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Abstract

Cross-Domain Recommendation (CDR) leverages additional
knowledge from auxiliary domains to address the long-
standing data sparsity issue. However, existing methods typ-
ically acquire this knowledge by minimizing the average
loss over all domains, overlooking the fact that different do-
mains possess different user-preference distributions. As a re-
sult, the acquired knowledge may contain biased information
from data-rich domains, leading to performance degradation
in data-scarce domains. In this paper, we propose a novel
CDR method, which takes domain distinctions into consid-
eration to extract and adapt unbiased information. Specif-
ically, our method consists of two key components: Unbi-
ased Information Extraction (UIE) and Unbiased Information
Adaptation (UIA). In the UIE, inspired by distributionally ro-
bust optimization, we optimize the worst-case performance
across all domains to extract domain-invariant information,
preventing the potential bias from auxiliary domains. In the
UIA, we introduce a new user-item attention module, which
employs domain-specific information from historically inter-
acted items to attend the adaptation of domain-invariant in-
formation. To verify the effectiveness of our method, we con-
duct extensive experiments on three real-world datasets, each
of which contains three extremely sparse domains. Experi-
mental results demonstrate the considerable superiority of our
proposed method compared to baselines.

Introduction
Over past decades, recommendation systems have played a
significant role in a variety of applications, such as stream
media (Covington, Adams, and Sargin 2016), e-commerce
(Smith and Linden 2017) and social networking (Naumov
et al. 2019). Most existing studies on recommendation sys-
tems follow the classical collaborative filtering framework,
which captures user preferences based on historical user-
item interactions (Sarwar et al. 2001; Linden, Smith, and
York 2003; Yi et al. 2017). However, in practical applica-
tions, it is common to suffer the data sparsity issue where
available interactions fall short of revealing underlying pref-
erences, which in turn hampers the effectiveness of existing
methods (Ricci, Rokach, and Shapira 2015).
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Figure 1: A simple illustration of Cross-Domain Recom-
mendation over three domains: movies, books and music.

To alleviate this issue, Cross-Domain Recommendation
(CDR) has been proposed, leveraging additional knowledge
learned from auxiliary domains to enhance the recommenda-
tion performance in data-scarce domains (Zhu et al. 2021).
The underlying rationale is that users typically have similar
preferences across different domains. For example, as shown
in Figure 1, although our understanding of user preferences
in the music domain is limited, we infer that the user likely
prefers romantic music based on his common preference,
i.e., Romance, observed in the movies and books domains.
According to the number of target domains, prior research
on CDR can be generally divided into three groups: single-
target CDR (Singh and Gordon 2008; Tan et al. 2014; Lu,
Dong, and Smyth 2018), dual-target CDR (Zhu et al. 2019;
Li and Tuzhilin 2020; Liu et al. 2020; Li and Tuzhilin 2021;
Zhu et al. 2022), and multi-target CDR (Yang et al. 2017;
Krishnan et al. 2020; Li et al. 2023; Yang et al. 2024).

Single-target and dual-target CDR primarily focus within
two domains, whereas multi-target CDR aims to boost per-
formance across three or more domains simultaneously. In
multi-target CDR, a classical paradigm typically involves
two steps: extraction and adaptation (Zang et al. 2022).
Specifically, the extraction focuses on generating a global
user embedding for each user from all participating domains,
to capture the common preference. The adaptation aims to
employ domain-specific information, such as local user em-
bedding derived solely from the target domain, to establish
linkages between the target domain and the global user em-
bedding. Based on this paradigm, several multi-target CDR
methods have been proposed recently (Kim et al. 2019; Zhu
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et al. 2023a; Li et al. 2023; Ning et al. 2023).
Despite extensive developments in multi-target CDR, we

observe that existing studies still suffer two limitations.
First, during the extraction, previous methods follow a con-
ventional strategy that learns the domain-invariant knowl-
edge by directly minimizing the average loss across all par-
ticipating domains, overlooking a crucial fact that different
domains typically possess different user-preference distri-
butions. Consequently, such an average-case minimization
strategy may introduce biased information from data-rich
domains and compromise performances in data-scarce do-
mains. In other words, optimizing the average loss may not
handle the domain distinctions in multi-target CDR well.
Second, during the adaptation, existing studies predomi-
nantly utilize user-side information to facilitate the transfer
of global user embeddings into target domains, overlook-
ing item-side information which harbors potential domain-
specific user preferences from a complementary perspective.

