/6 log T )

Table 1: Comparisons of our results with existing projection-free methods for COCO. Abbreviations: convex → cvx, strongly
convex → str-cvx, stochastic → sto, adversarial → adv, full-information → full-info.

learner submits the decision. Under the stochastic time-
varying constraints and the Slater’s condition, Yu, Neely,
and Wei (2017) deliver an O(

√
T ) regret bound and an

O(
√
T ) CCV bound. Subsequently, extensive studies fo-

cus on the more general adversarial time-varying constraints
and attempt to remove the Slater’s condition (Neely and Yu
2017; Sun, Dey, and Kapoor 2017; Liakopoulos et al. 2019;
Cao and Liu 2019; Guo et al. 2022; Yi et al. 2023; Sinha and
Vaze 2024). One of the key techniques in these work is to
analyze a refined bound based on the Lyapunov drift of a vir-
tual queue, which partially inspires our methods. To the best
of our knowledge, the state-of-the-art results in this setting
are delivered by Sinha and Vaze (2024), who establish the
O(

√
T ) regret bound and the O(

√
T log T ) CCV bound for

general convex losses, and the O(log T ) regret bound and
the O(

√
T log T ) CCV bound for strongly convex losses.

As mentioned before, the above methods still rely on the
inefficient projection for decision updates, which thereby
motivates the development of projection-free COCO. Lee,
Ho-Nguyen, and Lee (2023) first obtain an O(T 5/6+α) re-
gret bound and an O(T 11/12−α/2) CCV bound with the
parameter α ∈ (0, 1) for general convex losses and the
full-information feedback. Later, Garber and Kretzu (2024)
propose to apply a recent projection-free method, named
LOO-BOGD (Garber and Kretzu 2022), under the drift-
plus-penalty framework (Neely 2010) that is extensively
used in previous COCO methods (Yu, Neely, and Wei 2017;
Guo et al. 2022), and thus deliver an O(T 3/4

√
log T ) regret

bound and an O(T 7/8) CCV bound. When only the bandit
feedback (i.e., the function value) is accessible, they obtain
the same regret bound and a slightly worse O(T 7/8 log T )
CCV bound. More details can be found in Table 1.

Preliminaries
In this section, we recall the basic assumptions and defini-
tions that are commonly used in prior studies (Mahdavi, Jin,
and Yang 2012; Hazan and Kale 2012; Agrawal and Deva-
nur 2014).

Assumption 1. The convex decision set K contains the ball
of radius r centered at the origin 0, and is contained in an
ball with the diameter D = 2R, i.e., rB ⊆ X ⊆ RB where

B =
{
x ∈ Rd | ∥x∥2 ≤ 1

}
.

Assumption 2. At each round t, the loss function ft(·)
and the constraint function gt(·) are G-Lipschitz over K,
i.e., ∀x,y ∈ K, |ft(x)− ft(y)| ≤ G∥x− y∥2 and |gt(x)−
gt(y)| ≤ G∥x− y∥2.

Assumption 3. At each round t, the loss function value
ft(x) is bounded over K, i.e., ∀x ∈ K, |ft(x)| ≤ M.

Definition 1. Let Φ(x) : R+ 7→ R be a convex function. It is
called Lyapunov if Φ(x) satisfies (i) Φ(0) = 0; (ii) Φ(x) ≥
0,∀x ∈ R+; (iii) Φ(x) is non-decreasing.

Definition 2. Let f(x) : K 7→ R be a function over K. It is
called αf -strongly convex if for all x,y ∈ K

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ αf

2
∥y − x∥22.

In analysis, we will make use of the following property of
strongly convex functions (Garber and Hazan 2015).

Lemma 1. Let f(x) be an αf -strongly convex function over
K and x∗ = argminx∈K f(x). Then, for any x ∈ K

αf

2
∥x− x∗∥22 ≤ f(x)− f (x∗) . (3)

Main Results
In this section, we initially present our methods as well as
their theoretical guarantees for the full-information setting.
Then, we extend our investigations to the bandit setting. Due
to the limitation of space, all proofs are deferred in the sup-
plementary material.

Algorithms for Full-Information Setting
Overall, we first construct a composite surrogate loss func-
tion based on the loss ft(x), the constraint gt(x) and a spe-
cially designed Lyapunov function that depends on the type
of ft(x). Then, we employ parameter-free variants of OFW
to optimize the surrogate loss.

Specifically, let Qt be the cumulative constraint violation
at the round t, and Φ(·) be a convex Lyapunov function. Ac-
cording to (2), Qt can be formalized recursively as

Qt = Qt−1 + g+t (xt), ∀t ≥ 1 (4)



Algorithm 1: Online Frank-Wolfe with Time-Varying Con-
straints (OFW-TVC)
Input: Hyper-parameters β, γ, and the function Φ(·)

1: Choose any x1 ∈ K, and set G̃1 = s1 = k = 1
2: for t = 1 to T do
3: Play xt, and suffer ft(xt) and gt(xt)

4: Construct Qt and f̃t(x) according to (4) and (6)
5: while G̃k < βG(γ +Φ′(βQt)) do
6: Set G̃k+1 = 2G̃k, sk+1 = t, k = k + 1
7: end while
8: Set ηk and Fsk:t(x) according to (9) and (10)
9: Compute vt and σsk,t according to (11) and (12)

10: Update xt+1 according to (13)
11: end for

and Q0 = 0. By utilizing the convexity of Φ(·), the Lya-
punov drift of Qt at the round t, i.e., Φ(βQt)− Φ(βQt−1),
is upper bounded by

Φ(βQt)− Φ(βQt−1) ≤Φ′(βQt)β[Qt −Qt−1]

(4)
=Φ′(βQt)βg

+
t (xt)

(5)

where β > 0 denotes a hyper-parameter. To simultaneously
minimize ft(x) and gt(x), we follow the drift-plus-penalty
framework (Neely 2010), and construct the surrogate loss
function f̃t(x) by combining the loss ft(x) and the upper
bound of the Lyapunov drift in (5):

f̃t(x) =γβft(x) + Φ′(βQt)βg
+
t (x) (6)

where γ > 0 denotes a hyper-parameter. In fact, it can
be verified that the regret in terms of f̃t(x), denoted by
Regret′T , concurrently captures (1) and (2) (Sinha and Vaze
2024):

Regret′T
(5),(6)
≥ γβRegretT +Φ(βQT ). (7)

With an appropriate configuration on Φ(·), (1) and (2) can
be decoupled from (7), delivering corresponding theoretical
guarantees. It should be noticed that the specific choice of
Φ(·) is quite involved, since (i) it is employed to construct
the surrogate loss in (6), necessitating a simple form that
does not incur expensive computational costs; (ii) it appears
in (7) and is required to adeptly balance the regret and CCV.

In the following, we investigate the general convex losses
and the strongly convex losses.

