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Abstract
In this paper, we investigate the problem of
stochastic multi-level compositional optimization,
where the objective function is a composition of
multiple smooth but possibly non-convex func-
tions. Existing methods for solving this prob-
lem either suffer from sub-optimal sample com-
plexities or need a huge batch size. To ad-
dress these limitations, we propose a Stochastic
Multi-level Variance Reduction method (SMVR),
which achieves the optimal sample complexity
of O

(
1/ϵ3

)
to find an ϵ-stationary point for non-

convex objectives. Furthermore, when the ob-
jective function satisfies the convexity or Polyak-
Łojasiewicz (PL) condition, we propose a stage-
wise variant of SMVR and improve the sample
complexity to O

(
1/ϵ2

)
for convex functions or

O (1/ (µϵ)) for non-convex functions satisfying
the µ-PL condition. The latter result implies the
same complexity for µ-strongly convex functions.
To make use of adaptive learning rates, we also de-
velop Adaptive SMVR, which achieves the same
complexities but converges faster in practice. All
our complexities match the lower bounds not only
in terms of ϵ but also in terms of µ (for PL or
strongly convex functions), without using a large
batch size in each iteration.

1. Introduction
We consider the stochastic multi-level compositional opti-
mization problem:

min
w∈Rd

F (w) = fK ◦ fK−1 ◦ · · · ◦ f1(w), (1)

where fi : Rdi−1 7→ Rdi , i = 1, . . . ,K (with dK = 1 and
d0 = d). Only noisy evaluations of each layer function
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fi(·; ξ) and its gradient ∇fi(·; ξ) can be accessed, where ξ
denotes a sample drawn from the oracle such that:

Eξ [fi(·; ξ)] = fi(·), Eξ [∇fi(·; ξ)] = ∇fi(·).

In machine learning, w often represents the parameter of a
predictive model, and F denotes the loss of that model, with
ξ representing a training sample (or a batch of samples).
Problem (1) finds its application in many tasks, such as rein-
forcement learning (Dann et al., 2014), robust learning (Li
et al., 2021b), multi-step model-agnostic meta-learning (Ji
et al., 2020), risk-averse portfolio optimization (Bruno et al.,
2016; Shapiro et al., 2021) and risk management (Cole et al.,
2017; Dentcheva et al., 2017).

Our goal is to solve problem (1) with the optimal sample
complexity, which is a commonly-used measure in stochas-
tic optimization. Sample complexity characterizes the num-
ber of samples needed to find an ϵ-stationary point for non-
convex functions, i.e., ∥∇F (w)∥ ≤ ϵ1, or an ϵ-optimal
point for convex functions, i.e., F (w) − infw F (w) ≤ ϵ.
Problem (1) reduces to the classic one-level stochastic opti-
mization problem when K = 1, and it is also known as the
two-level compositional optimization for K = 2.

For one-level and two-level non-convex problems, there
exist single-loop algorithms, such as STORM (Cutkosky
& Orabona, 2019) and RECOVER (Qi et al., 2021), that
can achieve the optimal O

(
1/ϵ3

)
sample complexity for

finding an ϵ-stationary solution without using large batches.
However, for multi-level problems, the errors of Jacobian
and function value estimators accumulate with the level be-
coming deeper, making the problem much harder. Existing
multi-level methods either suffer from sub-optimal com-
plexities (Yang et al., 2019; Balasubramanian et al., 2021;
Chen et al., 2021) or require a huge and increasing batch
size (Zhang & Xiao, 2021). When the objective function
is convex or strongly convex, Zhang & Lan (2021) prove a
sample complexity of O

(
1/ϵ2

)
or O(1/(µ2ϵ)). However,

their analysis requires that each layer function fi is mono-
tone and convex, and their complexity for µ-strongly convex

1In some literature, the measure ∥∇F (w)∥2 ≤ ϵ is used in-
stead. Note that the complexity O (1/ϵα) for ∥∇F (w)∥2 ≤ ϵ
implies a complexity O

(
1/ϵ2α

)
for ∥∇F (w)∥ ≤ ϵ (Zhang &

Xiao, 2021). For fair comparison, we would align the complexity
measure of each method under the same criteria ∥∇F (w)∥ ≤ ϵ,
when discussing related algorithms.
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Table 1. Summary of results for finding an ϵ-stationary or ϵ-optimal point. Here, CVX means convex, Mono. & CVX means each layer
function is monotone and convex, SC means µ-strongly convex and PL means the µ-PL condition (weaker than µ-strongly convex).

METHOD ASSUMPTIONS COMPLEXITY BATCH SIZE

A-TSCGD (YANG ET AL., 2019) SMOOTH O
(
1/ϵ(7+K)/2

)
O (1)

A-TSCGD (YANG ET AL., 2019) SMOOTH + SC O
(
1/ϵ(3+K)/4

)
O (1)

NLASG (BALASUBRAMANIAN ET AL., 2021) SMOOTH O
(
1/ϵ4

)
O (1)

SCSC (CHEN ET AL., 2021) SMOOTH O
(
1/ϵ4

)
O (1)

NESTED-SPIDER (ZHANG & XIAO, 2021) SMOOTH O
(
1/ϵ3

)
O (1/ϵ)

SSD (ZHANG & LAN, 2021) SMOOTH + MONO. & CVX O
(
1/ϵ2

)
O (1)

SSD (ZHANG & LAN, 2021) SMOOTH + SC O
(
1/(µ2ϵ)

)
O (1)

SMVR (THIS WORK) SMOOTH O
(
1/ϵ3

)
O (1)

STAGE-WISE SMVR (THIS WORK) SMOOTH + CVX O
(
1/ϵ2

)
O (1)

STAGE-WISE SMVR (THIS WORK) SMOOTH + PL O (1/(µϵ)) O (1)

function is non-optimal in terms of µ (Agarwal et al., 2012).

Hence, a fundamental question to be addressed is:

Can we solve stochastic multi-level compositional prob-
lems with optimal complexities for non-convex, convex
and strongly convex functions without using a large batch
size?

We give an affirmative answer to this question by proposing
an optimal algorithm named Stochastic Multi-level Vari-
ance Reduction (SMVR). By using the variance reduction
technique to estimate the Jacobians and function values
in each level, our algorithm achieves the optimal sample
complexity of O

(
1/ϵ3

)
for non-convex functions (Arje-

vani et al., 2019). Central to the algorithmic design and
analysis are: (i) the variance reduction is applied to both
Jacobians and function values, which is different from most
existing works (Yang et al., 2019; Balasubramanian et al.,
2021; Chen et al., 2021); (ii) the Jacobian estimators are
updated with a projection to ensure that errors of gradient
estimators can be bounded regardless of the depth of the
problem. When the objective function is convex or satisfies
the µ-PL condition (weaker than strong convexity), we de-
velop a stage-wise version of our method and improve the
complexity to O

(
1/ϵ2

)
or O (1/ (µϵ)), which matches the

corresponding lower bounds (Agarwal et al., 2012). The
key in the analysis is to prove that the errors of Jacobian and
function value estimators decrease in a stage-wise manner.
Finally, to take advantage of adaptive learning rates, we also
design an adaptive version of the SMVR method and prove
the same rates. Adaptive SMVR performs better in practice
and avoids tuning the learning rate manually.

Compared with existing multi-level methods, this paper
enjoys the following advantages:

1. We obtain the optimal sample complexity of O
(
1/ϵ3

)

for non-convex objectives, which is better than existing
multi-level methods (Yang et al., 2019; Balasubrama-
nian et al., 2021; Chen et al., 2021). Although Zhang &
Xiao (2021) achieve the same rate, their method uses a
large and increasing batch size at the order of O (1/ϵ),
which is impractical to use.

2. We achieve the optimal complexity of O
(
1/ϵ2

)
and

O (1/ (µϵ)) for convex and strongly convex functions
respectively. Compared with Zhang & Lan (2021),
we do not require each layer function fi is monotone
and convex, and have a better dependence on µ for
µ-strongly convex functions.

3. We develop Adaptive SMVR method to make use of
adaptive learning rates, which enjoys the same com-
plexity but converges faster in practice.

A comparison between our results and existing multi-level
methods is shown in Table 1 and empirical results on practi-
cal problems demonstrate the effectiveness of our method.

2. Related Work
This section briefly reviews related work on stochastic two-
level and multi-level compositional optimization problems.

2.1. Two-Level Compositional Optimization

Wang et al. (2017a) first introduce stochastic compositional
gradient descent (SCGD) to minimize a composition of two-
level expected-value functions. The SCGD method adopts
two step size sequences in different time scales to update the
decision variable and inner function separately. When the in-
ner function is smooth, their method achieves a complexity
of O

(
1/ϵ7

)
for non-convex objectives, O

(
1/ϵ3.5

)
for con-

vex functions, and O
(
1/
(
µ14/4ϵ5/4

))
for µ-strongly con-

vex functions. In a subsequent work (Wang et al., 2017b),
the accelerated stochastic compositional proximal gradi-
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ent (ASC-PG) is proposed to improve the complexity to
O
(
1/ϵ4.5

)
, O
(
1/ϵ2

)
, and O (1/ϵ) for non-convex, convex

and strongly convex functions, respectively.