To address the above two limitations, in this paper, we
propose a novel multi-target CDR method, namely Unbiased
Information Extraction and Adaptation (UIEA), which takes
domain distinctions into consideration to extract and trans-
fer unbiased information. Specifically, our method consists
of three parts: pretraining, Unbiased Information Extraction
(UIE) and Unbiased Information Adaptation(UIA). First, in
the pretraining, we learn the local user embeddings and local
item embeddings by exploiting the Bayesian matrix factor-
ization method (Rendle et al. 2009), to capture the domain-
specific information in each individual domain. Then, in the
UIE, we employ distributionally robust optimization to pre-
vent the potential bias from auxiliary domains. To be more
precise, we develop a novel extraction loss that incorpo-
rates a reconstruction component to guide the generation of
global user embeddings, and a fine-tuning component to in-
fuse domain-specific information into the global user em-
beddings from each domain. To prevent potential biases, we
optimize for the worst-case performance, specifically target-
ing the highest extraction loss across all domains. Addition-
ally, we implement a joint training strategy that concurrently
updates model parameters and importance weights for dif-
ferent domains, thereby generating global embeddings that
are refined with domain-invariant information from all par-
ticipating domains. In the UIA, we propose a new user-item
attention module that leverages the information not only
from users but also from their historically interacted items
to facilitate the adaptation of global user embeddings. Our
proposed UIA presents a comprehensive view of user pref-
erences derived from their past interactions with items and is
capable of refining global user embeddings using the items
themselves, preventing the potential biased information.

Empirically, we conduct extensive experiments over three
real-world datasets: Amazon (Ni, Li, and McAuley 2019),
Douban (Zhu et al. 2019) and IE datasets. Experimental
results demonstrate that UIEA exhibits significant perfor-
mance improvements over its competitors.

Related Work
In this section, we briefly review recent studies on CDR and
distributionally robust optimization.

Cross-Domain Recommendation
The single-target CDR aims to extract additional knowledge
from one source domain and transfer it into a different tar-
get domain (Singh and Gordon 2008; Tan et al. 2014; Lu,
Dong, and Smyth 2018; Sopchoke, ichi Fukui, and Numao
2018). The dual-target CDR treats both source and target
domains equally and seeks to improve performances in two
domains concurrently (Zhu et al. 2019; Liu et al. 2020; Li
and Tuzhilin 2021; Zhu et al. 2022, 2023b).

Although various methods have been proposed in single-
target and dual-target CDR, they are limited in modeling the
pairwise relations between domains. When extended into the
situation with n domains, these methods suffer high com-
putational costs of handling at least

(
n
2

)
relations (Cui et al.

2020). To address this issue, multi-target CDR is introduced,
which aims to boost the performance in more than two do-
mains simultaneously. Compared with previous two prob-
lems, multi-target CDR presents greater challenges, as more
participating domains are considered concurrently, increas-
ing the difficulty of extracting and transferring knowledge
across different domains (Zang et al. 2022).

In recent years, there are several studies focus on multi-
target CDR. Vartak et al. (2017) employ meta-learning to
capture user preferences from item interactions. Yang et al.
(2017) propose a generative model to capture the domain-
invariant preference with user behaviors across all domains.
Similarly, Kim et al. (2019) also investigate multi-domain
user behaviors but adopt recurrent neural networks to mine
the underlying preference. Ma et al. (2019) utilize disen-
tangled representation learning to capture user preferences
(prototype) at a macro level while disentangling item fea-
tures affecting preferences at a micro level. Krishnan et al.
(2020) combine meta-learning and transfer learning to ex-
tract contextual invariants, and integrate them with domain-
specific user and item embeddings. Cui et al. (2020) and
Zhu et al. (2023a) represent user-item interactions across
domains as a shared graph and apply graph embedding al-
gorithms to extract the cross-domain preference. Ning et al.
(2023) explicitly disentangle domain-invariant and domain-
specific knowledge, and employ a random walk-based strat-
egy for knowledge transfer.

As previous mentioned, existing methods for multi-target
CDR typically utilize the average-case optimization strategy
to extract domain-invariant information, overlooking distri-
bution distinctions across different domains. This neglect
could potentially cause the extracted information being bi-
ased by data-rich domains, subsequently leading to perfor-
mance degradation in data-scarce domains. Furthermore, the
item information that encapsulates user preferences is also
ignored during the adaptation.

Distributionally Robust Optimization
Classical machine learning methods commonly minimize
the average loss on a training set, facing significant perfor-
mance degradation when the test distribution differs from
the training distribution (Koh et al. 2021). In contrast, Dis-
tributionally Robust Optimization (DRO) focuses on mini-
mizing the worst-case loss over an uncertainty distribution
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Figure 2: An illustration of UIEA framework. In the pretraining, UIEA pretrains local user and item embeddings in each domain.
In the UIE, we take local user embeddings {ud

i ∈ Ud} as inputs and generate the global user embedding gi for each user i ∈ U .
In the UIA, we exploit item embeddings {vd

j |j ∈ Pd
i } to transfer the global embedding gi into the target domain d.

set S to improve the robustness (Ben-Tal et al. 2013). Math-
ematically, it can be formulated as the following minimax
optimization problem

min
w∈W

sup
P∈S

{Ez∼P [ℓ(w; z)]} , (1)

where w ∈ W denotes the model parameters, z denotes
the input data randomly sampled from P , and ℓ(·; ·) denotes
the loss function that measures the performance. Over recent
decades, plenty of efforts have been made to solve (1) over
the uncertain set S with infinite distributions (Namkoong
and Duchi 2016, 2017; Kuhn et al. 2019; Levy et al. 2020)
and finite distributions (Oren et al. 2019; Sagawa et al. 2020;
Zhang et al. 2023, 2024; Yu et al. 2024).