General Convex Losses. Given the favorable property of
minimizing f̃t(x) shown in (7), one may attempt to apply
the classical OFW method over f̃t(x) for the simultaneous
minimization on (1) and (2). However, such a straightfor-
ward application is not suitable, since f̃t(x) is generated in
an online manner, and thus the prior knowledge required by
OFW is unavailable beforehand. For example, the ℓ2-norm
of the subgradient ∇f̃t(x) is bounded by:

∥∇f̃t(x)∥2 ≤γβ∥∇ft(x)∥2 +Φ′(βQt)β∥∇gt(x)∥2
≤βG(γ +Φ′(βQT )) ≜ G̃,

(8)

in which the last step follows the fact that Φ(·) is convex
and hence its derivative Φ′(·) is non-decreasing. From (8),
it can be observed that G̃ is unknown due to the uncertainty
of QT at the round t. For this reason, we propose the first
parameter-free variant of OFW, which is agnostic to G̃, and
thereby can be employed to minimize f̃t(x). The basic idea
is to utilize an estimation of G̃ for decision updating. If the
estimation is too low, we repeatedly double the current guess
and employ the first valid value for updates. We summarize
our method in Algorithm 1.

Specifically, at the Step 1, we choose any point x1 ∈ K
as the decision for the first round and make the estimation
G̃1 = 1. Then, at each round t, we submit the decision xt,
suffer the cost ft(xt) and the constraint gt(xt) (Step 3). At
the Step 4, we construct Qt and the surrogate loss function
f̃t(x) according to (4) and (6), respectively. Next, we ver-
ify the feasibility of the estimation G̃k. If it is lower than
βG(γ +Φ′(βQt)), we continuously double the current esti-
mation until an appropriate value is found (Steps 5-7). After
that, we set the learning rate

ηk = D(2G̃kT
3/4)−1, (9)

and construct the function

Fsk:t(x) = ηk

t∑
τ=sk

〈
∇f̃τ (xτ ) ,x

〉
+ ∥x− xsk∥

2
2 (10)

based on the historical gradients ∇f̃t(xt) since the round sk
(Step 8), where sk denotes the first round that utilizes the
estimation G̃k. At the Step 9, we compute vt according to

vt ∈ argmin
x∈K

⟨∇Fsk:t (xt) ,x⟩ , (11)

and set the step size as

σsk,t = 2(t− sk + 1)−1/2. (12)

Finally, we update the decision xt+1 for the next round as
shown below (Step 10):

xt+1 = xt + σsk,t (vt − xt) . (13)

By choosing the exponential Lyapunov function Φ(x) =
exp(2−1T−3/4x)− 1, we establish the following theorem.
Theorem 1. Let β = (26GD)−1 and γ = 1. Under
Assumptions 1 and 2, if the loss functions and the con-
straint functions are general convex, Algorithm 1 ensures the
bounds of

RegretT = O(T 3/4), QT = O(T 3/4 log T ).

Remark. Compared to the O(T 3/4
√
log T ) regret bound

and the O(T 7/8) CCV bound in Garber and Kretzu (2024),
our results for both metrics are tighter. The underlying rea-
sons can be attributed to: (i) the choice of projection-free
methods. Under the drift-plus-penalty framework, Garber
and Kretzu (2024) choose to run the projection-free LOO-
BOGD method, which, due to its complex design, necessi-
tates additional effort to balance the costs of linear optimiza-
tion and the performance. In contrast, our proposed method



Algorithm 2: Strongly Convex Variant of OFW with Time-
Varying Constraints (SCOFW-TVC)
Input: Hyper-parameters β, γ, and the function Φ(·), and
the modulus of strong convexity αf

1: Choose any x1 ∈ K
2: for t = 1 to T do
3: Play xt, and suffer ft(xt) and gt(xt)

4: Construct Qt and f̃t(x) according to (4) and (6)
5: Set F sc

t (x) according to (14)
6: Compute vt and σsc

t according to (15) and (16)
7: Update xt+1 according to (17)
8: end for

is inherently simpler, naturally requiring only one linear op-
timization per round; (ii) the specification of Φ(x). Garber
and Kretzu (2024) implicitly choose Φ(x) = x, which po-
tentially fails to balance regret and CCV for general convex
losses, leading to looser results. Furthermore, it should be
emphasized that even if Φ(x) in Garber and Kretzu (2024)
is replaced with the exponential function, the complex man-
agement of linear optimization costs in LOO-BOGD still
prevents it from yielding the same results as ours.

Strongly Convex Losses. In this case, note that for the
αf -strong convex ft(x), the surrogate loss f̃t(x) defined in
(6) is γβαf -strongly convex. Therefore, we can employ the
strongly convex variant of OFW to minimize f̃t(x). In this
paper, we choose the SCOFW method proposed by Wan and
Zhang (2021), because of its simplicity and agnosticism to
G̃. The detailed procedures are given in Algorithm 2.

Specifically, we first choose any decision x1 ∈ K for ini-
tialization (Step 1). Then, at each round t, we make the deci-
sion xt, suffer the loss ft(xt) and the constraint gt(xt), and
construct Qt and f̃t(x) according to (4) and (6) (Steps 3-4).
At Steps 5-6, we construct F sc

t (x) in the following way:

F sc
t (x) =

∑t

τ=1

[〈
∇f̃τ (xτ ) ,x

〉
+ C1∥x− xτ∥22

]
(14)

where we denote C1 = γβαf/2 for brevity, and compute vt

according to:
vt ∈ argmin

x∈K
⟨∇F sc

t (xt) ,x⟩ (15)

and σsc
t according to

σsc
t = argmin

σ∈[0,1]

F sc
t (xt + σ(vt − xt)). (16)

At the Step 7, we update the decision xt+1 for the next round
according to

xt+1 = xt + σsk,t (vt − xt) . (17)

By choosing the quadratic Lyapunov function Φ(x) = x2 +
x, we establish the following theoretical results.
Theorem 2. Let β = G−1D−1T−2/3 and γ = G/(G +
αfD). Under Assumptions 1 and 2, if the loss functions are
αf -strongly convex, and the constraint functions are general
convex, Algorithm 2 ensures the bounds of

RegretT = O(T 2/3), QT = O(T 5/6).

Remark. Theorem 2 provides the first theoretical guaran-
tees for the strongly convex losses in projection-free COCO,
which are tighter than those in Garber and Kretzu (2024) for
general convex losses.

Algorithms for Bandit Setting
In this section, we investigate the bandit setting, where only
the function value is available. To handle the more challeng-
ing setting, we introduce the one-point gradient estimator
(Flaxman, Kalai, and McMahan 2005), which can approxi-
mate the gradient with a single function value.

One-Point Gradient Estimator. For a function f(x), we
define its δ-smooth version as

f̂δ(x) = Eu∼Bd [f(x+ δu)] (18)

which satisfies the following lemma (Flaxman, Kalai, and
McMahan 2005, Lemma 1).

Lemma 2. Let δ > 0, f̂δ(x) defined in (18) ensures

∇f̂δ(x) = Eu∼Sd [(d/δ)f(x+ δu)u] (19)

where Sd denotes the unit sphere in Rd.

To exploit the one-point gradient estimator, we define the
shrunk set of K as stated below

Kδ = (1− δ/r)K = {(1− δ/r)x | x ∈ K},

where 0 < δ < r denotes the shrunk parameter.
Compared to our methods for the full-information setting,

we make the following modifications:
• At each round t, the decision xt consists of two parts:

xt = yt + δut (20)

where yt ∈ Kδ denotes an auxiliary decision learned
from historical information, and ut ∼ Sd is uniformly
sampled from Sd;

• The gradient of f̃t(xt) is approximated by the one-point
gradient estimator:

∇̃t = (d/δ)[f̃t(xt)]ut, (21)

so that we can adhere to the update rules in our previous
methods;

• To manage the approximate error introduced by (21), we
employ the blocking technique (Garber and Kretzu 2020;
Hazan and Minasyan 2020) for decision updates, i.e., di-
viding the time horizon T into equally-sized blocks and
only updating decisions at the end of each block.

