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Abstract

Self-play fine-tuning has demonstrated promising abilities in adapting large lan-
guage models (LLMs) to downstream tasks with limited real-world data. The
basic principle is to iteratively refine the model with real samples and synthetic
ones generated from itself. However, the existing methods primarily focus on the
relative gaps between the rewards for two types of data, neglecting their absolute
values. Through theoretical analysis, we identify that the gap-based methods suffer
from unstable evolution, due to the potentially degenerated objectives. To address
this limitation, we introduce a novel self-play fine-tuning method, namely Self-
PlAy via Noise Contrastive Estimation (SPACE), which leverages noise contrastive
estimation to capture the real-world data distribution. Specifically, SPACE treats
synthetic samples as auxiliary components, and discriminates them from the real
ones in a binary classification manner. As a result, SPACE independently optimizes
the absolute reward values for each type of data, ensuring a consistently meaningful
objective and thereby avoiding the instability issue. Theoretically, we show that the
optimal solution of the objective in SPACE aligns with the underlying distribution
of real-world data, and SPACE guarantees a provably stable convergence to the
optimal distribution. Empirically, we show that SPACE significantly improves the
performance of LLMs over various tasks, and outperforms supervised fine-tuning
that employs much more real-world samples. Compared to gap-based self-play
fine-tuning methods, SPACE exhibits remarkable superiority and stable evolution.

1 Introduction

In recent years, the success of large language models (LLMs) has drawn a surge of attention from the
industry [2, 14, 22, 24, 47, 55, 56], and also sparked extensive investigations across various fields in
academia, such as recommendation system [19, 42, 96], multimodality [4, 36, 44, 45, 48], reasoning
[9, 32, 61, 89], code programming [34, 37, 39, 74], and beyond. One notable advantage of LLMs lies
in their strong generalization capability, which allows them to perform well on downstream tasks via
supervised fine-tuning (SFT) on real-world data annotated by human experts [38, 58].

It has been shown that effective handling of downstream tasks via SFT typically requires a large
amount of annotated data, which is often impractical in real-world applications due to the expensive
costs of data curation and annotation [16, 46, 82]. For this reason, self-play fine-tuning is proposed,
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Figure 1: The left part (a) depicts the framework of self-play fine-tuning. The right part (b) shows the
difference in optimization forces between SPIN and SPACE, where SPIN maximizes the relative gaps
between annotated and synthetic data, while SPACE optimizes two types of data independently.

which takes advantage of supervision from LLMs themselves to expand the training set with synthetic
samples [10, 85, 90]. Specifically, self-play fine-tuning can be viewed as a two-player game where
the model competes with itself for progressive evolution. This framework is illustrated in the left
part of Figure 1, where the opponent player seeks to generate synthetic data that closely resemble
the annotated samples, while the main player aims to discern real data from those generated by the
opponent player. It is worth noting that the main player and the opponent player refer to the same
model, but instantiated with the parameters from different iterations.
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Figure 2: The average scores of SPIN and
SPACE at different iterations on tasks from
the HuggingFace Open LLM leaderboard.

Under the two-player framework, the seminal work
of Chen et al. [10] introduces the first self-play fine-
tuning method, termed as SPIN, whose goal is to
maximize the relative gaps between the rewards of
human-annotated responses y ∼ pdata(·|x) for the
prompt x ∼ q(·) and those of synthetic responses
y′ ∼ pθt(·|x) generated from the LLM with the pa-
rameter θt. However, it is observed that SPIN suffers
unstable convergence during iterations [1, 88]. The-
oretically, we attribute the instability issue to the op-
timization on the potentially vacuous objective. For
illustration, we consider an extreme case where the
generated response y′ closely resembles the real one
y (i.e., y′ = y). In this case, the relative gap closes
and thus the objective of SPIN degrades to a con-
stant independent of θ. In other words, any parameter
θ ∈ Θ is an optimal solution to the objective of SPIN. Our experimental results across various tasks
from the HuggingFace Open LLM leaderboard reflect this phenomenon, where the performance of
SPIN degrades after reaching its peak at iteration 2, as shown in Figure 2.

To resolve this limitation, we introduce a novel self-play fine-tuning method, namely Self-PlAy via
Noise Contrastive Estimation (SPACE), which not only inherits the iterative evolution benefits of
self-play fine-tuning but also ensures a provably stable convergence to the real-world data distribution.
SPACE is inspired by Noise Contrastive Estimation (NCE) [26, 27], a classic technique that is
commonly used in unnormalized density estimation. Specifically, SPACE incorporates the self-
generated responses as auxiliary components, and distinguish real responses from synthetic ones in a
binary classification manner. In contrast to SPIN [10] that focuses on the relative reward differences
between real and synthetic responses, SPACE individually optimizes the absolute reward values for
two types of responses. Therefore, even when the relative reward gaps diminish, the special design of
SPACE ensures that the objective remains meaningful and does not collapse into a trivial constant. As
a result, SPACE avoids the instability issue. The above differences are also illustrated in Figure 1(b).