In this paper, we mainly focus on the latter one, which
is also referred to as group DRO. To be precise, given an
uncertain set with m distributions, i.e., S = {P1, · · · ,Pm},
the original problem (1) becomes

min
w∈W

max
i∈[m]

{Ez∼Pi
[ℓ(w; z)]} . (2)

By minimizing the worst-case performance, DRO has pro-
vided an effective way to prevent overfitting in the sce-
narios with different distributions, such as federated learn-
ing (Mohri, Sivek, and Suresh 2019) and distribution shift
(Duchi, Hashimoto, and Namkoong 2023).

Method
In this section, we first formulate multi-target CDR and then
present UIEA, of which the framework is shown in Figure 2.

Problem Formulation
In multi-target CDR, each domain contains a unique item set
while sharing a common user set. Specifically, we denote U
as the common user set and Vd as the domain-specific item
set for each domain d ∈ {1, · · · ,m}. User-item interactions
in the domain d are represented by a matrix Yd ∈ R|U|×|Vd|,
where |U| denotes the number of common users and |Vd|
denotes the number of items. In this paper, we focus on the

implicit feedback setting (Zhuang and Zhang 2024): each
entry ydij in the matrix Yd is chosen from {0, 1}, where the
value indicates whether there is an interaction between the
user i ∈ U and the item j ∈ Vd. Formally, we have:

ydij =

{
1, if the interaction (i, j) is observed;
0, otherwise.

Given multiple interaction matrices Y1, · · · , Ym, our goal is
to improve performances over m domains simultaneously.

Pretraining
To begin with, we pretrain the local user embedding to ex-
tract domain-specific information from each domain. Con-
cretely, for each domain d ∈ {1, · · · ,m}, we employ the
Bayesian matrix factorization method (Rendle et al. 2009)
to factorize the interaction matrix Yd into a user embed-
ding matrix Ud ∈ R|U|×n and an item embedding matrix
Vd ∈ R|Vd|×n, where n denotes the embedding dimension.
In this way, we obtain m local embeddings for each user
i ∈ U . The preference score is computed based on the in-
ner product, i.e., rdij =

〈
ud
i ,v

d
j

〉
for the user i ∈ U with

local embedding ud
i ∈ Ud and the item j ∈ Vd with local

embedding vd
j ∈ Vd. In this part, we aim to minimize the

following Bayesian Personalized Ranking (BPR) loss (Ren-
dle et al. 2009):

Ld
bpr =

∑
i∈U

∑
j∈Id

i

∑
k/∈Id

i

− log σ
(
rdij − rdik

)
+ λU

∑
i∈U

∥ud
i ∥22 + λV

∑
j∈Vd

∥vd
j ∥22,

(3)

where σ denotes the sigmoid function, Id
i denotes the item

set that user i have interacted with in the domain d, λU and
λV are the regularization hyper-parameters. By minimizing
(3), for each user i ∈ U , we obtain m local embeddings
u1
i , · · · ,um

i that capture the domain-specific preference in
individual domains.

Unbiased Information Extraction
In the extraction, we employ an Autoencoder model as the
embedding generator, which takes local embeddings from
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all domains as inputs and generates the global embedding
with domain-invariant information. Inspired by the spirit of
DRO, we optimize for the worst-case performance across
all domains to handle domain distinctions, and adopt a joint
training strategy where both model parameters and domain
weights are updated concurrently.

Specifically, for a user i ∈ U , we first concatenate the
pretrained local embeddings {ud

i ∈ Ud} from each domain
d ∈ {1, · · · ,m} as the input, i.e., ui = [u1

i , · · · ,um
i ]. Then,

we map ui into a latent space and reconstruct the input em-
beddings ũi = [ũ1

i , · · · , ũm
i ] as follows

gi = MLPenc

{
[u1

i , · · · ,um
i ]

}
(4)

[ũ1
i , · · · , ũm

i ] = MLPdec {gi} , (5)

where gi denotes the global embedding of user i and shares
the same dimension as the local embedding, i.e., gi ∈ Rn.