In the bandit setting, we also investigate the general convex
losses and the strongly convex losses.

General Convex Losses. In this case, we incorporate the
modifications (20) and (21), and the blocking technique into
Algorithm 1. The detailed procedures are summarized in Al-
gorithm 3. Specifically, for initialization, we set G̃1 = m =
1, and choose any ŷ1 ∈ Kδ (Step 1). At each round t, we
update yt = ŷm where ŷm ∈ Kδ is the auxiliary decision
used in the block m, make the decision xt according to (20),



Algorithm 3: Bandit Frank-Wolfe with Time-Varying Con-
straints (BFW-TVC)
Input: Hyper-parameters β, γ, c, K, ϵ, and the function Φ(·)

1: Choose any ŷ1 ∈ Kδ1 , and set G̃1 = m = 1
2: for t = 1 to T do
3: Set yt = ŷm, and play xt according to (20)
4: Suffer ft(xt) and gt(xt)

5: Construct Qt and f̃t(x) according to (4) and (6)
6: Compute ∇̃t according to (21)
7: if t mod K = 0 then
8: while G̃k < βG(γ+Φ′(βQτ )),∀τ in block do
9: Set G̃k+1 = 2G̃k, k = k + 1

10: end while
11: Compute ∇̂m =

∑t
τ=t−K+1 ∇̃τ

12: Set ηk and Fbk:m(y) according to (22) and (23)
13: Set ỹ1 = ŷm and τ = 0
14: repeat
15: Set τ = τ + 1
16: Update vτ and στ according to (24) and (25)
17: Compute ỹτ+1 according to (26)
18: until ⟨∇Fbk:m(ỹτ ), ỹτ − vτ ⟩ ≤ ϵ
19: Set ŷm+1 = ỹτ+1 and m = m+ 1
20: end if
21: end for

and suffer ft(xt) and gt(xt) (Steps 3-4). Then, we construct
the CCV Qt, the surrogate loss function f̃t(x) and the gradi-
ent estimation ∇̃t according to (4), (6) and (21), respectively
(Steps 5-6). At the end of the block m, we update our deci-
sion. To be precise, we first evaluate the current guess G̃k

for the gradient norm bound: if it is unsuitable, we double
the value until an appropriate G̃k is found (Steps 8-10). At
the Step 11, we compute the cumulative gradient estimation
∇̂m =

∑t
τ=t−K+1 ∇̃τ where K denotes the block size. At

the Step 12, we set ηk according to

ηk = cD(dMG̃kT
3/4)−1, (22)

and construct Fbk:m according to

Fbk:m(y) = ηk
∑m

τ=bk

〈
∇̂τ ,y

〉
+ ∥y − ysk∥

2
2 , (23)

where bk denotes the first block that utilizes the estimation
G̃k, and sk denotes the first round of bk. Next, we update the
auxiliary decision for the next block, and set ỹ1 = ym and
τ = 0 (Step 12). At Steps 14-18, we repeat the following
procedures: updating τ = τ +1, computing vτ according to

vτ ∈ argmin
y∈Kδ

⟨∇Fbk:m (ỹτ ) ,y⟩ , (24)

and στ according to

στ = argmin
σ∈[0,1]

Fbk:m (ỹτ + σ (vτ − ỹτ )) , (25)

and updating ỹτ+1 according to

ỹτ+1 = ỹτ + στ (vτ − ỹτ ) , (26)

Algorithm 4: Strongly Convex Variant of BFW with Time-
Varying Constraints (SCBFW-TVC)
Input: Hyper-parameters β, γ, δ, K, L, and the function
Φ(·), and the modulus of strong convexity αf

1: Choose any ŷ1 ∈ Kδ , and set m = 1
2: for t = 1 to T do
3: Set yt = ŷm, and play xt according to (20)
4: Suffer ft(xt) and gt(xt)

5: Construct Qt and f̃t(x) according to (4) and (6)
6: Compute ∇̃t according to (21)
7: if t mod K = 0 then
8: Compute ∇̂m =

∑t
τ=t−K+1 ∇̃τ

9: Set F sc
m (y) according to (27), and ỹ1 = ym

10: for τ = 1 to L do
11: Compute vsc

τ according to (28)
12: Calculate σsc

t according to (29)
13: Update ỹτ+1 according to (30)
14: end for
15: Set ŷm+1 = ỹL+1 and m = m+ 1
16: end if
17: end for

until the stop condition ⟨∇Fbk:m(ỹτ ), ỹτ −vτ ⟩ ≤ ϵ is satis-
fied. After that, we set the auxiliary decision ŷm+1 = ỹτ+1

for the next block.
With the configurations of the exponential Lyapunov

function Φ(x) = exp(2−1T−3/4x)− 1 and suitable param-
eters, we obtain the following theorem.

Theorem 3. Let γ = 1, K = T 1/2, ϵ = 4D2T−1/2 and c >
0 be a constant satisfying δ = cT−1/4 ≤ r, and β = C−1

2
where C2 = 24G(cD/r+3c+1+2cD/(dM)+dMD/c).
Under Assumptions 1 and 2, if the loss functions and the
constraint functions are general convex, Algorithm 3 ensures
the bounds of

E[RegretT ] = O(T 3/4), QT = O(T 3/4 log T ).

Remark. Theorem 3 presents tighter regret and CCV
bounds, compared to the O(T 3/4

√
log T ) regret bound and

the O(T 7/8 log T ) CCV bound in Garber and Kretzu (2024).

Strongly Convex Losses. In this case, we also employ
the one-point gradient estimator and the blocking technique,
and summarize the procedures in Algorithm 4. Overall, our
method for strongly convex losses is similar to Algorithm 3,
with the primary difference in the update of decisions.
Specifically, at the end of each block m, we first compute
the cumulative gradient estimation ∇̂m =

∑t
τ=t−K+1 ∇̃τ

(Step 8), and then construct F sc
m (y) as shown below:

F sc
m (y) =

∑m

τ=1

〈
∇̂τ ,y

〉
+ C3∥y∥22 (27)

where we denote C3 = γβαf t/2 for brevity, and set ỹ1 =
ym (Step 9). Next, we repeat the following procedures for
L times to refine the auxiliary decision (Steps 10-14): at the
iteration τ ∈ [L], computing vsc

τ according to

vsc
τ ∈ argmin

y∈Kδ

⟨∇F sc
m (ỹτ ) ,y⟩ , (28)
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Figure 1: Experimental results on the MovieLens dataset.

calculating σsc
t according to

σsc
τ = argmin

σ∈[0,1]

F sc
m (ỹτ + σ (vsc

τ − ỹτ )) , (29)

and updating ỹτ+1 according to

ỹτ+1 = ỹτ + σsc
τ (vsc

τ − ỹτ ) . (30)

Finally, we set the auxiliary decision for the next block as
ym+1 = ỹL+1 (Step 15).