Instead of using two-timescale step sizes, a single-timescale
method called Nested Averaged Stochastic Approximation
(NASA) has been developed by Ghadimi et al. (2020) which
achieves the complexity of O

(
1/ϵ4

)
for non-convex objec-

tives. With the increasing popularity of variance reduction
techniques for one-level stochastic optimization such as
SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018),
SpiderBoost (Wang et al., 2018) and STORM (Cutkosky &
Orabona, 2019), variance reduced algorithms are also devel-
oped for two-level compositional problems with improved
rates under a slightly stronger smoothness assumption (Huo
et al., 2018; Yuan et al., 2019; Zhang & Xiao, 2019a;b; Liu
et al., 2021). The optimal O

(
1/ϵ3

)
sample complexity is

achieved by Yuan et al. (2019) based on SARAH and by
Zhang & Xiao (2019b) based on SPIDER with a large batch
size. Later, Yuan & Hu (2020) develop an algorithm named
STORM-Compositional, which leads to an O

(
1/ϵ3

)
com-

plexity using mini-batches. To avoid using batches, Qi et al.
(2021) propose a method based on STORM and obtain the
same rate. However, these two-level methods can not be
extended to multi-level optimization problems directly.

2.2. Multi-Level Compositional Optimization

Yang et al. (2019) first investigate the problem of multi-
level optimization and develop accelerated T -level stochas-
tic compositional gradient descent (A-TSCGD). By using an
extrapolation-interpolation scheme, their method achieves
a sample complexity of O

(
1/ϵ(7+K)/2

)
for K-level prob-

lems. This rate is improved to O
(
1/ϵ(3+K)/4

)
for strongly

convex functions. Later, Balasubramanian et al. (2021)
propose a nested linearized averaging stochastic gradient
method (NLASG), which extends the NASA (Ghadimi et al.,
2020) algorithm to the general K ≥ 1 setting and achieves
a sample complexity of O

(
1/ϵ4

)
. In a concurrent work,

Chen et al. (2021) come up with a stochastically corrected
stochastic compositional gradient method (SCSC), which
uses a technique similar to STORM to estimate the function
values at each level, and also has a sample complexity of
O
(
1/ϵ4

)
.

Recently, Zhang & Xiao (2021) present the Nested-SPIDER
method, which uses nested variance reduction to approx-
imate the gradient and improves the sample complexity
to O

(
1/ϵ3

)
. However, their method requires a large and

increasing batch size at the order of O (1/ϵ). In the first
iteration of each stage, the batch size even has to be set as
large as O

(
1/ϵ2

)
. No complexities are provided for con-

vex and strongly convex functions. Later, Zhang & Lan
(2021) prove that the sample complexity can be improved
to O

(
1/ϵ2

)
when every layer function fi is monotone and

convex, using a general stochastic sequential dual method
(SSD). The complexity is further reduced to O

(
1/(µ2ϵ)

)
for µ-strongly convex functions. However, their method
requires strong assumptions, i.e., layer-wise convexity and
monotonicity. In contrast, our method only requires the
overall objective function to be convex or strongly convex
to achieve the same complexity for convex functions and an
even better complexity for strongly convex functions.

3. The Proposed Method
We first discuss the main challenge in solving multi-level
compositional optimization problems. Then, we develop
an optimal method for non-convex objectives. Finally, we
explore additional conditions to further improve the sample
complexity.

3.1. Notations and Assumptions

Let ξ represent some random variable (in practice, it repre-
sents a training sample or a batch of samples drawn from
the oracle) and ∥·∥ denote the Euclidean norm of a vector.
For simplicity, we use ΠLf

to denote the projection onto the
ball with radius Lf , i.e.,

ΠLf
(x) = argmin

∥w∥⩽Lf

∥w − x∥2.

We give the definition of sample complexity below.

Definition 1. The sample complexity is the number of sam-
ples needed to find a point satisfying E [∥∇F (w)∥] ≤ ϵ
(ϵ-stationary) or E [F (w)− infw F (w)] ≤ ϵ (ϵ-optimal).

Moreover, we make the following assumptions through-
out the paper, which are commonly used in the studies of
stochastic compositional optimization (Wang et al., 2017b;a;
Yuan et al., 2019; Zhang & Xiao, 2019b; 2021). We treat
the parameters Lf , LJ , σf , σJ , Lf , LJ below as global
constants.

Assumption 1. (Smoothness and Lipschitz continuity)
All functions f1, . . . , fK are Lf -Lipschitz continuous and
their Jacobians ∇f1, . . . ,∇fK are LJ -Lipschitz continu-
ous. Note that this implies the objective function F (w) is
LF smooth, where LF = L2K−1

f LJ

∑K
i=1

1
Li

f

.

Assumption 2. (Bounded variance) For 1 ≤ i ≤ K:

Eξit

[
fi(x; ξ

i
t)
]
= fi(x),

Eξit

[
∇fi(x; ξ

i
t)
]
= ∇fi(x),

Eξit

[∥∥fi(x; ξit)− fi(x)
∥∥2] ≤ σ2

f ,

Eξit

[∥∥∇fi(x; ξ
i
t)−∇fi(x)

∥∥2] ≤ σ2
J ,

where {ξit}Ki=1 are mutually independent.
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Assumption 3. (Mean-squared smoothness)

Eξit

[∥∥fi(x; ξit)− fi(y; ξ
i
t)
∥∥2] ≤ L2

f ∥x− y∥2 ,

Eξit

[∥∥∇fi(x; ξ
i
t)−∇fi(y; ξ

i
t)
∥∥2] ≤ L2

J ∥x− y∥2 .

Assumption 4. F∗ = infw F (w) ≥ −∞ and F (w1) −
F∗ ≤ ∆F for the initial solution w1.

3.2. The Challenge

Compared with one-level problems, the main dilemma in
multi-level optimization is that we can not obtain the unbi-
ased gradient of the function F . Take a two-level composi-
tional problem as an example. The objective function can
be written as: F (w) = f ◦ g(w) and its gradient is:

∇F (w) = ∇g(w) · ∇f(g(w)).

Although we can access to the unbiased estimation of each
layer function and its gradient, i.e., Eξ1 [g(x; ξ1)] = g(x),
Eξ2 [f(x; ξ2)] = f(x) and Eξ2 [∇f(x; ξ2)] = ∇f(x), it
is still challenging to obtain an unbiased estimation of the
gradient ∇f(g(w)). This is because the expectation over ξ1
cannot be moved inside of ∇f such that:

Eξ1,ξ2 [∇f(g(w; ξ1); ξ2)] ̸= ∇f(g(w)).

Due to the same reason, it is also difficult to get the unbiased
estimation of the function value:

Eξ1,ξ2 [f(g(w; ξ1); ξ2)] ̸= f(g(w)).

The above challenge motivates us to use the variance re-
duced estimator to have a better evaluation of both function
values and Jacobians of each level to ensure that the estima-
tion errors reduce over time.

However, variance reduced estimators used in two-level
optimization problems (Qi et al., 2021) can not be applied
to multi-level directly, because the error might blow up as
the depth increases if the estimators of Jacobians are not
bounded. To handle this issue, Zhang & Xiao (2021) use an
extremely small step size and re-estimate the function values
and Jacobians of all levels after several iterations with a
large batch size. However, this method inevitably introduces
large batches (as large as O

(
1/ϵ2

)
) at the beginning of each

stage, and since they use SPIDER (Fang et al., 2018) as their
estimator, their method requires a batch size of O (1/ϵ) at
other iterations. To avoid using large batches, our method
uses STORM (Cutkosky & Orabona, 2019) estimator and
projects gradients onto a ball to ensure the Jacobians can be
well bounded so that the error of the gradient estimator does
not blow up.

3.3. Stochastic Multi-Level Variance Reduction

Now, we present the proposed algorithm – Stochastic Multi-
level Variance Reduction method (SMVR) for solving prob-

Algorithm 1 SMVR
Input: time step T , initial points (w1,u1,v1),

parameter c and learning rate sequence {ηt}
for time step t = 1 to T do

Set u0
t = wt, βt = cη2t−1

for level i = 1 to K do
Sample ξit
Compute estimator ui

t according to (2)
Compute estimator vi

t according to (3)
end for
Update gradient estimation: vt =

∏K
i=1 v

i
t

Update the weight: wt+1 = wt − ηtvt

end for
Choose τ uniformly at random from {1, . . . , T}
Return (wτ ,uτ ,vτ )

lem (1). The goal of our algorithm is to find an ϵ-stationary
point with low sample complexity. As mentioned before,
the main difficulty is that we can not obtain an unbiased
estimation of the gradients and inner function values in the
multi-level setting. We note that, in the one-level prob-
lem, STORM uses a momentum-based variance reduction
method to evaluate the gradient:

dt = (1− βt)dt−1 + βt∇f (xt; ξt)

+ (1− βt) (∇f (xt; ξt)−∇f (xt−1; ξt)) .

This technique reduces the variance of the estimated value
and obtains the optimal rate. Inspired by STORM, we apply
similar variance reduced estimators in each level to approxi-
mate the gradient more accurately.

The proposed method is described in Algorithm 1. In each
time step t, we use two sequence ui

t and vi
t to estimate the

function value and the gradient in level i. To estimate the
function value, we use a nested STORM estimator, i.e.,

ui
t = (1− βt)u

i
t−1 + βtfi(u

i−1
t ; ξit)

+ (1− βt)
(
fi(u

i−1
t ; ξit)− fi(u

i−1
t−1; ξ

i
t)
)
. (2)

This can be interpreted as that ui
t is a STORM estimator of

fi(u
i−1
t ). For estimating the Jacobians, we use the nested

STORM estimator followed by a projection, i.e.,

vi
t = ΠLf

[
(1− βt)v

i
t−1 + βt∇fi(u

i−1
t ; ξit)

+(1− βt)
(
∇fi(u

i−1
t ; ξit)−∇fi(u

i−1
t−1; ξ

i
t)
)]

. (3)

The projection operation is to ensure the error of the stochas-
tic gradient estimator can be bounded; otherwise, they may
blow up as the level becomes deeper. That is to say, on one
hand, we want to enjoy variance reduction of the estimator
(since true gradients are in the projected domain, projection
does not hinder the analysis); on the other hand we do not
want the variance of estimator accumulates over multiple
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Algorithm 2 Stage-wise SMVR
Input: initial points (w0,u0,v0), parameter c
for stage s = 1 to S do

Set ηs and Ts according to Lemma 1
ws,us,vs = SMVR (with Ts, (ws−1,us−1,vs−1), c

and ηs)
end for
Return wS

levels (vi is bounded after projection). Hence, projection
on the Jacobian estimator is a perfect solution. After the
gradient of each level is evaluated, we use the chain rule to
calculate the estimated gradient of the objective function,
i.e., vt = v1

tv
2
t · · ·vK

t and apply gradient descent to update
the decision variable wt at the end of each time step.