To train our embedding generator, we introduce a novel
extraction loss, which consists of two parts: a reconstruc-
tion loss and a fine-tuning loss. The former one measures
the differences between the local embedding ud

i and the re-
constructed embedding ũd

i in the domain d, as shown below:

Ld
rec = ∥ud

i − ũd
i ∥2. (6)

The latter one fine-tunes the global user embedding gi in the
domain d:

Ld
ft =

∑
j∈Id

i

∑
k/∈Id

i

− log σ
(〈
gi,v

d
j − vd

k

〉)
+ λU∥gi∥22. (7)

It should be noticed that although (7) shares a similar form to
(3) used in the pretraining, the fine-tuning loss (7) measures
the performance of global user embedding gi in the domain
d, rather than the local user embedding ud

i . Moreover, in
(7), only the global user embedding is learnable, and item
embeddings remain fixed.

Putting (6) and (7) together, we obtain the extraction loss
over the domain d:

Ld
ext = αLd

rec + (1− α)Ld
ft, (8)

where α is the hyper-parameter that controls the balance be-
tween the reconstruction and fine-tuning. To train the em-
bedding generator, a conventional approach is to minimize
the average loss over all domains, i.e.,

L̄ext =
1

m

∑m

d=1
Eud

i ∼Pd
[Ld

ext(w;ud
i )], (9)

where Pd denotes the underlying distribution in the domain
d. However, this approach implicitly assumes that all do-
mains are equal, neglecting the distinctions among differ-
ent domains and potentially introducing biased information
from data-rich domains, which can result in performance
degradation in data-scarce domains.

To tackle this issue, we propose to optimize the embed-
ding generator for the worst-case performance. Concretely,
we optimize the model parameters w within the domain that
suffers the highest extraction loss. Formally, it can be for-
mulated as the following min-max optimization problem:

min
w∈W

max
d∈[m]

{
Eud

i ∼Pd
[Ld

ext(w;ud
i )]

}
. (10)

To facilitate optimizations, we further cast (10) as a stochas-
tic saddle-point problem below (Nemirovski et al. 2009):

min
w∈W

max
q∈∆m

{∑m

d=1
qdEud

i ∼Pd
[Ld

ext(w;ud
i )]

}
, (11)

where qd denotes the weight of domain d and will be updated
during the training. To solve (11), we adopt a joint training
strategy—concurrently optimizing model parameters w and
domain weights q. Specifically, at round t, we first draw a
user i ∈ U with the local embedding ud

i from the distribution
Pd in the domain d ∈ {1, · · · ,m}. Then, we construct the
stochastic gradients with respect to the model parameters w
as shown below:

gw(wt,qt) =
∑m

d=1
qt,d∇Ld

ext(wt;u
d
i ), (12)

and the domain weights q:

gq(wt,qt) = [L1
ext(wt;u

1
i ), · · · ,Lm

ext(wt;u
m
i )]⊤. (13)

Next, we adjust w and q according to the updating rules:

wt+1 = argmin
w∈W

{ηw ⟨gw(wt,qt),w −wt⟩+Bw(w,wt)}

qt+1 = argmin
q∈∆m

{ηq ⟨−gq(wt,qt),q− qt⟩+Bq(q,qt)} ,

where ηw, ηq > 0 are learning rates, and Bw(·, ·) and
Bq(·, ·) are the Bregman divergence in W and ∆m, respec-
tively. For brevity, we choose two common formulations of
Bregman divergence: Bw(w1,w2) = 2−1∥w1 −w2∥22 and
Bq(q1,q2) =

∑m
d=1 q1,d log (q1,d/q2,d). Therefore, the up-

dating rules can be rewritten as:

wt+1 = ΠW [wt − ηwgw(wt,qt)] (14)

qt+1,d =
qt,d exp

(
ηqLd

ext(wt;u
d
i )
)∑m

k=1 qt,k exp
(
ηqLk

ext(wt;uk
i )
) , (15)

where ΠW [·] denotes the projection operation that finds the
nearest point in W . From (15), we observe that during the
update, the weight qdt is adaptively updated based on the cur-
rent performance in domain d. For example, domains with
higher extraction losses are assigned with higher weights
in subsequent rounds, thereby preventing overfitting to any
specific domain.

After T rounds, we obtain the final model parameters wT

and domain weights qT . For each user i ∈ U , we exploit
the embedding generator with parameters wT to produce the
global embedding gi according to (4).

Unbiased Information Adaptation
After the extraction, we obtain global embeddings refined
from all participating domains. However, a direct applica-
tion of them in the target domain is inappropriate, as they
only capture domain-invariant information and can not adapt
to the target domain well due to domain distinctions. For
this reason, we propose a novel user-item attention module,
which leverages domain-specific information from histori-
cally interacted items to adequately transfer global embed-
dings into the target domain.
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Algorithm 1: The UIEA framework

Input: Common user set U , and item sets {V1, · · · ,Vm}
for domains {1, · · · ,m}.
Pretraining:

1: Learn the local domain-specific embeddings {Ud, Vd}
by minimizing (3) in each domain d ∈ {1, · · · ,m}.