By setting the quadratic Lyapunov function Φ(x) = x2

and proper parameters, we obtain the following theorem.
Theorem 4. Let β = G−1D−1T−2/3, γ = G/(G+ αfD),
K = L = T 2/3, and δ = cT−1/3 with c > 0 satis-
fying cT−1/3 < r, and γ = O(T 2/3). Under Assump-
tions 1 and 2, if the loss functions are αf -strongly convex,
and the constraint functions are general convex, Algorithm 4
ensures the bounds of

E [RegretT ] = O(T 2/3 log T ), QT = O(T 5/6 log T ).

Remark. Theorem 4 provides the first regret and CCV
bounds for the strongly convex case with bandit feedback
in projection-free COCO. By utilizing the strong convexity
of ft(·), both of our results are tighter than those established
for the general convex losses in Garber and Kretzu (2024).

Experiments
In this section, we conduct empirical studies on real-world
datasets to evaluate our theoretical findings.

General Setup. We investigate the online matrix comple-
tion problem (Hazan and Kale 2012; Lee, Ho-Nguyen, and
Lee 2023), the goal of which is to generate a matrix X in an
online manner to approximate the target matrix M ∈ Rm×n.
Specifically, at each round t, the learner receives a sam-
pled data (i, j) with the value Mij from the observed subset
O of M . Then, the learner chooses a matrix X from the
trace norm ball K = {X|∥X∥∗ ≤ δ,X ∈ Rm×n} where
δ > 0 is the parameter, and suffers the strongly convex
cost loss ft(Xt) =

∑
(i,j)∈O(Xij − Mij)

2/2 and the con-
straint loss gt(Xt) = Tr(PtXt) where Pt is uniformly sam-
pled from [−1, 1]n×m. The experiments are conducted with
δ = 104 on two real-world datasets: MovieLens1 for the
full-information setting, and Film Trust (Guo, Zhang, and
Yorke-Smith 2013) for the bandit setting.

1https://grouplens.org/datasets/movielens/100k/
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Figure 2: Experimental results on the Film Trust dataset.

Baselines. We choose three projection-free COCO meth-
ods as the contenders: (i) OPDP (Lee, Ho-Nguyen, and Lee
2023, Algorithm 1) and LPM (Garber and Kretzu 2024, Al-
gorithm 4) for the full-information setting; (ii) LBPM (Gar-
ber and Kretzu 2024, Algorithm 5) for the bandit setting. All
parameters of each method are set according to their theoret-
ical suggestions, and we choose the best hyper-parameters
from the range of [10−5, 10−4, . . . , 104, 105].

Results. All experiments are repeated 10 times and we re-
port experimental results (mean and standard deviation) in
Figures 1 and 2. As evident from the results, in the full-
information setting, OFW-TVC outperforms its competitors
significantly in terms of both two metrics. Moreover, by uti-
lizing the strong convexity of ft(·), our SCOFW-TVC yields
the lowest cumulative cost loss, albeit with a slight com-
promise on CCV. Similarly, in the bandit setting, it can be
observed that our methods consistently outperform others,
aligning with the theoretical guarantees.

Conclusion and Future Work

In this paper, we investigate projection-free COCO and pro-
pose a series of methods for the full-information and ban-
dit settings. The key idea is to utilize the Lyapunov-based
technique to construct a composite surrogate loss, consist-
ing of the original cost and the constraint loss, and em-
ploy parameter-free variants of OFW running over the sur-
rogate loss to simultaneously optimize the regret and CCV.
In this way, we improve previous results for general convex
cost losses and establish novel regret and CCV bounds for
strongly convex cost losses. During the analysis, we propose
the first parameter-free variant of OFW for general convex
losses, which may hold independent interest. Finally, empir-
ical studies have verified our theoretical findings.

Currently, for strongly convex losses, we improve the re-
gret bound from O(T 3/4) to O(T 2/3) , but sacrifice another
metric CCV with a marginally looser bound of O(T 5/6),
compared to our results for general convex losses. This phe-
nomenon may be due to the potential impropriety of the
quadratic Lyapunov function. Hence, one possible solution
is to choose other more powerful functions, which seems
highly non-trivial, and we leave it as future work.
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Theoretical Analysis
Proof of Theorem 1
We first introduce the following lemma that reveals the relationship RegretT and Regret′T .

Lemma 3. Let f̃t(·) be defined in (6), and Regret′T denote the regret in terms of f̃t(·). Then, we have

RegretT ≤ 1

γβ

(
Regret′T − Φ(βQT )

)
. (31)

Now, we focus on Regret′T . By utilizing the convexity of f̃t(·), we have

Regret′T =

T∑
t=1

[
f̃t(xt)− f̃t(x

∗)
]
≤

T∑
t=1

⟨∇f̃t(xt),xt − x∗⟩

≤
K∑

k=1

 tk∑
j=1

⟨∇f̃t(xt),xt − x∗
sk:t

⟩

︸ ︷︷ ︸
term (a)

+

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t

− x∗⟩


︸ ︷︷ ︸

term (b)

,

where tk denotes the size of the k-th block that employ G̃k = 2k−1G1 = 2k−1, and sk =
∑k−1

i=1 ti + 1 denote the first round
of block k, and t = sk − 1 + j and x∗

sk:t
= argminx∈K Fsk:t−1(x). Then, we analyze the regret on k-th block, which consists

of two terms. To upper bound term (a), we first introduce the following lemma.

Lemma 4. Let s be the first round in the block k and σsk,t = 2(t− sk + 1)−1/2. By setting ηk = D
2G̃kT 3/4

, we have

Fsk:t−1(xt)− Fsk:t−1(x
∗
sk:t

) ≤ 2D2σsk,t.

By applying Lemma 4, we have

term (a) ≤
tk∑
j=1

∥∇f̃t(xt)∥2∥xt − x∗
sk:t

∥2
(3)
≤

tk∑
j=1

∥∇f̃t(xt)∥2
√

Fsk:t−1(xt)− Fsk:t−1(x∗
sk:t

)

≤G̃k

tk∑
j=1

√
Fsk:t−1(xt)− Fsk:t−1(x∗

sk:t
) ≤ G̃kD

tk∑
j=1

√
2σsk,t ≤ 4G̃kDt

3/4
k = 2k+1Dt

3/4
k ,

(32)

where the penultimate inequality is due to the fact that t = sk − 1 + j and σsk,t = 2(t − sk + 1)−1/2 = 2j−1/2, and the last
inequality is due to G̃k = 2k−1G1 = 2k−1 for the k-th block. For term (b), we introduce the following lemma.
Lemma 5. Let x∗

sk:t
= argminx∈K Fsk:t−1(x). Then, we have

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t

− x∗⟩ ≤ D2

ηk
+ ηk

tk∑
j=1

∥∇f̃t(xt)∥22.