Note that in the first iteration, we evaluate the function
value and gradient of each level simply as ui

1 = f(ui−1
1 ; ξi1)

and vi
1 = ∇fi(u

i−1
1 ; ξi1). Our algorithm does not need to

use batches in any iterations. Of course, it supports mini-
batches, and ξit in the algorithm can represent a training sam-
ple or a batch of samples. Next, we show the sample com-
plexity of the proposed method. Due to space limitations, all
the proofs are deferred to the appendix. We define the con-
stant L1 = max

{
1,KL

2(K−1)
f ,KL2

F , 2K
(
σ2
J + σ2

f

)
,

2
(
L2
J + L2

f

)(
2K + 2Kσ2

f

)∑K
i=1

(
2L2

f

)i−1
}

.

Theorem 1. If we set c = 10L2
1, ηt = (a+ t)

−1/3 and
a =

(
20L3

1

)3/2
, our algorithm finds an ϵ stationary point

in O(1/ϵ3) iterations.

Remark: The complexity is at the order of O
(
1/ϵ3

)
, which

matches the lower bound in one-level setting (Arjevani et al.,
2019), implying multi-level setting does not make the prob-
lem much harder. Our SMVR method uses decreasing learn-
ing rates and avoids using batches in any iteration, which
is more practical to implement compared with the existing
method which requires huge batch size and changing the
batch size over time (Zhang & Xiao, 2021).

3.4. Faster Convergence under Stronger Conditions

In this section, we explore whether other assumptions could
be utilized to further improve the sample complexity. We de-
velop a variant algorithm named Stage-wise SMVR, which
achieves better complexity when the objective function sat-
isfies the PL condition or convexity.

The new algorithm is a multi-stage version of the SMVR
method, summarized in Algorithm 2. Instead of decreasing
the learning rate ηt polynomially, we decrease η and β
after each stage and increase the number of iterations per
stage. At the end of each stage, the algorithm save the

output ws,us,vs, which are used for restarting in the next
stage. With these modifications, we can obtain a better
convergence guarantee under the PL condition or convexity.

First, we investigate the case that the objective function sat-
isfies the PL condition, which is a commonly used condition
in the literature (Charles & Papailiopoulos, 2018; Nouiehed
et al., 2019; Xie et al., 2020; Chewi et al., 2020). We first
introduce the definition of the PL condition.
Definition 2. F (w) satisfies the µ-PL condition if there
exists µ > 0 such that:

2µ (F (w)− F∗) ≤ ∥∇F (w)∥2.

Note that a function can be non-convex and still satisfy the
PL condition. Also, the PL condition is weaker than strong
convexity (Karimi et al., 2016). With this condition, we can
prove that the error of function estimator us and gradient
estimator vs would decrease after each stage.
Lemma 1. Define ϵ1 = 8L1

µ and ϵs = ϵ1
2s−1 , with β1 =

1
2L1

, T1 = max
{
4L1K

(
σ2
f + σ2

J

)
, 2
√
2L1∆F

}
, βs =

µϵs−1

L2
,Ts = max

{
4L

3/2
2

µϵs−1
, 4L2

µ3/2√ϵs−1

}
, c = 16L2

1, ηs =√
βs/c and L2 = 64L2

1, the output of Algorithm 2 at each
stage satisfies:

E [F (ws)− F∗] ≤ ϵs;

K∑
i=1

E
[∥∥fi(ui−1

s )− ui
s

∥∥2 + ∥∥vi
s −∇fi(u

i−1
s )

∥∥2] ≤ µϵs.

The above lemma shows that the objective gap F (ws)−F∗
is halved after each stage. So, after S = log2

(
2ϵ1
ϵ

)
stages,

the output of our method satisfies F (wS)− F∗ ≤ ϵ. Based
on Lemma 1, we prove the convergence rate of our algorithm
in the following theorem.
Theorem 2. Assume F (w) satisfies the µ-PL condition.
Stage-wise SMVR attains an ϵ-optimal point with a sample
complexity of O (1/ (µϵ)).

If the objective function satisfies the convexity rather than
PL condition, our method can still utilize this property to
improve the sample complexity, as stated below.
Theorem 3. Assume F (w) is convex and ∥x∗∥ ≤ D, where
x∗ denote an optimal solution. Our algorithm attains an
ϵ-optimal point with a complexity of O

(
1/ϵ2

)
.

Remark: Our Stage-wise SMVR method behaves opti-
mally when the objective function enjoys the PL condition
or convexity. For smooth and convex functions, our method
matches the O

(
1/ϵ2

)
lower bound for this problem (Agar-

wal et al., 2012). When it comes to the PL condition, we
note that there exists O (1/ (µϵ)) lower bound for the µ-
strongly convex setting (Agarwal et al., 2012), which is a
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special case of the PL condition, thus proving our method
is optimal. Compared with existing results (Zhang & Lan,
2021), our analysis requires weaker assumptions and enjoys
a better and optimal dependence in terms of µ.

4. SMVR with Adaptive Learning Rates
In this section, we show that the proposed method can be
extended to adaptive learning rates and obtains the same
sample complexity. Adaptive learning rates are widely used
in stochastic optimization problems, and many successful
methods have been proposed, such as AdaGrad (Duchi et al.,
2010), Adam (Kingma & Ba, 2015), AMSGrad (Reddi et al.,
2018), AdaBound (Luo et al., 2019), etc. However, it re-
mains less investigated in the stochastic multi-level litera-
ture. Inspired by the above methods, we develop an adap-
tive version of our method, named Adaptive SMVR. To use
adaptive learning rates, we revise the weight update step in
Algorithm 1 as follows:

wt+1 = wt −
ηt√

ht + δ
vt, (4)

where δ > 0 is a parameter to avoid dividing zero and the
parameter ht can take following forms:

AdaGrad-type: ht =
1

t

t∑
i=1

v2
i

Adam-type: ht = (1− β′
t)ht−1 + β′

tv
2
t

AMSGrad-type: h′
t = (1− β′

t)h
′
t−1 + β′

tv
2
t ,

ht = max (ht−1,h
′
t)

AdaBound-type: h′
t = (1− β′

t)h
′
t−1 + β′

tv
2
t ,

ht = Π[1/c2u,1/c2l ]
[h′

t]

(5)

where cl ≤ cu and Π[a,b] projects the input into the range
[a, b]. Inspired by the recent study of Adam-style meth-
ods (Guo et al., 2021), we can give the sample complexity
of the Adaptive SMVR in Theorem 4 using similar analysis.

Theorem 4. If we choose c = 10L2
3, ηt = (a+ t)

−1/3 and
a =

(
20L3

3

)3/2
, Adaptive SMVR with learning rate defined

in (4) and (5), can obtain a stationary point in O(1/ϵ3)
iterations, where L3 is a constant indicated in the proof.

Remark: The sample complexity is still at the order of
O
(
1/ϵ3

)
, when the adaptive learning rate is used. Our

adaptive SMVR changes the learning rate automatically,
which reduces the need to tune hyper-parameters manually.
When the objective function satisfies the convexity or PL
condition, Theorem 2 and Theorem 3 can be easily extended
to the adaptive version with the same sample complexity.

5. Experiments
In this section, we conduct numerical experiments to eval-
uate the performance of the proposed method over three
different tasks. We compare our method with existing
multi-level algorithms, including A-TSCGD (Yang et al.,
2019), NLASG (Balasubramanian et al., 2021), Nested-
SPIDER (Zhang & Xiao, 2021) and SCSC (Chen et al.,
2021). For our method, the parameter β is searched from
the set {0.1, 0.5, 0.9}. For other methods, we choose the
hyper-parameters suggested in the original papers or use
grid search to select the best hyper-parameters. When
it comes to the learning rate, we tune it from the range
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1}. As for the projection op-
eration ΠLf

, we can simply set Lf as a large value and we
provide a sensitivity analysis in terms of tuning Lf in the
first experiment.

5.1. Risk-Averse Portfolio Optimization

We first consider the risk-averse portfolio optimization prob-
lem. Suppose we have d assets to invest during each time
step {1, . . . , T}, and rt ∈ Rd denotes the payoff of d as-
sets in the time step t. Our goal is to maximize the return
of the investment and minimize the risk at the same time.
One useful formulation is the mean-deviation risk-averse
optimization problem (Shapiro et al., 2021), where the risk
is defined as the standard deviation. This mean–deviation
model is widely used in practice and often used to conduct
experiments in multi-level optimization (Yang et al., 2019;
Zhang & Lan, 2021). The problem can be formulated as:

max
x∈X

1

T

T∑
t=1

⟨rt, x⟩ − λ

√√√√ 1

T

T∑
t=1

(⟨rt, x⟩ − ⟨r̄, x⟩)2,

where r̄ =
∑T

t=1 rt and decision variable x denotes the
investment quantity vector in d assets. This problem is a
three-level stochastic compositional optimization problem,
and each layer can be represented as:

f1(x) =

(
1

T

T∑
t=1

⟨rt, x⟩, x
)
,

f2(y, x) =

(
y,

1

T

T∑
t=1

(⟨rt, x⟩ − y)
2

)
,

f3 (z1, z2) = −z1 + λ
√
z2.