Unbiased Information Extraction:
1: Initialize model parameters w0, and domain weights

q0 = [1/m, · · · , 1/m]⊤ ∈ Rm.
2: for t = 1, · · · , T do
3: Draw a user i ∈ U with its local embeddings ud

i in
each domain d ∈ {1, · · · ,m}.

4: Calculate the gradient with regard to w and q
according to (12) and (13), respectively.

5: Update wt and qt according to (14) and (15),
respectively.

6: end for
7: Generate the global embedding gi for each user i ∈ U

according to (4).
Unbiased Information Adaptation:

1: In domain d, for each user i ∈ U , compute the adapted
user embedding hd

i according to (18).
2: Optimize parameters of the user-item attention module

by minimizing (3) with the adapted user embedding hd
i .

Specifically, for a user i ∈ U , we first compute the average
embeddings of all historically interacted items {vd

j |j ∈ Pd
i }

in the domain d. Then, we take the average item embedding
as query:

Q = MLPquery

{
avg

(
vd
j∈Pd

i

)}
, (16)

and the concatenation of global user embedding gi and local
user embedding ud

i as key, value:

K = MLPkey
{
[gi,u

d
i ]
}
, V = MLPvalue

{
[gi,u

d
i ]
}
. (17)

Next, we compute the adapted user embedding hd
i via the

scaled-dot-product attention (Vaswani et al. 2017):

hd
i = softmax

(
QK⊤/

√
n
)
V, (18)

where n is the embedding dimension. For any item j ∈ Vd,
we compute rij =

〈
hd
i ,v

d
j

〉
as the preference score. Fur-

thermore, to train the user-item attention module, we fix the
local user and item embeddings and only update the final
user embedding hd

i by minimizing the BPR loss (3) in each
target domain d. The detailed process of UIEA is summa-
rized in Algorithm 1.

Experiments
In this section, we conduct empirical studies to answer the
following questions:
• Q1: Does the proposed UIEA avoid performance degra-

dation caused by domain distinctions when compared to
the single-domain method? How does our model perform
compared to existing cross-domain methods?

Dataset Domains #Users #Items #Interactions Density

Amazon
Books

33, 561
58, 071 671, 407 1.72× 10−5

Movies 20, 585 494, 116 7.16× 10−4

Elec 21, 830 325, 308 4.58× 10−5

Douban
Books

1, 122
8, 630 75, 013 1.16× 10−4

Movies 20, 168 674, 182 2.98× 10−3

Music 7, 107 66, 664 1.40× 10−4

IE
BR 117, 453

18, 147
811, 119 8.51× 10−6

KR 38, 706 310, 769 4.43× 10−4

US 55, 270 434, 638 1.81× 10−5

Table 1: Statistics of Datasets

• Q2: How does UIEA perform in the worst-case and
average-case performance?

• Q3: How do the sub-modules introduced in UIEA con-
tribute to the performance improvement?

Experimental Settings
We first introduce experimental settings including datasets,
evaluation protocols, baselines and implementations.

Datasets. Our experiments are conducted on three real-
world datasets, each of which includes three domains: Ama-
zon (Books, Movies and Elec) (Ni, Li, and McAuley 2019),
Douban (Books, Movies and Music) (Zhu et al. 2019), and
IE (BR, KR, US).1 All datasets are randomly divided into
training, validation and test sets with the ratio of 7:1:2.
Moreover, following the common practice (Zhu et al. 2019,
2020), we retain users and items with at least 5 interactions.
The statistics of each dataset is summarized in Table 1.

Evaluation Protocols. According to the classical proto-
col (Krichene and Rendle 2020), we adopt the leave-one-
out strategy to ensure an unbiased performance evaluation.
Specifically, for each test user, we reserve one interacted
item as the positive sample and randomly draw 99 irrele-
vant items as negative samples. Then, we rank the 100 items
according to prediction scores and evaluate recommenda-
tion performance on top-k ranking results. Furthermore, we
choose three widely-used metrics for performance evalua-
tion: MRR@k, NDCG@k, and HR@k.

Baseline Methods. We compare UIEA with the single-
domain methods: BPRMF (Rendle et al. 2009) and NeuMF
(He et al. 2017), and the cross-domain methods: CMF
(Singh and Gordon 2008), HeroGraph (Cui et al. 2020), GA-
MTCDR (Zhu et al. 2023a), EDDA (Ning et al. 2023) and
CAT-ART (Li et al. 2023).