Substituting the setting of ηk = D
2G̃kT 3/4

into Lemma 5, we obtain

term (b) ≤ D2

ηk
+ ηk

tk∑
j=1

∥∇f̃t(xt)∥22 ≤ 2G̃kD(T 3/4 + T 1/4) ≤ 2k+1DT 3/4. (33)

Combining (32) and (33), we have

Regret′T ≤D

K∑
k=1

2k+1t
3/4
k +DT 3/4

K∑
k=1

2k+1

≤D

(
K∑

k=1

(t
3/4
k )4/3

)3/4( K∑
k=1

(2k+1)4

)1/4

+ 2K+3DT 3/4 ≤ 2K+4DT 3/4

where the second step is due to the Hölder’s inequality and the last step is due to the fact that
∑K

k=1 tk = T . Recall that in the
last block K, we have

2K−2 = G̃K−1 ≤ βG(γ +Φ′(βQT )) ≤ G̃K = 2K−1,



which implies that 2K+4 ≤ 26βG(γ +Φ′(βQT )) so that
Regret′T ≤ 26βGD(γ +Φ′(βQT ))T

3/4. (34)
Therefore, substituting (34) into (31) obtains

RegretT =

T∑
t=1

[
f̂t(xt)− f̂t(xt)

]
≤ 1

γβ

(
26βGD(γ +Φ′(βQT ))T

3/4 − Φ(βQT )
)

≤ 1

γβ

(
26βGD(γ + λ exp(λβQT ))T

3/4 − exp(λβQT )
)
+

1

γβ

≤26GDT 3/4 +
exp(λβQT )

γβ

(
26βGDλT 3/4 − 1

)
+

1

γβ

where the second step is due to the choice of Φ(βQt) = exp(λβQt)− 1 and Φ′(βQt) = λ exp(λβQt) for any t ∈ [T ].
By setting β = (26GD)−1, λ ≤ T−3/4 and γ = 1, we have

RegretT ≤ 26GD(T 3/4 + 1).

Finally, we specify the upper bound of CCV. From (7), we have the following relationship:
Φ(βQT ) ≤ Regret′T − γβRegretT ≤ Regret′T + γβGDT, (35)

where the last step is due to the G-Lipschitzness of ft(·), i.e., for any x,y ∈ K
|ft(x)− ft(y)| ≤ G∥x− y∥2 ≤ GD.

Substituting (34) into (35), we have

Φ(βQT ) ≤26βGD(γ +Φ′(βQT ))T
3/4 + γβGDT ≤ Φ′(βQT )T

3/4 + 2T. (36)
where the last step is due to the configurations of β = (26GD)−1 and γ = 1. By setting Φ(βQt) = exp(λβQt) − 1 for any
t ∈ [T ], we have

exp(λβQT )− 1 ≤ λ exp(λβQT )T
3/4 + 2T.

Rearranging the above inequality, we have

QT ≤ 1

λβ
ln

(
1 + 2T

1− λT
3
4

)
≤ 27GDT 3/4 ln(2 + 4T ),

where the last step is due to λ = 2−1T−3/4.

Proof of Theorem 2
Similar to the proof of Theorem 1, the RegretT is bound by

RegretT ≤ 1

γβ

(
Regret′T − Φ(βQT )

)
. (37)

Now, we focus on Regret′T and introduce the following lemma (Wan and Zhang 2021, Theorem3).
Lemma 6. Let {ht(x)}Tt=1 be a sequence of λ-strongly convex loss functions, and G′-Lipschitz over K. Then, Algorithm 2
ensures

T∑
t=1

ht(xt)−min
x∈K

T∑
t=1

ht(x) ≤
3
√
2CT 2/3

8
+

C log T

8
+G′D

where C = 16(G′ + λD)2/λ.
Then, we apply Lemma 6 over the loss functions {f̃t(x)}Tt=1. Note that given ft(x) is αf -strongly convex, the function f̃t(x)
is γβαf -strongly convex. Therefore, by applying Lemma 6, we have

Regret′T ≤6
√
2(G′ + γβαfD)2

γβαf
T 2/3 +

2(G′ + γβαfD)2

γβαf
log T +G′D

≤14(G′ + γβαfD)2

γβαf
T 2/3 +G′D

=
14β(γ(G+ αfD) +GΦ′(βQT ))

2

γαf
T 2/3 + βGD(γ +Φ′(βQT ))

=
14βG2(1 + Φ′(βQT ))

2

γαf
T 2/3 + βGD(γ +Φ′(βQT ))

≤28βG2

γαf
T 2/3(1 + Φ′(βQT )

2) + βGD(γ +Φ′(βQT ))



where the third step is due to G′ = βG(γ+Φ′(βQT )) and the fourth step is due to γ = G/(G+αfD), and the last step is due
to the fact that (a+ b)2 ≤ 2(a2 + b2) for ∀a, b ∈ R.

We set the function Φ(x) = x2 + x with Φ′(x) = 2x+ 1, and hence, Regret′T is bounded by

Regret′T ≤28βG2

γαf
T 2/3(1 + (2βQT + 1)2) + βGD(γ + 2βQT + 1)

≤28βG2

γαf
T 2/3(3 + 8β2Q2

T ) + βGD(γ + 2βQT + 1)

≤224βG2

γαf
T 2/3(1 + β2Q2

T ) + βGD(γ + 2βQT + 1),

(38)

where the second step is also due to (a+ b)2 ≤ 2(a2 + b2) for ∀a, b ∈ R.
Substituting (38) into (37), we obtain

RegretT ≤ 1

γβ

(
224βG2

γαf
T 2/3(1 + β2Q2

T ) + βGD(γ + 2βQT + 1)− β2Q2
T − βQT

)
=
224G2

γ2αf
T 2/3 +

GD(γ + 1)

γ
+

[
224G2

γαf
T 2/3 − 1

β

]
β2Q2

T

γ
+

[
2GD − 1

β

]
βQT

γ

=
224G2

γ2αf
T 2/3 +

GD(γ + 1)

γ
,

where the last step is due to
224G2

γαf
T 2/3 − 1

β
≤ 0 and 2GD − 1

β
≤ 0 (39)

with the setting of
β =

γαf

500G2T 2/3
=

αf

500GT 2/3(G+ αfD)
. (40)

Finally, we deliver the upper bound of CCV. According to (35) and Φ(x) = x2 + x, we have

β2Q2
T + βQT ≤Regret′T + γβGDT

≤224βG2

γαf
T 2/3(1 + β2Q2

T ) + βGD(γ + 2βQT + 1) + γβGDT

≤1

2
+

1

2
β2Q2

T + βQT +
1

2
(γ + 1) + γβGDT

where the last step is due to (40) and 2βGD ≤ 1. Rearranging the above inequality, we have

Q2
T ≤ (2 + γ)

β2
+

2γGD

β
T =

500G2(2 + γ)

γαf
T 4/3 +

γ2αfD

250G
T 5/3 ⇒ QT ≤ O(T 5/6). (41)

Proof of Theorem 3
Similar to the proof of Theorem 1, we first focus on Regret′T . Let y∗ = (1− δ/r)x∗ and denote ym(t) as the auxiliary decision
for xt.

E
[
Regret′T

]
= E

[
T∑

t=1

f̃t(xt)− f̃t(ym(t))

]
︸ ︷︷ ︸

term (a)

+E

[
T∑

t=1

f̃t(ym(t))− f̃t(y
∗)

]
︸ ︷︷ ︸

term (b)

+E

[
T∑

t=1

f̃t(y
∗)− f̃t(x

∗)

]
︸ ︷︷ ︸

term (c)

.
(42)

Let tk denote the number of the blocks that uses Gk, and N denote the number of blocks that employs different gradient norm
estimations. For term (a), according to (20), we have

term (a)
(20)
=

T∑
t=1

E
[
f̃t(ym(t) + δut)− f̃t(ym(t))

]
≤

T/K∑
m=1

K∑
j=1

δG̃k∥ut∥2 =

N∑
k=1

δG̃ktk ≤ c

N∑
k=1

G̃kt
3/4
k (43)

where the first inequality is due to the convexity of f̃t(·), and the last inequality is due to δ = cT−1/4 ≤ ct
−1/4
k .