In the experiment, we test different methods on real-world
datasets Industry-10, Industry-12, Industry-17 and Industry-
30 from Keneth R. French Data Library2. These datasets
contain 10, 12, 17 and 30 industrial assets payoff over 25105
consecutive periods, respectively. Following Zhang & Xiao
(2021), we set parameter λ = 0.2.

2https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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Figure 1. Results for Risk-Averse Portfolio Optimization.
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Figure 2. Results for Risk-Averse Portfolio Optimization.

Figure 1 shows the loss value and the norm of the gradient
against the number of samples drawn by each method, and
all curves are averaged over 20 runs. We can find that
our method converges much faster than other algorithms
in all tasks. Specifically, both the loss and the gradient
of SMVR decrease more quickly, demonstrating the low
sample complexity of the proposed method.

We also conduct experiments on tuning the parameter Lf for
the projection operation ΠLf

. For theoretical analysis, if Lf

is set bigger than the actual upper bound of the gradient, the
convergence rate remains the same order, just with a bigger
constant. Here, we tune the Lf form the set {5, 10, 50, 100},
and the results are shown in Figure 2, where Lf = NA
means the projection is not used (it equals to setting Lf as
an extremely large number, such as 1e7). We find that the
method performs very closely as long as Lf is set as a large
number and would perform worse when Lf is small. In
practical use, we can simply set Lf as a large number.
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Figure 3. Results for Hierarchical Tilted Empirical Risk Minimization.

Table 2. Classification accuracies (%) for Hierarchical Tilted Empirical Risk Minimization.

METHOD
HIV-1 AUSTRALIAN SCALE BREAST-CANCER SVMGUIDE1

RARE OVERALL RARE OVERALL RARE OVERALL RARE OVERALL

A-TSCGD 71.3± 2.9 88.1± 1.2 62.7± 8.9 72.5± 5.2 55.1± 8.5 80.6± 4.4 76.5± 4.6 85.8± 2.1
SCSC 76.7± 2.4 88.7± 1.2 61.8± 8.4 72.5± 5.2 55.6± 8.0 80.7± 4.1 75.8± 4.7 85.5± 2.1
NESTED-SPIDER 47.3± 9.2 63.0± 6.7 68.5± 9.7 72.9± 4.8 61.8± 8.6 83.3± 6.6 74.3± 5.4 84.8± 2.4
NLASG 69.9± 3.0 88.1± 1.3 79.4± 8.4 78.7± 5.8 42.0± 8.5 76.7± 5.2 73.3± 5.2 85.0± 2.2
SMVR 79.0 ± 2.5 90.0 ± 1.2 82.9 ± 8.2 82.6 ± 4.6 74.0 ± 8.5 87.0 ± 4.3 80.9 ± 3.0 87.3 ± 2.7

5.2. Hierarchical Tilted Empirical Risk Minimization

Hierarchical Tilted Empirical Risk Minimization (TERM)
is a method proposed by Li et al. (2021a;b), which can
deal with noisy and imbalanced machine learning prob-
lems simultaneously. TERM objective is given by R̃(w) :=
1
t log

(
1
N

∑
i∈[N ] e

tl(w;zi)
)

, where l (w; zi) is the loss on
the sample zi from data {z1, . . . , zN}. It can mitigate out-
liers with parameter t < 0 and handle class imbalance when
t > 0. When the task involves outliers and class imbalance
at the same time, Hierarchical TERM can be used:

J̃(w) :=
1

t
log

 1

|D|
∑
G⊆D

|G|etR̃G(w)

 ,

with R̃G(w) :=
1

τ
log

(
1

|G|
∑
z∈G

eτℓ(w;z)

)
,

where D represents all training samples and G denotes sam-
ples for one specific class. Parameter t and τ are constants
dealing with different goals (i.e., outliers and class imbal-

ance). It is a four-level stochastic compositional optimiza-
tion problem, with each layer represented as:

f1(w) =
1

|G|
∑
z∈G

eτℓ(w;z), f2 (x) =
1

τ
log(x),

f3 (y) =
1

|D|
∑
G⊆D

|G|ety, f4 (z) =
1

t
log(z).

In the experiment, we use the "HIV-1"3, "Australian"4,
"Breast-cancer"4 and "svmguide1"4 dataset, and make the
training data noisy and imbalanced, where nearly 30% of
the labels are reshuffled and the number of rare class versus
common class is 1:20. We set τ = −2, t = 10 according the
origin paper and repeat each experiment 20 times. As shown
in Figure 3, our SMVR performs best among all algorithms.
The loss value and the norm of the gradient converge to
a small value more quickly than other methods. We also
report the classification accuracy in Table 2. It shows that

3https://archive.ics.uci.edu/ml/datasets.php
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Figure 4. Results for Multi-step Model-Agnostic Meta-Learning.

SMVR achieves the highest accuracy on the rare class and
the overall task simultaneously, indicating the effectiveness
of our method.

5.3. Multi-Step Model-Agnostic Meta-Learning

At last, we conduct experiments on Multi-step Model-
Agnostic Meta-Learning (MAML). Multi-step MAML aims
to find a good initialization point that performs well in dif-
ferent tasks after taking a few steps of gradient descent.
Classical one-step MAML can be formed as:

min
x

F (θ) :=
1

M

M∑
m=1

Fm (x− α∇Fm(x)) ,

with Fm(θ) := Eξm [f (θ; ξm)]

where α is the learning rate, Fm denotes the loss on task m
and ξm represents the training samples for task m. One-step
MAML is a two-level problem since it updates the initial
point once and then evaluates on different tasks. In practice,
we usually update the initial point more times to achieve
better results. For example, Finn et al. (2017) use five-step
updates, which is a six-level compositional problem.

Following Finn et al. (2017), we conduct experiments on
5-way 1-shot and 5-shot task on Omniglot dataset (Lake
et al., 2011). Each task is a 5-class classification problem,
with only 1 or 5 training samples for each class. We conduct
5-step MAML and repeat each experiment 3 times.

We report the accuracy of different methods against the
number of training samples in Figure 4. Since adaptive
learning rates are widely used in neural networks, which are
also applied in Multi-step MAML, we implement Adaptive
SMVR methods in this task, denoted as SMVR-ADAM. We
use the adaptive learning rate defined in (4) and (5) and
choose the commonly used Adam-type. As can be seen, the
accuracy of SMVR and SMVR-ADAM increases rapidly
both in training sets and testing sets, and outperforms other
methods dramatically. Although SMVR and SMVR-ADAM
enjoy the same sample complexity, the latter converges
faster in practice due to the adaptive learning rate used.

6. Conclusion
In this paper, we propose an optimal algorithm named
SMVR for stochastic multi-level composition optimization.
We prove that the proposed algorithm, by using variance
reduced estimator of function values and Jacobians, can
achieve the sample complexity of O

(
1/ϵ3

)
for finding an ϵ-

stationary point. This complexity matches the lower bound
even in the one-level setting, and our method avoids using
batches in any iterations. When the objective function fur-
ther satisfies the convexity or PL condition, we develop a
stage-wise version of SMVR to obtain the optimal complex-
ity of O

(
1/ϵ2

)
or O (1/ϵ). To take advantage of adaptive

learning rates, we also propose Adaptive SMVR, which can
achieve the same complexity with the learning rate changing
adaptively. Experiments on three real-world tasks demon-
strate the superiority of the proposed method.
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A. Proof of Theorem 1
We first provide some supporting lemmas and then conclude to show the sample complexity of the proposed method.

Lemma 2. The objective function F is LF -smooth, where LF := L2K−1
f LJ

∑K
i=1

1
Li

f

.

Proof. Denote Fi(x) = fi ◦ fi−1 ◦ · · · ◦ f1(x). We know Fi(x) is Li
f Lipschitz continuous, since when i ≥ 2:

∥Fi(x)− Fi(y)∥ = ∥fi (Fi−1(x))− fi (Fi−1(y))∥
≤ Lf ∥Fi−1(x)− Fi−1(y)∥
≤ Li−1

f ∥F1(x)− F1(y)∥
≤ Li

f∥x− y∥

Then, we have:

∥∇FK(x)−∇FK(y)∥
= ∥∇fK (FK−1(x))∇FK−1(x)−∇fK (FK−1(y))∇FK−1(y)∥
= ∥∇fK (FK−1(x)) (∇FK−1(x)−∇FK−1(y)) +∇FK−1(y) (∇fK (FK−1(x))−∇fK (FK−1(y)))∥
≤∥∇fK (FK−1(x))∥ ∥∇FK−1(x)−∇FK−1(y)∥+ ∥∇FK−1(y)∥ ∥∇fK (FK−1(x))−∇fK (FK−1(y))∥
≤Lf ∥∇FK−1(x)−∇FK−1(y)∥+ LK−1

f LJ ∥FK−1(x)− FK−1(y)∥
≤Lf ∥∇FK−1(x)−∇FK−1(y)∥+ L2K−2

f LJ ∥x− y∥

≤L2
f ∥∇FK−2(x)−∇FK−2(y)∥+

(
L2K−3
f LJ + L2K−2

f LJ

)
∥x− y∥

≤LK−1
f ∥∇F1(x)−∇F1(y)∥+ L2K−1

f LJ

K−1∑
i=1

1

Li
f

∥x− y∥

≤L2K−1
f

1

LK
f

LJ ∥x− y∥+ L2K−1
f LJ

K−1∑
i=1

1

Li
f

∥x− y∥

=L2K−1
f LJ

K∑
i=1

1

Li
f

∥x− y∥

A similar result can also be found in Lemma 2.1 of (Balasubramanian et al., 2021). This property is unsurprising since the
composition of two smooth and Lipschitz functions is still smooth and Lipschitz.