Implementations. In the pretraining, we set the embed-
ding dimension n = 64 and hyper-parameters λU = λV =
10−5 in the BPR loss (3), and the mini-batch size N = 2048.
In the UIE module, we configure the encoder of the embed-
ding generator with layer sizes [3 × n, 2 × n, n], and the

1IE is a real-world dataset collected by AliExpress, a lead-
ing global online marketplace under Alibaba International Digi-
tal Commerce Group, including user-item interactions from Brazil,
Korea, and the United States.
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Datasets Metric BPRMF NeuMF CMF HeroGraph GA-MTCDR EDDA CAT-ART UIEA Impr.
A

m
az

on
@
10 B

oo
ks MRR 24.17± 0.17 21.08± 0.46 23.20± 0.14 20.05± 0.08 19.91± 0.24 25.65± 0.15 24.91± 0.21 29.57∗ ± 0.11 15.28%

HR 43.17± 0.11 41.73± 0.79 44.41± 0.16 39.66± 0.10 38.80± 0.46 47.39± 0.07 44.51± 0.43 52.06∗ ± 0.09 9.85%
NDCG 28.64± 0.14 25.93± 0.55 28.19± 0.14 24.66± 0.08 24.36± 0.29 30.76± 0.12 29.52± 0.26 34.87∗ ± 0.10 13.36%

M
o v

ie
s MRR 29.46± 0.20 25.76± 0.27 26.60± 0.10 24.93± 0.06 26.19± 0.08 28.21± 0.10 29.62± 0.14 34.13∗ ± 0.14 15.23%

HR 56.31± 0.04 53.44± 0.35 53.80± 0.12 52.15± 0.08 53.52± 0.22 55.37± 0.17 53.65± 0.23 62.56∗ ± 0.17 12.99%
NDCG 35.80± 0.15 32.27± 0.29 33.01± 0.10 31.34± 0.05 32.63± 0.11 34.61± 0.12 35.29± 0.16 40.86∗ ± 0.14 15.78%

E
le

c MRR 17.19± 0.15 17.46± 0.16 17.05± 0.03 16.45± 0.06 15.50± 0.31 16.29± 0.06 15.32± 0.34 19.66∗ ± 0.21 15.31%
HR 34.51± 0.48 35.12± 0.28 37.86± 0.17 40.78± 0.11 32.25± 0.48 34.45± 0.14 30.87± 0.54 41.83∗ ± 0.31 2.57%

NDCG 21.25± 0.23 22.55± 0.19 21.92± 0.06 22.14± 0.05 19.42± 0.35 20.54± 0.02 18.95± 0.39 24.86∗ ± 0.23 12.29%

D
ou

ba
n@

10 B
oo

ks MRR 18.67± 0.50 17.65± 0.60 18.27± 0.47 17.00± 0.96 16.67± 0.68 18.21± 0.79 18.30± 0.79 21.21∗ ± 0.40 15.90%
HR 40.19± 0.94 38.09± 1.20 40.63± 0.80 36.97± 0.93 36.88± 0.58 39.16± 1.22 39.28± 0.71 45.20∗ ± 0.73 11.25%

NDCG 23.71± 0.49 22.43± 0.66 23.50± 0.55 21.66± 0.95 21.39± 0.67 23.12± 0.89 23.22± 0.75 26.84∗ ± 0.47 14.21%

M
o v

ie
s MRR 27.87± 0.31 27.11± 0.18 26.19± 0.39 22.36± 0.29 23.23± 0.19 26.27± 0.57 26.35± 0.07 29.32∗ ± 0.08 11.27%

HR 58.93± 0.84 60.00± 0.16 56.49± 0.35 51.98± 0.48 51.94± 0.73 57.61± 0.91 57.29± 0.40 63.04∗ ± 0.93 9.42%
NDCG 35.17± 0.40 35.07± 0.12 33.31± 0.34 29.34± 0.34 29.98± 0.27 33.62± 0.66 33.63± 0.15 37.25∗ ± 0.17 10.76%

M
us

ic MRR 15.50± 0.75 14.61± 0.47 15.23± 0.59 13.64± 0.80 13.38± 0.55 13.44± 0.28 15.03± 0.52 18.63∗ ± 0.42 22.32%
HR 35.91± 1.74 34.82± 0.83 36.07± 1.74 33.23± 1.36 32.32± 1.60 31.77± 1.15 35.13± 1.32 40.60∗ ± 0.57 12.56%

NDCG 20.26± 0.97 19.32± 0.56 20.09± 0.85 18.20± 0.92 17.79± 0.79 17.72± 0.45 19.71± 0.67 23.76∗ ± 0.44 18.27%

IE
@
10

B
R

MRR 31.00± 0.11 23.49± 0.39 24.54± 0.20 29.36± 0.41 28.88± 0.10 28.32± 0.30 30.60± 0.06 35.17∗ ± 0.19 14.93%
HR 56.35± 0.11 47.40± 0.66 47.87± 0.26 58.99± 0.53 50.24± 0.18 52.75± 0.22 55.94± 0.09 62.08∗ ± 0.16 5.24%