For term (c), we have

term (c) ≤
N∑

k=1

G̃ktk∥(1− δ/r)x∗ − x∗∥2 ≤ D

r

N∑
k=1

δG̃ktk ≤ cD

r

N∑
k=1

G̃kt
3/4
k (44)

where the first inequality is due to Assumption 1.
Now, we proceed to upper bound term (b) and decompose it as below:

term (b) = E

[
T∑

t=1

f̃t(ym(t))− f̂t,δ(ym(t))

]
︸ ︷︷ ︸

term (d)

+E

[
T∑

t=1

f̂t,δ(ym(t))− f̂t,δ(y
∗)

]
︸ ︷︷ ︸

term (e)

+E

[
T∑

t=1

f̂t,δ(y
∗)− f̃t(y

∗)

]
︸ ︷︷ ︸

term (f)

,
(45)

where f̂t,δ is the smooth version of f̃t defined in (18). Then, we introduce the following lemma (Hazan 2016, Lemma 2.8)

Lemma 7. Let f(x) : Rd → R be α-strongly convex and G-Lipschitz over a convex and compact set K ⊆ Rd. Then, its
δ-smooth version defined in (18) has the following properties: (i) f̂δ(x) is α-strongly convex over Kδ; (ii) |f̂δ(x)− f(x)| ≤ δG

for any x ∈ Kδ; (iii) f̂δ(x) is G-Lipschitz over Kδ .

According to (ii) of Lemma 7, we have

term (d) ≤
N∑

k=1

δG̃ktk ≤ c

N∑
k=1

G̃kt
3/4
k (46)

and

term (f) ≤
N∑

k=1

δG̃ktk ≤ c

N∑
k=1

G̃kt
3/4
k . (47)

Denote ∇̂t,δ,m(t) = ∇f̂t,δ(ym(t)) and y∗
m = argminy∈Kδ

{Fbk:m(y)}. Then, we bound term (e) in the following way:

term (e) ≤ E

[
T∑

t=1

⟨∇̂t,δ,m(t),ym(t) − y∗⟩

]

=E

[
T∑

t=1

⟨∇̂t,δ,m(t),ym(t) − y∗
m(t)⟩

]
︸ ︷︷ ︸

term (g)

+E

[
T∑

t=1

⟨∇̂t,δ,m(t),y
∗
m(t) − y∗

m(t)+1⟩

]
︸ ︷︷ ︸

term (h)

+E

[
T∑

t=1

⟨∇̂t,δ,m(t),y
∗
m(t)+1 − y∗⟩

]
︸ ︷︷ ︸

term (i)

.
(48)

Note that Fbk:m(y) is 2-strongly convex, according to Lemma 1, we have

∥ym(t) − y∗
m(t)∥2 ≤

√
Fbk:m(ym(t))− Fbk:m(y∗

m(t)). (49)

Therefore, for term (g), we have

term (g) ≤
T/K∑
m=1

K∑
j=1

G̃k∥ym(t) − y∗
m(t)∥2

(49)
≤

T/K∑
m=1

K∑
j=1

G̃k

√
Fbk:m(ym(t))− Fbk:m(y∗

m(t)) ≤
T/K∑
m=1

K∑
j=1

G̃k

√
ϵ ≤ G̃NT

√
ϵ

(50)

where the third inequality is due to the stop condition and the last inequality is due to G̃k ≤ G̃N .
To upper bound term (h), we introduce the following lemma (Garber and Kretzu 2020, Lemma 5).

Lemma 8. For the block m, Algorithm 3 holds that

E
[
∥∇̂m∥2

]2
≤ E

[
∥∇̂m∥22

]
≤ K

d2M2

δ2
+K2G̃2

k. (51)



Applying Lemma 8, we have

term (h) ≤
T/K∑
m=1

K∑
j=1

G̃kE
[
∥y∗

m(t) − y∗
m(t)+1∥2

]

=

T/K∑
m=1

K∑
j=1

G̃kηkE
[
∥∇̂m∥2

] (51)
≤

T/K∑
m=1

K∑
j=1

G̃kηk

(√
K

dM

δ
+KG̃k

)
(22)
=

T/K∑
m=1

K∑
j=1

D
√
K

T 1/2
+

cDKG̃k

dMT 3/4
≤ D

√
KT +

cDK

dM

N∑
k=1

G̃kt
1/4
k

(52)

where the forth step is due to δ = cT−1/4 and (22).
Similar to Lemma 5, we can also obtain that

term (i) =

N∑
k=1

tk∑
l=1

⟨∇̂t,δ,m(t),y
∗
m(t)+1 − y∗⟩ ≤

N∑
k=1

[
D2

ηk
+ ηk

tk∑
m=1

∥∇̂m∥22

]
(51),(22)
≤ dMD

c
T 3/4

N∑
k=1

G̃k +
DdM

c
T 3/4 +

cDT 1/2

dM

N∑
k=1

G̃kt
1/4
k ,

(53)

where the inequality is due to G̃k = 2k−1 ≥ 1 and K = T 1/2,
By setting ϵ = 4D2T−1/2 and combining (43)-(48), (50), (52) and (53), we obtain

E
[
Regret′T

]
≤cD

r

N∑
k=1

G̃kt
3/4
k + 3c

N∑
k=1

G̃kt
3/4
k + G̃NT

√
ϵ+D

√
KT +

cDK

dM

N∑
k=1

G̃kt
1/4
k

+
dMD

c
T 3/4

N∑
k=1

G̃k +
DdM

c
T 3/4 +

cDT 1/2

dM

N∑
k=1

G̃kt
1/4
k

≤
(
cD

r
+ 3c

) N∑
k=1

G̃kt
3/4
k + 2N−1T 3/4 +

(
D +

DdM

c

)
T 3/4 +

2cD

dM
T 1/2

N∑
k=1

G̃kt
1/4
k +

dMD

c
T 3/4

N∑
k=1

G̃k.

(54)

Note that according to G̃k = 2k−1 and the Hölder’s inequality, we have
N∑

k=1

G̃kt
3/4
k ≤ 2N+2T 3/4,

N∑
k=1

G̃kt
1/4
k ≤ 2N+2T 1/4 and

N∑
k=1

G̃k ≤ 2N+2. (55)

Therefore, we obtain

E
[
Regret′T

]
≤
(
cD

r
+ 3c+ 1 +

2cD

dM
+

dMD

c

)
2N+2T 3/4 +

(
D +

dMD

c

)
T 3/4 ≤ C12

N+2T 3/4 + C2T
3/4, (56)

where for brevity, we denote C1 =
(
cD
r + 3c+ 1 + 2cD

dM + dMD
c

)
and C2 =

(
D + dMD

c

)
.