Lemma 3. Let ηt ≤ 1
2LF

, we have following guarantee:

F (wt+1) ≤ F (wt) +
ηt
2
∥∇F (wt)− vt∥2 −

ηt
2
∥∇F (wt)∥2 −

ηt
4
∥vt∥2 .

Proof. Due to the smoothness of function F and the definition of wt+1, we have:

F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+
LF

2
∥wt+1 −wt∥2

= F (wt)− ηt ⟨∇F (wt),vt⟩+
η2tLF

2
∥vt∥2

≤ F (wt)− ηt⟨∇F (wt),vt⟩+
ηt
2
∥∇F (wt)∥2 +

ηt
2
∥vt∥2 −

ηt
2
∥∇F (wt)∥2 −

ηt
2
∥vt∥2 +

ηt
4
∥vt∥2

= F (wt) +
ηt
2
∥∇F (wt)− vt∥2 −

ηt
2
∥∇F (wt)∥2 −

ηt
4
∥vt∥2
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We can derive the term ∥∇F (wt)∥2 from the right side. Since F (wt+1) and F (wt) can be eliminated when summing up,
the only thing need to show is that the estimated gradient vt is not too far away from the true gradient ∇F (wt). We prove
this in the following lemmas.
Lemma 4. Denote that ∇F̂K(wt) :=

∏K
i=1 ∇fi(u

i−1
t ) and Ci := LK−1

f LJ

∑K−i−1
j=1 Lj

f . For K ≥ 2, we have:∥∥∥∇F (wt)−∇F̂K(wt)
∥∥∥2 ≤ K

K−1∑
i=1

C2
i

∥∥fi(ui−1
t )− ui

t

∥∥2 .
Proof. First, we define that yi

t := fi ◦ fi−1 ◦ . . . ◦ f1(wt), ∇F̂i(wt) := ∇f1(wt) · · · ∇fi(u
i−1
t ).∥∥∥∇F1(wt)−∇F̂1(wt)

∥∥∥ = 0,∥∥∥∇F2(wt)−∇F̂2(wt)
∥∥∥ =

∥∥∇f1(wt)∇f2(y
1
t )−∇f1(wt)∇f2(u

1
t )
∥∥

≤ LfLJ

∥∥y1
t − u1

t

∥∥ ,∥∥∥∇F3(wt)−∇F̂3(wt)
∥∥∥ =

∥∥∇f1(wt)∇f2(y
1
t )∇f3(y

2
t )−∇f1(wt)∇f2(u

1
t )∇f3(u

2
t )
∥∥

≤ L2
fLJ

(∥∥y2
t − u2

t

∥∥+ ∥∥y1
t − u1

t

∥∥) ,
· · ·∥∥∥∇FK(wt)−∇F̂K(wt)
∥∥∥ ≤ LK−1

f LJ

K−1∑
i=1

∥∥yi
t − ui

t

∥∥ ,
Besides, we also have∥∥y2

t − u2
t

∥∥ =
∥∥f2 ◦ f1(wt)− u2

t

∥∥ ≤
∥∥f2 ◦ f1(wt)− f2(u

1
t )
∥∥+ ∥∥f2(u1

t )− u2
t

∥∥
≤ Lf

∥∥f1(wt)− u1
t

∥∥+ ∥∥f2(u1
t )− u2

t

∥∥ ,∥∥y3
t − u3

t

∥∥ =
∥∥f3 ◦ f2 ◦ f1(wt)− u3

t

∥∥ ≤
∥∥f3 ◦ f2 ◦ f1(wt)− f3(u

2
t )
∥∥+ ∥∥f3(u2

t )− u3
t

∥∥
≤ Lf

∥∥y2
t − u2

t

∥∥+ ∥∥f3(u2
t )− u3

t

∥∥
≤ Lf (Lf

∥∥f1(wt)− u1
t

∥∥+ ∥∥f2(u1
t )− u2

t

∥∥) + ∥∥f3(u2
t )− u3

t

∥∥
· · ·∥∥yi

t − ui
t

∥∥ ≤ Lf

∥∥yi−1
t − ui−1

t

∥∥+ ∥∥fi(ui−1
t )− ui

t

∥∥
≤

i∑
j=1

Li−j
f

∥∥∥fj(uj−1
t )− uj

t

∥∥∥
To this end, we can conclude that:∥∥∥∇F (wt)−∇F̂K(wt)

∥∥∥ ≤
K−1∑
i=1

Ci

∥∥fi(ui−1
t )− ui

t

∥∥ ,
where Ci := LK−1

f LJ(1 + Lf + . . .+ LK−i−1
f ).

Lemma 5. The estimated error of gradient can be bounded as:

E
[
∥∇F (wt)− vt∥2

]
≤ 2KL

2(K−1)
f

K∑
i=1

E
[∥∥vi

t −∇fi(u
i−1
t )

∥∥2]+ 2KL2
F

K−1∑
i=1

E
[∥∥fi(ui−1

t )− ui
t

∥∥2] .
Proof. Consider the definition of vt:

E
[
∥vt −∇F (wt)∥2

]
≤ 2E

∥∥∥∥∥
K∏
i=1

vi
t −

K∏
i=1

∇fi(u
i−1
t )

∥∥∥∥∥
2


︸ ︷︷ ︸
:=♢

+2E
[∥∥∥∇F̂K(wt)−∇F (wt)

∥∥∥2]︸ ︷︷ ︸
:=♣

.
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Based on Lemma 4, we have:

♣ ≤ K

K−1∑
i=1

C2
i E
[∥∥fi(ui−1

t )− ui
t

∥∥2] ,
where Ci := LK−1

f LJ

∑K−i−1
j=1 Lj

f ≤ LF .

The first term ♢ can be upper bounded as:

♢ = E

∥∥∥∥∥
K∏
i=1

vi
t −

K∏
i=1

∇fi(u
i−1
t )

∥∥∥∥∥
2


≤ KE

∥∥∥∥∥
K∏
i=1

∇fi(u
i−1
t )− v1

t

K∏
i=2

∇fi(u
i−1
t )

∥∥∥∥∥
2


+KE

∥∥∥∥∥v1
t

K∏
i=2

∇fi(u
i−1
t )− v1

tv
2
t

K∏
i=3

∇fi(u
i−1
t )

∥∥∥∥∥
2


+ . . .

+KE

∥∥∥∥∥
(

K−1∏
i=1

vi
t

)
∇fK(uK−1

t )−
K∏
i=1

vi
t

∥∥∥∥∥
2


≤ K

(
K∑
i=1

L
2(K−1)
f E

[∥∥vi
t −∇fi(u

i−1
t )

∥∥2]) .

Lemma 6. The variance of the estimated gradient and function value satisfies the following guarantee:

E
[∥∥vi

t −∇fi(u
i−1
t )

∥∥2] ≤ (1− βt)E
[∥∥vi

t−1 −∇fi(u
i−1
t−1)

∥∥2]+ 2β2
t σ

2
J + 2L2

JE
[∥∥ui−1

t − ui−1
t−1

∥∥2]
E
[∥∥ui

t − fi(u
i−1
t )

∥∥2] ≤ (1− βt)E
[∥∥ui

t−1 − fi(u
i−1
t−1)

∥∥2]+ 2β2
t σ

2
f + 2L2

fE
[∥∥ui−1

t − ui−1
t−1

∥∥2]
Proof. Consider the update vi

t = ΠLf

[
(1− βt)v

i
t−1 + βt∇fi(u

i−1
t ; ξit) + (1− βt)

(
∇fi(u

i−1
t ; ξit)−∇fi(u

i−1
t−1; ξ

i
t)
)]

and ΠLf
[∇fi(u

i−1
t )] = ∇fi(u

i−1
t ).

E
[∥∥vi

t −∇fi(u
i−1
t )

∥∥2]
=E

[∥∥ΠLf

[
(1− βt)v

i
t−1 +∇fi(u

i−1
t ; ξit)− (1− βt)∇fi(u

i−1
t−1; ξ

i
t)
]
−ΠLf

[∇fi(u
i−1
t )]

∥∥2]
≤E

[∥∥(1− βt)v
i
t−1 +∇fi(u

i−1
t ; ξit)− (1− βt)∇fi(u

i−1
t−1; ξ

i
t)−∇fi(u

i−1
t )

∥∥2]
=E

[∥∥(1− βt)
(
vi
t−1 −∇fi(u

i−1
t−1)

)
+
(
∇fi(u

i−1
t−1)−∇fi(u

i−1
t )−

(
∇fi(u

i−1
t−1; ξ

i
t)−∇fi(u

i−1
t ; ξit)

))
+βt

(
∇fi(u

i−1
t−1; ξ

i
t)−∇fi(u

i−1
t−1)

)∥∥2]
Note that E

[
∇fi(u

i−1
t−1)−∇fi(u

i−1
t )−

(
∇fi(u

i−1
t−1; ξ

i
t)−∇fi(u

i−1
t ; ξit)

)
+ βt

(
∇fi(u

i−1
t−1; ξ

i
t)−∇fi(u

i−1
t−1)

)]
= 0.