Theoretically, we prove that the optimal solution of the objective in SPACE aligns with the underlying
distribution pdata of the real-world data, and SPACE ensures a provably stable convergence to pdata.
Empirically, our results on Mistral-7B [35] and Zephyr-7B [75] show that SPACE significantly im-
proves the average performances over different tasks from the HuggingFace Open LLM Leaderboard
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[6], with up to almost 10 points increase on certain tasks, e.g., from 37.68% to 46.02% on GSM8K
and from 23.63% to 35.90% on IFEval. We also show that SPACE with only 50k real-world responses
significantly outperforms SFT with 200k training samples. Moreover, we compare SPACE with SPIN
and other gap-based methods that are extended into the self-play fine-tuning framework. The results
indicate that SPACE achieves superior performance and exhibits stable evolution during iterations.

The main contributions. In summary, this paper makes the following contributions: (i) We propose
a novel self-play fine-tuning method SPACE, which is designed to deal with limited available expert-
annotated data in downstream-task adaptation for LLMs, and address the instability issue in self-play
fine-tuning; (ii) We provide theoretical guarantees that ensure the provable and stable convergence of
SPACE toward the optimal distribution (cf. Theorems 2 and 3); (iii) We present results of extensive
experiments that demonstrate the superiority of SPACE over existing fine-tuning strategies.

2 Related work

In this section, we briefly review two fine-tuning strategies for LLMs, i.e., supervised fine-tuning and
self-play fine-tuning, and recent progress on noise contrastive estimation.

Supervised fine-tuning. Supervised fine-tuning (SFT) is a simple and effective strategy for adapting
large language models to specific tasks with supervised data [16, 82]. The goal of SFT is to learn
the real-world data distribution pdata(y|x) where x denotes a prompt sampled from a task-specific
distribution q(·), and y denotes the corresponding high-quality response. Mathematically, the loss
function of SFT is formulated as:

LSFT(θ) = −Ex∼q(·),y∼pdata(·|x) [log pθ(y|x)] . (1)

It can be verified that optimizing (1) is equivalent to minimizing the KL divergence between
the distribution pθ and the target distribution pdata, i.e., KL(pdata(·|x)||pθ(·|x)). By the non-
negativity of KL divergence, the optimal solution of (1) aligns with the real-world data distribution,
i.e., pθ∗(·|x) = pdata(·|x). Consequently, SFT offers a principled way to capture the underlying
distribution of high-quality responses through direct supervision from human-annotated data. Nev-
ertheless, achieving the optimal solution requires extensive high-quality data, which significantly
increases the annotation costs and limits the applicability of SFT in practice.

Self-play fine-tuning. Self-play framework, where the model iteratively improves the performance
by competing against itself, is originally introduced in board games [68, 73], and subsequently
has found its great success in many fields [5, 40, 41, 53], such as AI-player systems [70, 71] and
protein discovery [78, 95]. Recently, Chen et al. [10] have introduced the self-play mechanism
into large language models to address the limited high-quality data issue in SFT, and proposed
the seminal self-play fine-tuning method, named SPIN, which then inspires a surge of research
[11, 19, 25, 60, 65, 66, 81, 85, 88, 92]. The key idea is to enlarge the training set with synthetic
data generated by the model itself, and progressively refine the model by optimizing the relative
differences between the real and synthetic samples. Formally, at the iteration t+1, SPIN aims to find
a parameter θt+1 satisfying

θt+1 = argmin
θ∈Θ

LSPIN(θ) = argmin
θ∈Θ

E
[
ℓ

(
λ log

pθ(y|x)
pθt(y|x)

)
− ℓ

(
λ log

pθ(y
′|x)

pθt(y
′|x)

)]
, (2)

where ℓ(·) is a monotonically decreasing convex function, and the expectation is taken over x ∼ q(·),
y ∼ pdata(·|x) and y′ ∼ pθt(·|x). It can be observed that with iterative updates, the capability of the
model gradually improves, leading to higher-quality synthetic responses y′. This, in turn, renders
the optimization on (2) inherently unstable during iterations. In particular, when the relative gap
vanishes, the objective function LSPIN degenerates into a constant that is independent of the parameter
θ. This implies that any parameter θ in the space Θ becomes an optimal solution of LSPIN, leading
to unstable optimization or even performance collapse. Recently, there have been several efforts
that aim to address the unstable convergence issue of SPIN. For example, Alami et al. [1] employ
responses from a geometric mixture of historical distributions as synthetic ones in (2) to stabilize the
optimization, and Yang et al. [88] propose to selectively filter generated samples for continual updates.
Different from them, we introduce a novel objective function in self-play fine-tuning that decouples
the optimization of real and synthetic responses, and establish theoretical guarantees of achievability
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and maintainability for the target distribution of real-world data. As a result, our SPACE not only
inherits the benefits of self-play fine-tuning, i.e., effectively fine-tuning LLMs with a small amount of
annotated data, but also ensures a provable and stable convergence to the optimal distribution.