NDCG 37.01± 0.10 29.11± 0.45 30.04± 0.20 36.35± 0.43 33.89± 0.12 34.09± 0.27 36.61± 0.04 41.56∗ ± 0.17 13.52%

K
R

MRR 25.65± 0.24 20.29± 0.24 21.12± 0.13 24.18± 0.56 18.64± 0.17 19.96± 0.46 23.19± 0.04 27.13∗ ± 0.13 12.20%
HR 51.12± 0.20 42.38± 0.23 45.40± 0.20 52.37± 0.94 41.62± 0.27 41.89± 0.86 48.02± 0.11 53.86∗ ± 0.18 2.85%

NDCG 31.65± 0.22 25.48± 0.23 26.82± 0.14 30.80± 0.66 24.01± 0.20 25.11± 0.55 29.05± 0.05 33.44∗ ± 0.08 8.57%

U
S

MRR 23.88± 0.10 19.52± 0.63 21.53± 0.15 21.62± 0.43 14.79± 0.21 20.22± 0.89 22.94± 0.14 25.51∗ ± 0.08 11.20%
HR 47.80± 0.21 42.01± 0.51 45.56± 0.13 47.56± 0.64 34.86± 0.31 41.77± 1.08 46.97± 0.08 50.95∗ ± 0.16 7.13%

NDCG 29.52± 0.10 24.80± 0.72 27.17± 0.14 27.68± 0.48 19.47± 0.24 25.27± 0.93 28.60± 0.12 31.51∗ ± 0.09 10.17%

Table 2: Performance (%) on three datasets. ∗ denotes that the best-performing method significantly outperforms the best cross-
domain baseline (indicated by the underline) on the paired t-test (p-value < 0.05). Impr. denotes the improvement of UIEA
over the best-performing cross-domain baseline method.

decoder with layer sizes [n, 2× n, 3× n]. Additionally, the
hyper-parameter in (8) is set as α = 0.1. In the UIA mod-
ule, both MLPkey and MLPvalue have layer sizes [2 × n, n],
and MLPquery has layer sizes [n, n]. All methods are imple-
mented by the Pytorch framework, and we employ Adam
(Kingma and Ba 2014) with default parameters as the opti-
mizer. The learning rate is chosen from {10−4, · · · , 10−1}
for each method. All experiments are conducted on a single
machine equipped with Tesla V100 GPUs. Each experiment
is repeated 5 times with different random seeds, and we re-
port the mean and standard deviation as results.

Performance Comparisons
We summarize the performance of UIEA and baseline meth-
ods on three datasets in Table 2.

Overall, UIEA significantly outperforms single-domain
and cross-domain baselines (Q1). First, compared with
single-domain methods BPRMF and NeuMF, our UIEA
exhibits better performance in both data-rich domains
(e.g., Books of Amazon) and data-scarce domains (e.g., Elec
of Amazon). This improvements demonstrate that our
method not only takes advantage of external information
from auxiliary domains, but also prevents the potential per-
formance degradation brought by domain distinctions. Sec-
ond, compared with cross-domain methods, UIEA also ex-
hibits significant performance improvements, especially in
sparser domains. For example, our method achieves the best
performance with the improvements of 15.23%, 12.99% and

15.78% in the Movies of Amazon, and 22.32%, 12.56% and
18.27% in the Music of Douban. We summarize this into
two reasons: (i) our proposed method is designed to opti-
mize the worst-case performance, ensuring that the global
user embedding does not overfit to data-rich domains; (ii)
we fully utilize domain-specific information from interacted
items to transfer global embeddings into the target domain.

Furthermore, we conduct refined analysis on the results
in Table 2, and investigate the worst-case and average-case
performances across three domains of all datasets (Q2).
To make it clear, we take the metric: HR as an example,
and present the formally definitions of the worst-case and
average-case performance as shown below

avgHR = (HR1 + HR2 + HR3)/3

worstHR = min(HR1,HR2,HR3).

The experimental results are presented in Figure 3. We ob-
serve that in both worst and average cases, UIEA exhibits
superior performance compared to all baselines. Specially,
in the worst case on Amazon dataset, our method achieves
performance improvements of 14.37%, 5.47% and 12.29%
in MRR@10, HR@10 and NDCG@10, respectively. This is
reasonable since we explicitly consider the domain distinc-
tions and optimize the worst-case performance to prevent the
potential overfitting. In the average case, our UIEA also out-
performs the best baseline method with the improvements
of 17.71%, 14.01% and 17.04% in MRR@10, HR@10 and
NDCG@10, respectively in the Amazon dataset. This can
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Figure 3: The worst-case and average performance (%).

be attributed to the user-item attention module that effec-
tively utilizes the domain-specific information from inter-
acted items for the adaptation. More comprehensive discus-
sions are provided in the ablation study.