E
[∥∥vi

t −∇fi(u
i−1
t )

∥∥2] ≤(1− βt)E
∥∥vi

t−1 −∇fi(u
i−1
t )

∥∥2 + 2β2
tE
[∥∥∇fi(u

i−1
t−1; ξ

i
t)−∇fi(u

i−1
t−1)

∥∥2]
+ 2E

[∥∥∇fi(u
i−1
t−1; ξ

i
t)−∇fi(u

i−1
t ; ξit)

∥∥2]
≤(1− βt)E

∥∥vi
t−1 −∇fi(u

i−1
t−1)

∥∥2 + 2β2
t σ

2
J + 2L2

JE
[∥∥ui−1

t − ui−1
t−1

∥∥2]
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Similarly, consider ui
t = (1− βt)u

i
t−1 + βtfi(u

i−1
t ; ξit) + (1− βt)

(
fi(u

i−1
t ; ξit)− fi(u

i−1
t−1; ξ

i
t)
)
:

E
[∥∥fi(ui−1

t )− ui
t

∥∥2]
=E

[∥∥(1− βt)u
i
t−1 + fi(u

i−1
t ; ξit)− (1− βt)fi(u

i−1
t−1; ξ

i
t)− fi(u

i−1
t )

∥∥2]
=E

[∥∥(1− βt)
(
ui
t−1 − fi(u

i−1
t−1)

)
+
(
fi(u

i−1
t−1)− fi(u

i−1
t )−

(
fi(u

i−1
t−1; ξ

i
t)− fi(u

i−1
t ; ξit)

))
+βt

(
fi(u

i−1
t−1; ξ

i
t)− fi(u

i−1
t−1)

)∥∥2]
Note that E

[
fi(u

i−1
t−1)− fi(u

i−1
t )−

(
fi(u

i−1
t−1; ξ

i
t)− fi(u

i−1
t ; ξit)

)
+ βt

(
fi(u

i−1
t−1; ξ

i
t)− fi(u

i−1
t−1)

)]
= 0

E
[∥∥ui

t − fi(u
i−1
t )

∥∥2]
≤(1− βt)E

∥∥ui
t−1 − fi(u

i−1
t−1)

∥∥2 + 2β2
tE
[∥∥fi(ui−1

t−1; ξ
i
t)− fi(u

i−1
t−1)

∥∥2]+ 2E
[∥∥fi(ui−1

t−1; ξ
i
t)− fi(u

i−1
t ; ξit)

∥∥2]
≤(1− βt)E

∥∥ui
t−1 − fi(u

i−1
t−1)

∥∥2 + 2β2
t σ

2
f + 2L2

fE
[∥∥ui−1

t − ui−1
t−1

∥∥2]

Lemma 7. We have the following guarantee:

K∑
i=1

E
[∥∥ui−1

t+1 − ui−1
t

∥∥2] ≤ ( K∑
i=1

(
2L2

f

)i−1

)(
E
[
η2t ∥vt∥2

]
+ 2β2

t+1σ
2
fK + 2β2

t+1K

K∑
i=1

E
[∥∥ui

t − fi(u
i−1
t )

∥∥2])

Proof. First, we discuss two cases:

1. (i = 1): E
[∥∥ui−1

t+1 − ui−1
t

∥∥2] = E
[
∥wt+1 −wt∥2

]
= E

[
η2t ∥vt∥2

]
.

2. (2 ≤ i ≤ K):

E
[∥∥ui−1

t+1 − ui−1
t

∥∥2]
=E

[∥∥βt+1

(
fi−1(u

i−2
t )− ui−1

t

)
+ (fi−1(u

i−2
t+1; ξ

i−1
t+1)− fi−1(u

i−2
t ; ξi−1

t+1))

+βt+1

(
fi−1(u

i−2
t ; ξi−1

t+1)− fi−1(u
i−2
t )

)∥∥2]
≤2E

[∥∥βt+1

(
fi−1(u

i−2
t )− ui−1

t

)
+ βt+1

(
fi−1(u

i−2
t ; ξi−1

t+1)− fi−1(u
i−2
t )

)∥∥2]+ 2L2
fE
[∥∥ui−2

t+1 − ui−2
t

∥∥2]
≤2β2

t+1

∥∥fi−1(u
i−2
t )− ui−1

t

∥∥2 + 2β2
t+1σ

2
f + 2L2

fE
[∥∥ui−2

t+1 − ui−2
t

∥∥2] .
Denote Υi

t := E
[∥∥ui

t − fi(u
i−1
t )

∥∥2] and Ai := E
[∥∥ui−1

t+1 − ui−1
t

∥∥2], we have Ai ≤ 2L2
fA

i−1 + 2β2
t+1Υ

i−1
t + 2β2

t+1σ
2
f

for i ≥ 2. Then we can get:

A1 ≤ E
[
η2t ∥vt∥2

]
A2 ≤

(
2L2

f

)
E
[
η2t ∥vt∥2

]
+ 2β2

t+1σ
2
f + 2β2

t+1Υ
1
t

A3 ≤
(
2L2

f

)2 E [η2t ∥vt∥2
]
+ 2β2

t+1σ
2
f

(
1 + 2L2

f

)
+ 2β2

t+1

(
2L2

fΥ
1
t +Υ2

t

)
· · ·

Ai ≤
(
2L2

f

)i−1 E
[
η2t ∥vt∥2

]
+ 2β2

t+1σ
2
f

i−1∑
j=1

(
2L2

f

)j−1
+ 2β2

t+1

i−1∑
j=1

(
2L2

f

)i−1−j
Υj

t

≤
(
2L2

f

)i−1 E
[
η2t ∥vt∥2

]
+ 2β2

t+1σ
2
f

K∑
j=1

(
2L2

f

)j−1
+ 2β2

t+1

K∑
j=1

(
2L2

f

)K−j
Υj

t
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When summing up, we have:

K∑
i=1

Ai ≤
K∑
i=1

(
2L2

f

)i−1 E
[
η2t ∥vt∥2

]
+ 2β2

t+1σ
2
fK

K∑
i=1

(
2L2

f

)i−1
+ 2β2

t+1K

K∑
i=1

(
2L2

f

)K−i
Υi

t

≤
(

K∑
i=1

(
2L2

f

)i−1

)(
E
[
η2t ∥vt∥2

]
+ 2β2

t+1σ
2
fK + 2β2

t+1K

K∑
i=1

Υi
t

)
,

Now we finish the proof of Theorem 1. Denote that Γt = F (wt) +
1

c0ηt−1

∑K
i=1

(
Φi

t +Υi
t

)
, Φi

t :=
∥∥vi

t −∇fi(u
i−1
t )

∥∥2
and Υi

t := E
[∥∥ui

t − fi(u
i−1
t )

∥∥2]. Based on Lemma 3, we have:

E [Γt+1 − Γt]

=E

[
F (wt+1)− F (wt) +

1

c0ηt

K∑
i=1

(
Φi

t+1 +Υi
t+1

)
− 1

c0ηt−1

K∑
i=1

(
Φi

t +Υi
t

)]

≤E

[
ηt
2
∥∇F (wt)− vt∥2 −

ηt
2
∥∇F (wt)∥2 −

ηt
4
∥vt∥2 +

1

c0ηt

K∑
i=1

(
Φi

t+1 +Υi
t+1

)
− 1

c0ηt−1

K∑
i=1

(
Φi

t +Υi
t

)]

Define constant L1 = max

{
1,KL

2(K−1)
f ,KL2

F , 2K
(
σ2
J + σ2

f

)
, 2
(
L2
J + L2

f

)(
1 + 2K + 2Kσ2

f

)∑K
i=1

(
2L2

f

)i−1
}

.

By summing up and rearranging, we have:

E

[
T∑

t=1

ηt
2
∥∇F (wt)∥2

]

≤E

[
(Γ1 − ΓT+1) +

T∑
t=1

ηt
2
∥∇F (wt)− vt∥2 −

T∑
t=1

ηt
4
∥vt∥2 −

T∑
t=1

K∑
i=1

1

c0ηt−1

(
Φi

t +Υi
t

)
+

T∑
t=1

K∑
i=1

1

c0ηt

(
Φi

t+1 +Υi
t+1

)]

≤E

[
(Γ1 − ΓT+1) + L1

T∑
t=1

K∑
i=1

ηt
(
Φi

t +Υi
t

)
−

T∑
t=1

ηt
4
∥vt∥2 −

T∑
t=1

K∑
i=1

1

c0ηt−1

(
Φi

t +Υi
t

)

+

T∑
t=1

K∑
i=1

(1− βt+1)

c0ηt

(
Φi

t +Υi
t

)
+

T∑
t=1

2β2
t+1K

(
σ2
J + σ2

f

)
c0ηt

+

T∑
t=1

K∑
i=1

2
(
L2
J + L2

f

)
c0ηt

∥∥ui−1
t+1 − ui−1

t

∥∥2
≤E

[
(Γ1 − ΓT+1) + L1

T∑
t=1

K∑
i=1

ηt
(
Φi

t +Υi
t

)
−

T∑
t=1

ηt
4
∥vt∥2 −

T∑
t=1

K∑
i=1

(
1

c0ηt−1
− 1− βt+1

c0ηt

)(
Φi

t +Υi
t

)

+

T∑
t=1

2β2
t+1K

(
σ2
J + σ2

f

)
c0ηt

+

T∑
t=1

L1

c0
ηt ∥vt∥2 +

T∑
t=1

L1β
2
t+1

c0ηt
+

T∑
t=1

K∑
i=1

L1β
2
t+1

c0ηt
Υi

t


≤E

[
(Γ1 − ΓT+1) +

T∑
t=1

K∑
i=1

(
L1ηt −

1

c0ηt−1
+

L1β
2
t+1

c0ηt
+

(1− βt+1)

c0ηt

)(
Φi

t +Υi
t

)
−

T∑
t=1

(
1

4
− L1

c0

)
ηt ∥vt∥2 +

T∑
t=1

2L1β
2
t+1

c0ηt

]