Noise contrastive estimation. Noise contrastive estimation (NCE) is initially proposed for density
estimation in probabilistic learning [26, 27], and then has emerged as a powerful optimization
technique in widespread applications recently [7, 29, 31, 33, 49, 51, 52, 54, 98]. The basic idea
of NCE is to formualte the density estimation as a binary classification task, and discriminate the
target distribution from an additionally introduced noise distribution. In recent years, NCE has also
drawn significant attention in large language models, including preference alignment [8], information
retrieval [77] and recommendation systems [87]. To the best of our knowledge, this paper is the first
work that incorporates the spirit of NCE into self-play fine-tuning for large language models.

3 Method

In this section, we first introduce the proposed SPACE, including the update rules for main player and
opponent player, and the overall objective. Then, we deliver theoretical guarantees for SPACE.

3.1 Our method: SPACE

Our method starts from a pretrained model pθ0 , which is subsequently fine-tuned on a set of high-
quality data annotated for specific downstream tasks. Our SPACE is built upon the self-play framework,
where a main player and an opponent player compete with each other for progressive evolution. In
this framework, both the main player and the opponent player are the same model, but equipped with
different parameters. Specifically, at each iteration t+ 1, the opponent player parameterized by θt
generates the synthetic response y′ for a prompt x by sampling from the distribution pθt(·|x). Then,
the main player takes the human-annotated response y and the synthetic one y′ as inputs and updates
its parameters to obtain θt+1. Subsequently, the opponent player adjusts its parameters so that it
can generate synthetic responses for the next iteration. Overall, this process includes two steps: the
updates for the main player and the opponent player, which are separately detailed in the following.

Updates for the main player. Recall that the goal of the main player is to discriminate the human-
annotated responses and the synthetic ones. Drawing inspiration from noise contrastive estimation [26,
27], we formulate the discrimination as a binary classification problem, where the main player serves
as a classifier to distinguish between the human-annotated responses y and the synthetic responses
y′. This formulation shares the same spirit with differentiation theory in cognitive development [21],
where learning emerges through progressive extraction of meaningful patterns from environments.
Formally, we first employ the commonly used log ratio [62] as the reward for a response u: r(u|x) =
log pθ(u|x)− log pθ̂t(u|x), where θ and θ̂t denote parameters of main player and opponent player,
respectively. Then, we establish the relationship between the rewards for two types of responses
(i.e., y and y′), and their corresponding posterior probabilities, as shown below.
Proposition 1. Let pθ∗ be the real data distribution, and r∗(·|x) = log pθ∗(·|x) − log pθ̂t(·|x) be
the reward for pθ∗ . Then, given a mixture distribution pmix(y|x) = (1 + µ)−1pθ∗(y|x) + µ(1 +
µ)−1pθ̂t(y|x) with the ratio µ, the posterior probabilities of a sample (x,y) from pmix are

pθ∗(c = 1|y,x) = 1

1 + µ exp(−r∗(y|x))
, pθ∗(c = 0|y,x) = 1

1 + µ−1 exp(r∗(y|x))
(3)

where c is the label indicating whether y is real (c = 1) or synthetic (c = 0).

The above proposition reveals that the optimal reward captures the posterior probability of a response,
thereby establishing a principled connection between the reward function and binary classification
over a mixture distribution. To be precise, a higher reward r(y|x) corresponds to a higher probability
pθ(c = 1|y,x), indicating that the response y is more likely to be real; conversely, a lower reward
implies a higher probability pθ(c = 0|y,x) and a less realistic response. Therefore, with Proposition 1,
we can conveniently leverage the maximum likelihood strategy to train the main player to find a
parameter θt+1 that can distinguish between real and synthetic samples:

θt+1 =argmax
θ∈Θ

E [log pθ(c = 1|y,x) + µ log pθ(c = 0|y′,x)] , (4)
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Algorithm 1 Self-PlAy via Noise Contrastive Estimation (SPACE)
Inputs: Annotated set {xi,yi}ni=1, the generation ratio µ, and a pretrained LLM pθ0
Initialization: Set pθ̂0 = pθ0 , and compute the size of synthetic data m = µn