Recall that in the last block K, which employs G̃N , we have

2N−2 = G̃N−1 ≤ βG(γ +Φ′(βQT )) ≤ G̃N = 2N−1,

which implies that 2N+2 ≤ 24βG(γ +Φ′(βQT )). Therefore, we have

E
[
Regret′T

]
≤ 24βG(γ +Φ′(βQT ))C1T

3/4 + C2T
3/4. (57)

Combining (31) and (57), we obtain

E [RegretT ] ≤
C3

γ
(γ +Φ′(βQT ))T

3/4 +
C2

γβ
T 3/4 − 1

γβ
Φ(βQT ),

where C3 = 24GC1. By setting Φ(x) = exp(λx)− 1 with Φ′(x) = λ exp(λx), the above inequality can be re-written as

E [RegretT ] ≤ C3T
3/4 +

C2

γβ
T 3/4 +

[
C3βT

3/4λ− 1
] exp(λβQT )

γβ
≤ C3T

3/4 + C3C2T
3/4 = O(T 3/4)



where the last step is by setting β = C−1
3 , γ = 1 and λ = 2−1T−3/4.

Now, we proceed to upper bound CCV. Substituting (57) into (35), we have

Φ(βQT ) ≤ C3β(γ +Φ′(βQT ))T
3/4 + C2T

3/4 + γβGDT.

By setting Φ(x) = exp(λx)− 1, β = C−1
3 , γ = 1 and λ = 2−1T−3/4, the above result delivers

exp(λβQT )− 1 ≤ (1 + C2)T
3/4 + 2−1 exp(λβQT ) + C−1

3 GDT,

which implies

QT ≤ 2C3T
3/4 ln

(
2 + 2(1 + C2)T

3/4 + 2C−1
3 GDT

)
⇒ QT ≤ O(T 3/4 log T ).

Proof of Theorem 4
First, we focus on upper bounding RegretT and introduce the following lemma which is an centralized version of Wan, Wang,
and Zhang (2021, Theorem 3) with n = 1.

Lemma 9. Let K = L = T 2/3, and δ = cT−1/3 with c > 0 satisfying cT−1/3 < r, Algorithm 4 ensures

E
[
Regret′T

]
≤ 1 + log T 1/3

λ

(
8d2M2

c2
+ 8G′2 + 3λ2D2

)
T 2/3 + 3cG′T 2/3 +

cG′DT 2/3

r
+ 12G′DT 2/3

where λ = γβαf and G′ = βG(γ +Φ′(βQT )).

According to Lemma 9, we have

E
[
Regret′T

]
≤1 + log T 1/3

γβαf

(
8d2M2

c2
+ 3γ2β2α2

fD
2

)
T 2/3 +

8 + 8 log T 1/3 + 3c+ cDr−1 + 12D

γβαf
G′2T 2/3

=
1 + log T 1/3

γβαf

(
8d2M2

c2
+ 3γ2β2α2

fD
2

)
T 2/3 +

(8 log T 1/3 + C3)βG
2

γαf
(γ +Φ′(βQT ))

2T 2/3

≤1 + log T 1/3

γβαf

(
8d2M2

c2
+ 3γ2β2α2

fD
2

)
T 2/3 +

(16 log T 1/3 + 2C3)βG
2

γαf
(γ2 +Φ′(βQT )

2)T 2/3

=
1 + log T 1/3

γβαf

(
8d2M2

c2
+ 3γ2β2α2

fD
2

)
T 2/3 +

(16 log T 1/3 + 2C3)γβG
2

αf
T 2/3 +

(16 log T 1/3 + 2C3)βG
2

γαf
Φ′(βQT )

2T 2/3

(58)

where C3 = 8 + 3c+ cDr−1 + 12D and the second inequality is due to (a+ b)2 ≤ 2(a2 + b2) for ∀a, b ∈ R.
Then, we employ the function Φ(x) = x2 with Φ′(x) = 2x and substitute (58) into (31)

E [RegretT ] =(1 + log T 1/3)

(
8d2M2

c2γ2β2αf
+ 3αfD

2

)
T 2/3 +

(16 log T 1/3 + 2C3)G
2

αf
T 2/3

+

[
8(8 log T 1/3 + C3)β

3G2

γαf
T 2/3 − 1

]
1

γβ
Q2

T

≤(1 + log T 1/3)

(
8d2M2

c2γ2β2αf
+ 3αfD

2

)
T 2/3 +

(16 log T 1/3 + 2C3)G
2

αf
T 2/3 = O(T 2/3 log T )

where the last step is by setting β = 1 and γ = 16α−1
f (8 log T 1/3 + C3)G

2T 2/3.
Next, we consider the CCV and substitute (58) into (35) with the function Φ(x) = x2, β = 1 and γ = 16α−1

f (8 log T 1/3 +

C3)G
2T 2/3:

Q2
T ≤ 2C4 + 2C5T

4/3 + 32α−1
f (8 log T 1/3 + C3)G

2DT 5/3 ⇒ QT ≤ O(T 5/6 log T )

where

C4 =
8d2M2(1 + log T 1/3)

16(8 log T 1/3 + C3)c2G2
, C5 = 48(8 log T 1/3 + C3)G

2D2(1 + log T 1/3) + 32α−2
f (8 log T 1/3 + C3)

2G4



Supporting Lemmas
Proof of Lemma 3
Let x∗ = argminx∈K

∑T
t=1 f̃t(x), and we have gt(x

∗) ≤ 0 for ∀t ∈ [T ]. According to (6), it can be verified that

f̃t(x
∗) = γβft(x

∗). (59)

and x∗ = argminx∈K
∑T

t=1 f̃t(x) = argminx∈K
∑T

t=1 ft(x). Combining (59) with the definition of Regret′T , we obtain

Regret′T =

T∑
t=1

[
f̃t(xt)− f̃t(x

∗)
]

(6),(59)
=

T∑
t=1

[
γβft(x) + Φ′(βQt)βg

+
t (x)− γβft(x

∗)
]

=γβ

T∑
t=1

[ft(x)− ft(x
∗)] +

T∑
t=1

Φ′(βQt)βg
+
t (x)

(5)
≥ γβRegretT +

T∑
t=1

[Φ(βQt)− Φ(βQt−1)]

=γβRegretT +Φ(βQT ),

(60)

which completes the proof.

Proof of Lemma 4
In this part, we provide a self-contained analysis for Lemma 4, which mainly follows Hazan (2016, Lemma 7.4). First, we
consider the first round in the block k, i.e., t = sk. Since xsk = x∗

sk:sk
= argminx∈K ∥x− xsk∥22, we have

Fsk:sk−1(xsk)− Fsk:sk−1(x
∗
sk:sk

) = 0 ≤ 2D2σsk,t.