Optimal Algorithms for Stochastic Multi-Level Compositional Optimization

Set c0 = 4L1, ηt = (a+ t)
−1/3 and c = 10L2

1, a =
(
20L3

1

)3/2
. Since (x+ y)1/3 − x1/3 ≤ yx−2/3/3 and a ≥ 2, we have:

1

ηt
− 1

ηt−1
= (a+ t)

1/3 − (a+ (t− 1))
1/3 ≤ 1

3 (a+ (t− 1))
2/3

≤ 1

3 (a/2 + t)
2/3

≤ 22/3

3 (a+ t)
2/3

≤ η2t

Also, we have βt+1 = cη2t ≤ cη20 ≤ 10L2
1a

−2/3 ≤ (2L1)
−1, so:

L1ηt −
1

c0ηt−1
+

L1β
2
t+1

c0ηt
+

(1− βt+1)

c0ηt
≤ L1ηt +

η2t
c0

− βt+1

2c0ηt
≤ L1ηt +

η2t
4L1

− 5L1ηt
4

≤ 0

So, we have:

E

[
T∑

t=1

ηt
2
∥∇F (wt)∥2

]
E

[
≤ (Γ1 − ΓT+1) +

T∑
t=1

2L1β
2
t+1

c0ηt

]

≤ E

[
F (w1)− F∗ +

1

c0η0

K∑
i=1

(
Φi

1 +Υi
1

)
+

T∑
t=1

2L1β
2
t+1

c0ηt

]

≤ E

∆F +
K
(
σ2
f + σ2

J

)
c0η0

+ 50L4
1

T∑
t=1

η3t


≤ ∆F +

K
(
σ2
f + σ2

J

)
c0η0

+ 50L4
1 ln (T + 1)

The last inequality holds because η3t ≤ (a+ t)
−1 ≤ (t+ 1)

−1 and
∑T

t=1 (t+ 1)
−1 ≤ ln (T + 1). Since ηt is decreasing,

we have:

E

[
ηT

T∑
t=1

∥∇F (wt)∥2
]
≤ 2∆F +

2K
(
σ2
f + σ2

J

)
c0η0

+ 100L4
1 ln (T + 1).

Similar to the proof of Theorem 1 in STORM (Cutkosky & Orabona, 2019), denote M = 2∆F +2K
(
σ2
f + σ2

J

)
/ (c0η0)+

100L4
1 ln (T + 1). Using Cauchy-Schwarz inequality, we have:

E


√√√√ T∑

t=1

∥∇F (wt)∥2
2

≤ E [1/ηT ]E

[
ηT

T∑
t=1

∥∇F (wt)∥2
]
≤ E

[
M

ηT

]
≤ E

[
M (a+ T )

1/3
]
,

which indicate that

E


√√√√ T∑

t=1

∥∇F (wt)∥2
 ≤

√
M (a+ T )

1/6
.

Finally, using Cauchy-Schwarz we have
∑T

t=1 ∥∇F (wt)∥ /T ≤
√∑T

t=1 ∥∇F (wt)∥2/
√
T so that:

E

[
T∑

t=1

∥∇F (wt)∥
T

]
≤

√
M (a+ T )

1/6

√
T

≤ O
(
a1/6

√
M√

T
+

1

T 1/3

)
= O

(
1

T 1/3

)
,

where the last inequality is due to (a+ b)1/3 ≤ a1/3 + b1/3. So, we can achieve the stationary point with T = O
(
1/ϵ3

)
.
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B. Proof of Lemma 1
We first calculate the cumulative variance. Denote that Υi

t :=
∥∥ui

t − fi(u
i−1
t )

∥∥2 and Φi
t :=

∥∥vi
t −∇fi(u

i−1
t )

∥∥2. According
to Lemma 6, we have:

K∑
i=1

E
[
Υi

t+1 +Φi
t+1

]
≤ (1− β)

K∑
i=1

E
[
Υi

t +Φi
t

]
+ 2β2K

(
σ2
J + σ2

f

)
+ 2

(
L2
J + L2

f

) K∑
i=1

E
[∥∥ui−1

t+1 − ui−1
t

∥∥2]
Then, applying Lemma 7 and setting β ≤ 1

2L1
, we get:

K∑
i=1

E
[
Υi

t+1 +Φi
t+1

]
≤(1− β)

K∑
i=1

E
[
Υi

t +Φi
t

]
+ β2L1 + L1

(
E
[
η2 ∥vt∥2

]
+ β2 + β2

K∑
i=1

E
[
Υi

t

])

≤(1− β

2
)

K∑
i=1

E
[
Υi

t +Φi
t

]
+ 2β2L1 + L1E

[
η2 ∥vt∥2

]
By summing up and rearranging, we have:

β

2

T∑
t=1

K∑
i=1

E
[
Υi

t +Φi
t

]
≤

K∑
i=1

E
[
Υi

1 +Φi
1

]
+ 2β2L1T + L1η

2
T∑

t=1

E
[
∥vt∥2

]
Denote that Γt = F (wt) +

1
c0η

∑K
i=1

(
Φi

t +Υi
t

)
. We then try to bound the term

∑T
t=1 E

[
∥vt∥2

]
, which is very similar to

the proof of Theorem 1:
T∑

t=1

E
[
∥vt∥2

]
≤2

T∑
t=1

E
[
∥∇F (wt)∥2

]
+ 2

T∑
t=1

E
[
∥∇F (wt)− vt∥2

]
=
4

η

(
η

2

T∑
t=1

E
[
∥∇F (wt)∥2

]
+

η

2

T∑
t=1

E
[
∥∇F (wt)− vt∥2

])

≤E

[
4

η
(Γ1 − ΓT+1) + 4

T∑
t=1

∥∇F (wt)− vt∥2 −
T∑

t=1

∥vt∥2 +
4

η

T∑
t=1

K∑
i=1

(
1

c0η

(
Φi

t+1 +Υi
t+1

)
− 1

c0η

(
Φi

t +Υi
t

))]

≤E

[
4

η
(Γ1 − ΓT+1) +

8L1

η

T∑
t=1

K∑
i=1

η
(
Φi

t +Υi
t

)
−

T∑
t=1

∥vt∥2 −
T∑

t=1

K∑
i=1

4

c0η2
(
Φi

t +Υi
t

)

+

T∑
t=1

K∑
i=1

4(1− β)

c0η2
(
Φi

t +Υi
t

)
+

T∑
t=1

8β2K
(
σ2
J + σ2

f

)
c0η2

+

T∑
t=1

K∑
i=1

8
(
L2
J + L2

f

)
c0η2

∥∥ui−1
t+1 − ui−1

t

∥∥2
≤E

[
4

η
(Γ1 − ΓT+1) +

8L1

η

T∑
t=1

K∑
i=1

η
(
Φi

t +Υi
t

)
−

T∑
t=1

∥vt∥2 −
T∑

t=1

K∑
i=1

4

c0η2
(
Φi

t +Υi
t

)

+

T∑
t=1

K∑
i=1

4(1− β)

c0η2
(
Φi

t +Υi
t

)
+

T∑
t=1

8β2K
(
σ2
J + σ2

f

)
c0η2

+

T∑
t=1

4L1

c0
∥vt∥2 +

T∑
t=1

4L1β
2

c0η2
+

T∑
t=1

K∑
i=1

L1β
2

c0η
Υi

t


≤E

[
4

η
(Γ1 − ΓT+1) +

T∑
t=1

K∑
i=1

(
8L1 −

2β

c0η2

)(
Φi

t +Υi
t

)
−

T∑
t=1

(
1− 4L1

c0

)
∥vt∥2 +

8L1β
2T

c0η2

]
By setting c0 = 4L1 and c = 4L1c0 = 16L2

1, where L1 is defined in the proof of Theorem 1, we get:

T∑
t=1

E
[
∥vt∥2

]
≤ E

[
4

η
(Γ1 − ΓT+1) +

8L1β
2T

c0η2

]
≤ E

[
4

η
(F (w1)− F∗) +

4
∑K

i=1

(
Φi

1 +Υi
1

)
c0η2

+
8L1β

2T

c0η2

]
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When τ is sampled randomly from {1, . . . , T}, we have:

K∑
i=1

E
[∥∥fi(ui−1

τ )− ui
τ

∥∥2]+ K∑
i=1

E
[∥∥vi

τ −∇fi(u
i−1
τ )

∥∥2]
=

1

T

(
K∑
i=1

T∑
t=1

E
[∥∥fi(ui−1

t )− ui
t

∥∥2]+ K∑
i=1

T∑
t=1

E
[∥∥vi

t −∇fi(u
i−1
t )

∥∥2])

≤E

[
2

βT

K∑
i=1

(
Φi

1 +Υi
1

)
+ 4βL1 +

8L1η

βT
(F (w1)− F∗) +

8L1

∑K
i=1

(
Φi

1 +Υi
1

)
c0βT

+
16L2

1β

c0

]

≤E

[
4

βT

K∑
i=1

(
Φi

1 +Υi
1

)
+ 8βL1 +

8L1η

βT
(F (w1)− F∗)

]

Let’s consider the first stage, in which
∑K

i=1 E
[∥∥fi(ui−1

1 )− ui
1

∥∥2 + ∥∥vi
1 −∇fi(u

i−1
1 )

∥∥2] ≤ K
(
σ2
f + σ2

J

)
. Note

that in below the numerical subscripts denote the stage index {1, . . . , S}. With the parameter β1 = 1
2L1