1: for t = 0, 1, 2, · · · do
2: Generate the synthetic tuples {xj ,y

′
j}mj=1 by the opponent player pθt , i.e., y′

j ∼ pθt(·|xj)
3: Obtain pθt+1

by minimizing the loss function (8)
4: end for

where the expectation is taken over the distributions x ∼ q(·),y ∼ pdata(·|x) and y′ ∼ pθ̂t(·|x).
Substituting (3) into (4) delivers

θt+1 = − argmin
θ∈Θ

E

[
log σµ

(
log

pθ(y|x)
pθ̂t(y|x)

)
+ µ log σµ−1

(
log

pθ̂t(y
′|x)

pθ(y′|x)

)]
(5)

where σµ(x) = (1 + µ exp(−x))−1. Compared to the objective of SPIN in (2), (5) separately
optimizes the rewards of the real responses and the synthetic ones. The separate structure ensures that,
when y′ closely resembles y, (5) does not degenerate into a constant independent of θ. As a result,
optimizing (5) guarantees a provably stable convergence, which will be theoretically elaborated later.

Updates for the opponent player. Given the newly obtained main player pθt+1 , we proceed to
update the opponent player, the goal of which is to generate high-quality synthetic responses that
can mislead the main player. To achieve this, a natural intuition is to adjust the opponent player by
maximizing the reward associated with synthetic responses, which is formulated as follows:

θ̂t+1 = argmax
θ̂∈Θ

E [r(y′|x)] = argmax
θ̂∈Θ

E
[
log pθt+1

(y′|x)− log pθ̂(y
′|x)
]

(6)

where the expectation is taken over the distributions x ∼ q(·) and y′ ∼ pθ̂(·|x). Mathematically,
(6) measures the KL divergence between pθ̂ and pθt+1

. Consequently, by the non-negativity of KL
divergence, we can obtain that the closed-form solution of (6) takes the form of

pθ̂t+1
(y|x) = pθt+1

(y|x). (7)

The above finding is particularly appealing, as it indicates that the updated parameter of the main
player coincide exactly with the optimal solution for the opponent player. Consequently, we can
directly set the parameter of the opponent player for the next iteration to be the same as that of the
main player, i.e., pθ̂t+1

= pθt+1
, which inherently reveals the self-play nature of our SPACE.

The overall objective. Now, we are ready to introduce the overall objective of SPACE, by combining
the above two update steps together. In details, we substitute (7) into (5), and deliver the following
objective function:

LSPACE(θ) = −E
[
log σµ

(
log

pθ(y|x)
pθt(y|x)

)
+ µ log σµ−1

(
log

pθt(y
′|x)

pθ(y′|x)

)]
. (8)

We summarize the detailed procedure of SPACE in Algorithm 1. Specifically, at the begining, we
initialize the opponent player with the pretained LLM, i.e., pθ̂0 = pθ0 , and compute the size of
synthetic data m = µn. At each iteration t, the opponent player generates the synthetic response
y′ ∼ pθ̂t(·|x) for each prompt x. Then, the main player takes annotated and synthetic data as inputs,
and obtains pθt+1 by minimizing (8). Subsequently, the opponent player copys θt+1 as its parameter
according to (7), to produce new synthetic responses for the next iteration.

In-depth discussions. In the following, we analyze the underlying cause of instability issue in
SPIN, and explain how SPACE addresses this issue and achieves stable convergence. As shown in
(2), SPIN aims to optimize the gaps bewteen the annotated responses and synthetic ones. In fact,
the gap-based structure is vulnerable for self-play fine-tuning. Specifically, with the refinement of
synthetic responses, the gaps between real and self-generated data gradually close, and the gap-based
objective will degenerate to a trivial constant when the gap vanishes. In this case, any solution in
the parameter space can be considered optimal, leading to the instability issue. Moreover, if existing
gap-based methods for large language models, such as IPO [3] and SimPO [50], are extended to
self-play fine-tuning scenarios, they are similarly suffer from the instability issue, due to the inherent
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weakness of gap-based objectives. More detailed introduction about gap-based extensions can be
found in Appendix B. In contrast, our proposed SPACE circumvents this issue by decoupling the
optimization of real and synthetic responses: instead of maximizing their relative difference, SPACE
independently optimizes the absolute reward value for each, thereby maintaining a stable evolution.

3.2 Theoretical analysis

In the following, we provide theoretical analysis of SPACE to understand its underlying principles.
We begin by presenting the gradient analysis for the objective function (8) in SPACE.