Then, we assume Fsk:t−1(xt)− Fsk:t−1(x
∗
sk:t

) ≤ 2D2σsk,t for any t ≥ sk + 1, and consider the case with t+ 1:

Fsk:t(xt+1)− Fsk:t(x
∗
sk:t+1) =Fsk:t−1(xt+1)− Fsk:t−1(x

∗
sk:t+1) + ηk⟨∇f̃t(xt),xt+1 − x∗

sk:t+1⟩
≤Fsk:t−1(xt+1)− Fsk:t−1(x

∗
sk:t

) + ηk⟨∇f̃t(xt),xt+1 − x∗
sk:t+1⟩

≤Fsk:t−1(xt+1)− Fsk:t−1(x
∗
sk:t

) + ηk∥∇f̃t(xt)∥2∥xt+1 − x∗
sk:t+1∥2

≤Fsk:t−1(xt+1)− Fsk:t−1(x
∗
sk:t

) + ηk∥∇f̃t(xt)∥2
√

Fsk:t(xt+1)− Fsk:t(x
∗
sk:t+1)

(61)

The first inequality is by x∗
sk:t

= argminx∈K Fsk:t−1(x), and the last inequality is by the strong convexity of Fsk:t(·) with (3).
Then, we consider the first term in (61)

Fsk:t−1(xt+1)− Fsk:t−1(x
∗
sk:t

) =Fsk:t−1(xt + σsk,t (vt − xt))− Fsk:t−1(x
∗
sk:t

)

≤Fsk:t−1(xt)− Fsk:t−1(x
∗
sk:t

) + ⟨∇Fsk:t−1(xt), σsk,t(vt − xt)⟩+ σ2
sk,t

∥vt − xt∥22
≤Fsk:t−1(xt)− Fsk:t−1(x

∗
sk:t

) + ⟨∇Fsk:t−1(xt), σsk,t(x
∗
sk:t

− xt)⟩+ σ2
sk,t

∥vt − xt∥22
≤Fsk:t−1(xt)− Fsk:t−1(x

∗
sk:t

) + σsk,t(Fsk:t−1(x
∗
sk:t

)− Fsk:t−1(xt)) + σ2
sk,t

∥vt − xt∥22
=(1− σsk,t)(Fsk:t−1(xt)− Fsk:t−1(x

∗
sk:t

)) + σ2
sk,t

D2

≤2D2(1− σsk,t)σsk,t + σ2
sk,t

D2 = D2(2− σsk,t)σsk,t

(62)

where the first inequality is due to the smoothness of Fsk:t(x), the second inequality is due to (11) and the third inequality is
due to the convexity of Fsk:t(x) and the boundness of K.

Now, we focus on the second term in (61)

ηk∥∇f̃t(xt)∥2
√
Fsk:t(xt+1)− Fsk:t(x

∗
sk:t+1)

(8)
≤ G̃kηk

√
Fsk:t(xt+1)− Fsk:t(x

∗
sk:t+1)

≤(
√
DG̃kηk)

2/3

(
G̃kηk
D

)1/3√
Fsk:t(xt+1)− Fsk:t(x

∗
sk:t+1)

≤1

2
(
√
DG̃kηk)

4/3 +
1

2

(
G̃kηk
D

)2/3

(Fsk:t(xt+1)− Fsk:t(x
∗
sk:t+1))

≤1

8
D2σ2

sk,t
+

1

6
σsk,t(Fsk:t(xt+1)− Fsk:t(x

∗
sk:t+1))

(63)



where the last step is due to the setting of ηk = D
2G̃kT 3/4

≤ D
2G̃k(t−sk+1)3/4

for all t ∈ [T ] and σsk,t =
2√

t−sk+1
. Substituting

(62) and (63) into (61), we obtain

Fsk:t(xt+1)− Fsk:t(x
∗
sk:t+1) ≤D2(2− σsk,t)σsk,t +

1

8
D2σ2

sk,t
+

1

6
σsk:t(Fsk:t(xt+1)− Fsk:t(x

∗
sk:t+1)).

Rearranging the above inequality delivers

Fsk:t(xt+1)− Fsk:t(x
∗
sk:t+1) ≤

D2(2− 7
8σsk,t)σsk,t

1− 1
6σsk,t

. (64)

Furthermore, with σsk,t = 2(t− sk + 1)−1/2, it is easy to verify that

(2− 7
8σsk,t)σsk,t

1− 1
6σsk,t

≤ 2σsk,t+1. (65)

We complete the proof by combining (64) and (65), as shown below

Fsk:t(xt+1)− Fsk:t(x
∗
sk:t+1) ≤ 2D2σsk,t+1.

Proof of Lemma 5
First, we decompose the left side as shown below:

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t

− x∗⟩ =
tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t

− x∗
sk:t+1⟩︸ ︷︷ ︸

term (c)

+

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t+1 − x∗⟩︸ ︷︷ ︸

term (d)

,

where x∗
sk:t

= argminx∈K Fsk:t−1(x) and x∗
sk:t+1 = argminx∈K Fsk:t(x).

Then, we proceed to upper bound term (c). Since Fsk:t(·) is 2-strongly convex function, we have

∥x∗
sk:t

− x∗
sk:t+1∥22 ≤Fsk:t(x

∗
sk:t

)− Fsk:t(x
∗
sk:t+1)

=Fsk:t−1(x
∗
sk:t

)− Fsk:t−1(x
∗
sk:t+1) + η⟨∇f̃t(xt),x

∗
t − x∗

t+1⟩
≤ηk⟨∇f̃t(xt),x

∗
sk:t

− x∗
sk:t+1⟩ ≤ η∥∇f̃t(xt)∥2∥x∗

sk:t
− x∗

sk:t+1∥2

where the first step is due to (3) and the second step is due to (10). According to the above inequality, we have

∥x∗
sk:t

− x∗
sk:t+1∥2 ≤ ηk∥∇f̃t(xt)∥2.

Therefore, term (c) is bounded by

term (c) ≤
tk∑
j=1

∥∇f̃t(xt)∥2∥x∗
sk:t

− x∗
sk:t+1∥2 ≤ ηk

tk∑
j=1

∥∇f̃t(xt)∥22. (66)

Next, to upper bound term (d), we introduce the following lemma (Garber and Hazan 2016, Lemma 6.6):

Lemma 10. Let {ht(x)}Tt=1 be a sequence of loss functions and x∗
t ∈ argminx∈K

∑t
τ=1 hτ (x) for any t ∈ [T ]. Then, it holds

that
T∑

t=1

ht(x
∗
t )−min

x∈K

T∑
t=1

ht(x) ≤ 0.

According to Lemma 10, by setting h1(x) = ηk⟨∇f̃t(xt),x⟩+ ∥x− xsk∥22 and ht(x) = ηk⟨∇f̃t(xt),x⟩ for any t ≥ 2, we
have Fsk:t(x) =

∑t
τ=sk

hτ (x). Recall that x∗
sk:t+1 = argminx∈K{Fsk:t(x) =

∑t
τ=sk

hτ (x)}. Applying Lemma 10 delivers

sk+tk−1∑
τ=sk

hτ (x
∗
sk:t+1)−min

x∈K

sk+tk−1∑
τ=sk

hτ (x) =

tk∑
j=1

ht(x
∗
sk:t+1)−min

x∈K

tk∑
j=1

ht(x)

=ηk

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t+1 − x̂∗⟩+ ∥x∗

sk:sk+1 − xsk∥22 − ∥x̂∗ − xsk∥22 ≤ 0,



where x̂∗ = argminx∈K
∑tk

j=1 ht(x). Note that
∑tk

j=1 ht(x̂
∗)−

∑tk
j=1 ht(x

∗) ≤ 0. Therefore, we have

term (d) =

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t+1 − x∗⟩ =

tk∑
j=1

⟨∇f̃t(xt),x
∗
sk:t+1 − x̂∗⟩+

tk∑
j=1

⟨∇f̃t(xt), x̂
∗ − x∗⟩

≤ 1

ηk

(
∥x̂∗ − xsk∥22 − ∥x∗

sk:sk+1 − xsk∥22
)
≤ D2

ηk
.

(67)

Combining (66) and (67) completes the proof.