, and

T1 = max
{
2
√
2L1∆F , 4L1K

(
σ2
f + σ2

J

)}
, we have:

K∑
i=1

E
[∥∥fi(ui−1

1 )− ui
1

∥∥2]+ K∑
i=1

E
[∥∥vi

1 −∇fi(u
i−1
1 )

∥∥2]
≤ 4

β1T1
K
(
σ2
f + σ2

J

)
+ 8β1L1 +

8L1η∆F

β1T1

≤8L1

=µϵ1

Also, according to the PL condition, we have:

E [F (w1)− F∗] ≤ E

[
∥∇F (w1)∥2

2µ

]

≤ 4L1∆F

µT1

√
β1

+
4L1K

(
σ2
f + σ2

J

)
µβ1T1

+
8β1L

2

µ

≤ 8L1

µ

= ϵ1

Starting form the second stage, we would prove by induction. Suppose at stage s − 1, we have F (ws−1) − F∗ ≤ ϵs−1,
and

∑K
i=1 E

[∥∥fi(ui−1
s−1)− ui

s−1

∥∥2]+∑K
i=1 E

[∥∥vi
s−1 −∇fi(u

i−1
s−1)

∥∥2] ≤ µϵs−1. Then at s stage, with βs =
µϵs−1

64L2
1

and

Ts = max
{

2048L3
1

µϵs−1
,

256L2
1

u3/2√ϵs−1

}
, we have:

K∑
i=1

E
[∥∥fi(ui−1

s )− ui
s

∥∥2]+ K∑
i=1

E
[∥∥vi

s −∇fi(u
i−1
s )

∥∥2]
≤4µϵs−1

βsTs
+ 8βsL1 +

8L1ηsϵs−1

βsTs

≤µϵs−1

8
+

µϵs−1

8
+

µϵs−1

8

≤µϵs−1

2
=µϵs
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The output of stage s also satisfies the following guarantee:

E [F (ws)− F∗] ≤ E

[
∥∇F (ws)∥2

2µ

]
≤ 1

2µTs

Ts∑
t=1

E
[
∥∇F (wt)∥2

]
≤ (Γ1 − ΓT+1)

µηsTs
+

2L1β
2
s

µcoη2s

≤ 4L1 (F (ws−1)− F∗)

µ
√
βsTs

+
4L1µϵs−1

µβsTs
+

8L2
1βs

µ

≤ ϵs−1

8
+

ϵs−1

8
+

ϵs−1

8

≤ ϵs−1

2
= ϵs

Combining two cases, we have proved that
∑K

i=1 E
[∥∥fi(ui−1

s )− ui
s

∥∥2] +∑K
i=1 E

[∥∥vi
s −∇fi(u

i−1
s−1)

∥∥2] ≤ µϵs and

F (ws)− F∗ ≤ ϵs, where ϵs = ϵ1/2
s−1. Let L2 = 64L2

1, we have the results in Lemma 1

C. Proof of Theorem 2
We have proved that F (ws)− F∗ ≤ ϵs in Lemma 1. That is to say, F (wS)− F∗ ≤ ϵ when S = log2

(
2ϵ1
ϵ

)
= log2

(
L
µϵ

)
,

and the sample complexity until this stage is computed as:

T1 +

S∑
s=2

Ts = O
(

S∑
s=2

Ts

)

= O
(

S∑
s=2

L
3/2
2

µϵs−1
+

L2

µ3/2√ϵs−1

)

≤ O
(
L
3/2
2

µϵ
,

L2

µ3/2
√
ϵ

)
µ≥ϵ

≤ O
(

1

µϵ

)

D. Proof of Theorem 3
When F (w) is convex, we define F̂ (w) = F (w) + µ

2 ∥w∥2. We know that F̂ (w) is µ-strongly convex, which implies

µ-PL condition. In Theorem 2, we have proved: for any δ > 0, there exist T = O
(

1
µδ

)
such that F̂ (wT ) − F̂∗ ≤ δ. It

indicates that F (wT )− F∗ ≤ δ + µ
2 ∥w∗∥2 − µ

2 ∥wT ∥2 ≤ δ + µ
2D. For any ϵ > 0, if we choose µ = ϵ

D and δ = ϵ
2 , we get

F (wT )− F∗ ≤ ϵ, for some T = O
(
2D
ϵ2

)
= O

(
1
ϵ2

)
.

E. Proof of Theorem 4
Note that since the norm of estimated gradient ∥vt∥ is bounded, the value of the learning rate scaling factor c =
1/
(√

ht + δ
)

presented in (5) is also upper bounded and lower bounded, which can be presented as cl ≤ ∥c∥∞ ≤ cu. With
this property, We can introduce the variant version of Lemma 3, which can also be found in Lemma 3 in (Guo et al., 2021).

Lemma 8. For wt+1 = wt − η̃tvt, with ηtcl ≤ η̃t ≤ ηtcu and ηtLF ≤ cl/2c
2
u, we have following guarantee:

F (wt+1) ≤ F (wt) +
ηtcu
2

∥∇F (wt)− vt∥2 −
ηtcl
2

∥∇F (wt)∥2 −
ηtcl
4

∥vt∥2 .

Proof. Due to the smoothness of function F and the definition of wt+1, we have:
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F (wt+1) ≤ F (wt) + ⟨∇F (wt),wt+1 −wt⟩+
LF

2
∥wt+1 −wt∥2

= F (wt)− η̃t ⟨∇F (wt),vt⟩+
η̃2tLF

2
∥vt∥2

≤ F (wt)− η̃t⟨∇F (wt),vt⟩+
η̃t
2
∥∇F (wt)∥2 +

η̃t
2
∥vt∥2 −

η̃t
2
∥∇F (wt)∥2 −

η̃t
2
∥vt∥2 +

ηtcl
4

∥vt∥2

= F (wt) +
η̃t
2
∥∇F (wt)− vt∥2 −

η̃t
2
∥∇F (wt)∥2 −

ηtcl
4

∥vt∥2

≤ F (wt) +
ηtcu
2

∥∇F (wt)− vt∥2 −
ηtcl
2

∥∇F (wt)∥2 −
ηtcl
4

∥vt∥2

We set

L3 = max

{
1, cuKL

2(K−1)
f , cuKL2

F , 2K
(
σ2
J + σ2

f

)
, 2

(
1 +

1

cl

)(
L2
f + L2

f

) (
1 + 2K + 2Kσ2

f

) K∑
i=1

(
2L2

f

)i−1

}
.

Similar to the proof of Theorem 1, we denote that Γt = F (wt) +
1

c0ηt−1

∑K
i=1

(
Φi

t +Υi
t

)
, Φi

t :=
∥∥vi

t −∇fi(u
i−1
t )

∥∥2 and

Υi
t := E

[∥∥ui
t − fi(u

i−1
t )

∥∥2]. Based on Lemma 8, we have:

E [Γt+1 − Γt]

=E

[
F (wt+1)− F (wt) +

1

c0ηt

K∑
i=1

(
Φi

t+1 +Υi
t+1

)
− 1

c0ηt−1

K∑
i=1

(
Φi

t +Υi
t

)]

≤E

[
ηtcu
2

∥∇F (wt)− vt∥2 −
ηtcl
2

∥∇F (wt)∥2 −
ηtcl
4

∥vt∥2 +
1

c0ηt

K∑
i=1

(
Φi

t+1 +Υi
t+1

)
− 1

c0ηt−1

K∑
i=1

(
Φi

t +Υi
t

)]

By summing up and rearranging, we have:

E

[
T∑

t=1

ηtcl
2

∥∇F (wt)∥2
]

≤E

[
(Γ1 − ΓT+1) +

T∑
t=1

ηtcu
2

∥∇F (wt)− vt∥2 −
T∑

t=1

ηtcl
4

∥vt∥2

+

T∑
t=1

K∑
i=1

(
1

c0ηt

(
Φi

t+1 +Υi
t+1

)
− 1

c0ηt−1

(
Φi

t +Υi
t

))]

≤E

[
(Γ1 − ΓT+1) +

T∑
t=1

K∑
i=1

(
L3ηt −

1

c0ηt−1
+

L3β
2
t+1

c0ηt
+

(1− βt+1)

c0ηt

)(
Φi

t +Υi
t

)
−

T∑
t=1

(
cl
4
− L3cl

c0

)
ηt ∥vt∥2

+

T∑
t=1

2L3β
2
t+1

c0ηt

]

Set c0 = 4L3, ηt = (a+ t)
−1/3 and c = 10L2

3, a =
(
20L3

3

)3/2
, we have:

E

[
T∑

t=1

ηtcl
2

∥∇F (wt)∥2
]
≤ ∆F +

K
(
σ2
f + σ2

J

)
c0η0

+ 50L4
3 ln (T + 1)
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Since ηt is decreasing, we have:

ηT

T∑
t=1

∥∇F (wt)∥2 ≤ 1

cl

2∆F +
2K

(
σ2
f + σ2

J

)
c0η0

+ 100L4
3 ln (T + 1)

 .

Very similar to the proof of Theorem 1, set M = 1
cl

(
2∆F +

2K(σ2
f+σ2

J)
c0η0

+ 100L4
3 ln (T + 1)

)
and we have:

E

[
T∑

t=1

∥∇F (wt)∥
T

]
≤

√
M (a+ T )

1/6

√
T

≤ O
(
a1/6

√
M√

T
+

1

T 1/3

)
= O

(
1

T 1/3

)
.

So, Adaptive SMVR enjoys the same O
(
1/ϵ3

)
sample complexity as the SMVR method.