Theorem 1. The gradient of (8) for a response u takes the form of

∇θLSPACE(θ) = −Ex∼q(·)
[
σµ−1(−r(x,u))(pdata(u|x)− pθt(u|x))∇θ log pθ(u|x)

]
. (9)

Remark. The above theorem indicates that the update rules in SPACE enjoy a desirable “response-
dependent” property, i.e., the likelihood of a response u is adjusted based on itself. Specifically, we
can examine this property by considering two types of responses: y ∼ pdata(·|x) sampled from the
real-world distribution pdata and y′ ∼ pθt(·|x) generated by the model pθt . Note that σµ−1(·) > 0
holds always true for µ > 0. Therefore, the former case where pdata(y|x)− pθt(y|x) ≥ 0 leads to
an increase in the log-probability of y. For the latter case where pdata(y

′|x)− pθt(y
′|x) ≤ 0, the

log-probability of y′ will be decreased. This favorable property ensures that SPACE can effectively
distinguish annotated responses and synthetic responses by adaptively adjusting their probabilities.

Remark. Note that although (9) shares a similar structure with the policy gradient in reinforcement
learning (RL), our SPACE exhibits fundamental differences from reinforcement learning methods.
Specifically, in the standard policy gradient formulation (e.g., REINFORCE [84]), the gradient
takes the form of ∇θL(θ) = −Eu∼pθ

[R(u|x) · ∇θ log pθ(u|x)], where R(u|x) denotes the reward
associated with response u. Superficially, (9) can be viewed as a special case of this formulation by
choosing R(u|x) = σµ−1(−r(x,u))(pdata(u|x)− pθt(u|x)), but it is important to note that SPACE
is based on the self-play fine-tuning framework, where the goal is to iteratively improve performances
through two-player competition. This fundamentally differs from the exploration-exploitation trade-
off in RL. Additionally, SPACE optimizes (8) in a supervised-learning manner, without involving
explicit rewarding or rollout phrases, which are essential components of standard RL methods.

Then, we demonstrate that SPACE enjoys the achievability and maintainability for the annotated data
distribution pdata, as established in the following two theorems.

Theorem 2. By minimizing the loss function (8), SPACE is able to capture the annotated data
distribution pdata, i.e., pθ∗ = pdata, where θ∗ denotes the optimal solution to (8).

Theorem 3. Suppose pθt has already converged to the annotated data distribution pdata at iteration
t, i.e., pθt(·|x) = pdata(·|x). Then, at iteration t+ 1, SPACE still ensures pθt+1

(·|x) = pdata(·|x).

Remark. Theorem 2 establishes the achievability for the target distribution pdata, i.e., it guarantees
that minimizing the objective function (8) yields a distribution that aligns with pdata. This result
provides theoretical support for SPACE, demonstrating its ability to align with the target distribution,
which is particularly important in fine-tuning LLM for downstream tasks.

Remark. Theorem 3 further emphasizes the maintainability for the target distribution pdata, which
can be regarded as a complement to the achievability property in Theorem 2, highlighting the
long-term stability for pdata. Notably, this stable convergence property is also critical for self-play
fine-tuning methods, as it ensures that the iterative optimization process retains the optimal solution
without divergence, thereby mitigating the instability issue during iterations. This appealing property
theoretically exhibits the advantages of SPACE over SPIN [10].

4 Experiments

In this section, we present empirical studies to validate the effectiveness of SPACE. We first describe
experimental settings, including datasets, pre-trained models, implementations and evaluations. We
then report the results with corresponding analyses. More experiments are provided in Appendix C.
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Table 1: Performance (%) comparisons on various tasks among our SPACE (red) , SPIN, S-IPO
and S-SimPO. Avg denotes the average score over different tasks, where highest and second-highest
scores over iterations 0 to 4 are highlighted in bold and underline, respectively.

Model ARC GSM8K HellaSwag MMLU TruthfulQA Winogrande IFEval BBH GPQA MMLUpro Avg

Mistral-7B 61.01 37.68 83.24 57.86 42.62 74.03 23.63 44.26 29.86 29.99 48.42

S-
IP

O

Iter0 60.49 40.96 83.58 57.17 45.45 73.88 20.85 42.33 30.71 30.01 48.54
Iter1 60.07 38.91 83.47 57.29 43.62 73.80 21.98 42.08 30.19 29.90 48.13
Iter2 60.07 39.35 83.19 57.29 43.35 73.80 23.29 41.69 30.50 29.86 48.24
Iter3 60.67 41.05 83.42 57.03 44.35 74.27 23.00 41.73 29.32 29.69 48.45
Iter4 61.43 40.11 83.56 56.61 45.56 74.11 23.11 41.05 29.31 29.36 48.42