Ablation Study
The strengths of UIEA mainly come from two crucial com-
ponents: (i) Unbiased Information Extraction (UIE), which
optimizes the worst-case performance across all domains;
(ii) Unbiased Information Adaptation (UIA), which employs
historically interacted items through a user-item attention
module to facilitate the adaptation of global embeddings. To
investigate the impacts brought by UIE and UIA, we study
the following ablation variants (Q3):

• Rec + MLP, which merely utilizes the reconstruction loss

Lrec =
∑m

d=1
∥ud

i − ũd
i ∥2

for extraction and MLP layers for adaptation, i.e., hd
i =

MLP
{
[gi,u

d
i ]
}
;

• AVG + MLP, which employs the average-case optimiza-
tion strategy, i.e., minimizing the average loss (9) over all
domains, for extraction and MLP layers for adaptation;

• UIE + MLP, which employs UIE for extraction and MLP
layers for adaptation;

• AVG + UIA, which exploits the average-case optimiza-
tion strategy for extraction and UIA for adaptation.

Table 3 summarizes the ablation results on Amazon. Specif-
ically, compared with the single domain method BPRMF,
Rec + MLP achieves a slight improvement in the Books do-
main, but suffers a significant decrease in other two domains,
especially in Movies. This indicates that Rec + MLP over-
fits to the data-rich domain, and suffers heavy performance
degradation in data-scarce domains. Furthermore, compared
with Rec + MLP, AVG + MLP additionally fine-tunes global
embeddings in each domain by minimizing (7) in the extrac-
tion stage and thereby, improves the performance over all
domains. However, in two data-scarce domains, i.e., Movies
and Elec, the performance is slightly worse than BPRMF,

Model Amazon
Domain

Metric@10
MRR HR NDCG

BPRMF
Books 24.17± 0.17 43.17± 0.11 28.64± 0.14
Movies 29.46± 0.20 56.31± 0.04 35.80± 0.15

Elec 17.19± 0.15 34.51± 0.48 21.25± 0.23

Rec +
MLP

Books 25.07± 0.16 47.15± 0.15 30.27± 0.16
Movies 26.87± 0.09 54.02± 0.17 33.27± 0.11

Elec 15.83± 0.13 34.93± 0.26 20.42± 0.16

AVG +
MLP

Books 26.76± 0.22 48.48± 0.20 31.86± 0.22
Movies 28.32± 0.36 55.35± 0.28 35.32± 0.34

Elec 16.72± 0.28 34.58± 0.73 21.08± 0.38

UIE +
MLP

Books 26.98± 0.16 48.99± 0.19 31.91± 0.16
Movies 31.72± 0.07 59.98± 0.05 38.40± 0.05

Elec 18.28± 0.02 37.52± 0.18 22.79± 0.03

AVG +
UIA

Books 27.85± 0.15 50.27± 0.25 33.14± 0.17
Movies 30.08± 0.07 57.68± 0.19 36.60± 0.09

Elec 17.48± 0.12 35.40± 0.19 21.68± 0.13

UIEA
Books 29.57 ± 0.11 52.06 ± 0.09 34.87 ± 0.10
Movies 34.13 ± 0.14 62.56 ± 0.17 40.86 ± 0.14

Elec 19.66 ± 0.21 41.83 ± 0.31 24.86 ± 0.23

Table 3: Ablation results (%) on the Amazon dataset.

which indicates that AVG + MLP still can not handle the
domain distinctions well.

Moreover, we investigate other two variants: UIE + MLP
and AVG + UIA. In the former one, we observe consider-
able improvements in Movies and Elec compared to AVG +
MLP. This observation illustrates that leveraging the worst-
case optimization strategy could avoid the potential over-
fitting to the data-rich domain (i.e., Books) and hence, im-
prove performances in data-scarce domains. In the latter one,
the performances of all domains are enhanced compared to
AVG + MLP, which demonstrates that incorporating histor-
ically interacted items could effectively facilitate the adap-
tion of domain-invariant information, boosting the recom-
mendation performance in the target domain.

Conclusion
In this paper, we propose a novel multi-target CDR method
named UIEA, which takes domain distinctions into consid-
eration to achieve unbiased information extraction and adap-
tation. Specifically, in the extraction, we optimize the worst-
case performance across all domains to generate global em-
beddings with domain-invariant information. In the adap-
tation, we introduce a novel user-item attention module,
which utilizes domain-specific information from histori-
cally interacted items to facilitate an adequate adaptation
of global embeddings. Extensive experiments on three real-
world datasets have demonstrated the significant improve-
ments of UIEA over baseline methods.
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