S-
Si

m
PO

Iter0 61.35 39.67 83.76 57.29 47.44 74.66 24.88 41.86 30.10 30.04 49.11
Iter1 61.69 41.51 83.77 57.48 48.98 74.90 23.01 41.86 29.90 30.22 49.33
Iter2 61.52 37.09 83.77 57.16 49.58 74.51 22.44 43.04 29.17 29.97 48.83
Iter3 61.26 35.22 83.70 57.35 49.88 74.82 21.15 42.80 29.04 30.01 48.52
Iter4 61.35 34.38 83.68 57.48 50.02 74.19 21.31 42.67 29.16 39.40 49.36

S
P
I
N

Iter0 61.18 38.29 83.49 57.88 43.73 74.11 22.09 44.60 29.62 30.15 48.51
Iter1 61.52 32.85 84.02 57.32 47.69 73.95 21.92 40.59 28.22 30.12 47.82
Iter2 62.20 40.26 83.60 58.03 46.92 74.43 25.06 43.50 28.95 30.37 49.33
Iter3 62.29 34.87 84.01 58.09 45.72 75.14 24.64 43.03 28.68 29.62 48.61
Iter4 61.86 34.70 83.99 57.99 46.00 75.14 25.73 43.34 27.10 29.82 48.57

S
PA

C
E

(o
ur

s) Iter0 62.71 41.32 83.79 58.67 47.15 74.90 26.96 45.87 29.66 30.73 50.18
Iter1 64.85 45.41 83.86 58.87 48.99 75.14 31.51 45.73 29.46 30.94 51.48
Iter2 65.78 45.55 84.25 58.57 50.71 73.95 33.01 45.38 29.52 31.59 51.83
Iter3 65.96 45.84 84.39 58.53 51.34 74.19 33.19 45.38 29.90 31.44 52.03
Iter4 65.87 46.02 84.44 58.50 51.86 74.51 35.90 45.28 30.50 31.41 52.43

(c) Average rank
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Figure 3: The performance comparisons among four self-play fine-tuning methods on Mistral-7B. (a)
the average scores over different tasks; (b) the performances on GSM8K; (c) the average ranks over
different iterations, where the best rank among iterations 0 to 4 is highlighted with a “gold medal”.

4.1 Experimental settings

Following Chen et al. [10], we randomly sample 50k prompts with their corresponding high-quality
responses from the Ultrachat200k dataset [15], and choose Zephyr-7B-SFT-full [75] and Mistral-
7B-Base [35] as pretrained models in experiments. During the training, we first generate synthetic
response y′ for each x with the latest model at each iteration. The resulting synthetic response is
then combined with annotated one to update the large language model for the subsequent iteration.

We evaluate the performances with different tasks from the HuggingFace Open LLM Leaderboard
[6, 18], each targeting a distinct capability of LLMs. These tasks cover a range of domains: science
question answering with ARC-Challenge [12] and GPQA [64], mathematical reasoning with GSM8K
[13], commonsense inference with Winogrande [67] and HellaSwag [93], multitask language under-
standing through MMLU [30] and MMLU-Pro [83], truthfulness and factuality with TruthfulQA
[43], instruction following using IFEval [97], and complex reasoning with BBH [72]. All tasks are
implemented with the default configurations provided by the Language Model Evaluation Harness
[20]. Our implementation is based on the codebase Alignment Handbook [76] and the Accelerate
library [23]. We choose RMSProp [69] with default configurations as the optimizer, and set the
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Figure 4: Performance comparisons between the model trained with multiple epochs at iteration 0
(green) and that trained with two epochs at iteration 1 (red).

global batch size as 64 and the epoch as 2. For SPACE, we choose to set the generation ratio µ = 1
(i.e., m = n) in our experiments, and we will return to this configuration later.

4.2 Experimental results

Comparison to self-play fine-tuning baselines. We compare SPACE with SPIN [10], as well as
self-play variants of two gap-based methods, namely S-IPO from IPO [3] and S-SimPO from SimPO
[50]. The detailed descriptions for two self-play variant methods are provided in Appendix B.

The experimental results on Mistral-7B are shown in Table 1, and we defer the results on Zephyr-7B to
Appendix C. The results from Table 1 indicate that all self-play methods surpass the initial base model
with notable improvements. Specifically, our SPACE improves the average score of Mistral-7B from
48.42% to 52.43%. Remarkably, it achieves substantial performance gains on GSM8K and IFEval
with almost 10 points improvements. Additionally, compared to other self-play baselines, our SPACE
demonstrates superior performance and stable evolution. For clarity, we present the average scores
over different tasks for each method in Figure 3(a). We observe two key findings: (i) the performance
improvements predominantly occur within the first two iterations, which aligns with the conclusions
of Chen et al. [10]; (ii) SPIN as well as the self-play variants of IPO and SimPO suffers degradation
after reaching their performance peak. Specifically, for the GSM8K task shown in Figure 3(b), SPIN,
S-IPO and S-SimPO show improvements at the initial iterations but incurs performance decline
after that. In contrast, our SPACE maintains its stable improvements over iterations. Moreover, we
also compare the average ranks over iterations, as shown in Figure 3(c). The results indicate that
three baselines achieve their best performance in early iterations, whereas SPACE maintains steady
improvements over iterations, ultimately achieving the best rank at the final iteration.

Comparison to training with more epochs. Then, we investigate the effectiveness of the self-play
mechanism in SPACE. We conduct experiments on Mistral-7B by comparing the model trained
for multiple epochs at iteration 0 with the fixed synthetic responses, versus the model trained on
re-generated synthetic responses at iteration 1 with two epochs. The results are illustrated in Figure 4.
We observe that training with multiple epochs at iteration 0 initially improves performance but
gradually plateaus, and fails to surpass the performance achieved at iteration 1. We consider the
performance bottleneck primarily to the stagnation of negative samples. Specifically, at iteration
0, despite minor performance improvements, the model undergoes multiple rounds of training on
an unchanged dataset. In contrast, at iteration 1, we first refine the training data by leveraging the
self-play mechanism to regenerate synthetic samples with the latest model, and then train the model
on the enhanced data, delivering substantial performance gains. This observation demonstrates that
improving the quality of synthetic samples plays a critical role in enhancing model performance,
validating the effectiveness of the self-play mechanism in our SPACE.

The generation ratio. Next, we examine the impact of the generation ratio µ, which quantifies
the proportion of synthetic responses relative to human-annotated ones, on the performance of
SPACE. Specifically, we conduct experiments on the Mistral-7B with different generation ratios from
{1.0, 3.0, 7.0}. For µ = 1.0, we generate 50k synthetic responses for the 50k human-annotated
responses in the training dataset at each iteration. For µ = 3.0 and µ = 7.0, we generate 150k and
350k synthetic responses respectively, while maintaining the same 50k human-annotated responses.
The experimental results are shown in Table 2. Overall, increasing the number of generated samples
can improve the performance of SPACE, though this improvement gradually diminishes in later
iterations. Additionally, it is important to note that such performance gains come at the cost of
significantly higher computational resources. For instance, when µ = 3.0, the generation phase
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Table 2: Performance (%) comparisons with different generation ratios of SPACE accross iterations.
Avg denotes the average score over multiple tasks, and Gen Ratio denotes the generation ratio.

Gen Ratio ARC GSM8K HellaSwag MMLU TruthfulQA Winogrande IFEval BBH GPQA MMLUpro Avg

Mistral-7B 61.01 37.68 83.24 57.86 42.62 74.03 23.63 44.26 29.86 29.99 48.42

It
er

0 1.0 62.71 41.32 83.79 58.67 47.15 74.90 26.96 45.87 29.66 30.73 50.18
3.0 62.97 42.34 83.25 58.70 47.52 74.98 36.05 47.00 29.27 30.39 51.25
7.0 63.48 41.26 82.79 58.55 46.65 74.90 36.93 46.37 29.78 29.85 51.06

It
er

1 1.0 64.85 45.41 83.86 58.87 48.99 75.14 31.51 45.73 29.46 30.94 51.48
3.0 65.10 43.03 83.74 58.71 50.95 73.88 36.44 46.24 29.65 30.31 51.80
7.0 64.99 41.32 83.37 58.49 48.37 73.32 40.64 46.61 29.33 30.29 51.67

It
er

2 1.0 65.78 45.55 84.25 58.57 50.71 73.95 33.01 45.38 29.52 31.59 51.83
3.0 64.76 41.39 83.67 58.51 48.89 73.24 41.93 46.20 29.20 30.48 51.83
7.0 64.59 41.49 83.63 58.50 49.23 73.56 40.33 46.22 29.69 30.29 51.75
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Figure 6: Comparison of rewards for generated and human-annotated responses, and the correspond-
ing gap between two types of responses, for SPIN and SPACE at iteration 0.

requires 4.50 hours and the training phase requires 6.80 hours; when µ = 7.0, these increase to 6.20
hours and 12.23 hours respectively, substantially higher than the computational costs for µ = 1.0
(0.83 hours for generation and 3.20 hours for training). Because of the substantial computational
costs, we choose to use µ = 1.0 rather than larger generation ratios in our experiments.

Comparison to SFT. In this part, we compare SPACE with SFT to demonstrate that SPACE with less
human-annotated data can achieve better performance than SFT that utilizes much more data.

Figure 5: The average score with different
sizes of annotated data. The start point
denotes the performance of base model.

The experiments are conducted on Mistral-7B [35] with
varying amounts of human-annotated data. Specifically,
we train SPACE on nested subsets of 12k, 25k, and 50k
samples from Ultrachat200k [15], with each larger subset
encompassing the smaller ones. Since the performance
improvements primarily occur within the first two itera-
tions, we train SPACE for two iterations on each subset.
For SFT, we train the model on the a subsets of 100k sam-
ples from Ultrachat200k, the complete dataset with 200k
data, and an expanded version with 400k samples where
each sample is duplicated once. We display the average
scores of SPACE and SFT in Figure 5. It is observed that
both SPACE and SFT significantly improve model perfor-
mance compared to the initial base model. However, as
the amount of training data increases from 100k to 400k,
the performance gains of SFT gradually reach a plateau,
suggesting that additional human-annotated responses
provides limited benefit for further performance improvement. In contrast, SPACE achieves superior
performance with fewer human-annotated responses, compared to SFT trained on a much larger
dataset, demonstrating its effectiveness in scenarios with limited human supervision.

Computational costs. In SPACE, the main computational costs come from the generation of synthetic
responses and the model training. In implementations, we follow Chen et al. [10] utilizing the
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Table 3: The computation time of generation and training for different iterations. Gen and Train
denote the generation and training phases, respectively.

Iteration Iter 0 Iter 1 Iter 2 Iter 3 Iter 4

Phase Gen Train Gen Train Gen Train Gen Train Gen Train

Time 0.83h 3.20h 0.83h 3.20h 0.83h 3.20h 0.83h 3.20h 0.83h 3.20h

Accelerate library [23] to generate synthetic responses in a distributed manner with the global batch
size 256. All experiments are conducted on a single machine equipped with 8 H100 GPUs, and we
report the costs of generation and training in Table 3. During the generation phase, we produce 50k
synthetic responses for the input prompts and suffer the time cost of 0.83 hours per iteration. During
the training phase, we train the model with 2 epochs with the total of 3.20 hours per iteration. It is
observed that the majority of computational costs are concentrated in the training phase.

Preventing from reward decline for human-annotated responses. Finally, we discuss the reward
decline issue for high-quality responses, which have raised wide investigations in preference align-
ments [17, 59, 63, 86], but has not yet been discussed in self-play fine-tuning. According to (2), SPIN
aims to maximize the relative gap between the rewards of annotated response and self-generated one.
In experiments, we observe that the reward margins between real and synthetic data increase (right
of Figure 6), but this improvement comes from the different rates of decline between the two types
of responses. In fact, the decreasing reward for human-annotated responses (middle of Figure 6) is
undesirable, as it explicitly reflects the decline in the priority of human-annotated responses. In other
words, the capability to generate high-quality responses gradually deteriorates [91].

It is worth noting that SPACE avoids the reward decline for real responses, and exhibits an increasing
trend (middle of Figure 6). This can be attributed to the inherent structure of the objective function
in (8), which explicitly increases the reward for human-annotated responses while decreasing it for
self-generated ones. Moreover, the favorable response-dependent property (Theorem 1) also shows
that SPACE can naturally support distinct update trends for two types of responses.

5 Conclusion and future work

In this paper, we investigate self-play fine-tuning for large language models, and introduce a novel
method named SPACE to resolve the instability issue of gap-based methods. The pivotal idea of
SPACE is to treat synthetic samples as auxiliary components and distinguish them from real ones in a
binary classification manner. In this way, SPACE is able to optimize the absolute reward values for
annotated and synthetic samples independently, avoiding the unstable convergence. Theoretically,
we show that SPACE enjoys the favorable properties, i.e., the achievability and maintainability
for the real-world data distribution pdata. In other words, SPACE can provably converge to pdata,
and maintain it during iterations, ensuring a stable evolution. Empirically, extensive experiments
demonstrate that SPACE not only outperforms SPIN and other gap-based self-play baselines, but also
achieves superior performance to SFT, while utilizing substantially less annotated data.

There are many directions for future research. First, in existing self-play fine-tuning methods, the total
number of iterations is a hyper-parameter that has to be configured in advance, which may lead to
unnecessary computation or premature convergence. In the future, we will investigate self-play fine-
tuning methods that can adaptively adjust the number of iterations based on the evolution progress.
Second, the current methods including SPIN [10] and our SPACE are designed for the scenario where
the optimal distribution is fixed during iterations, which, however, is not necessarily satisfied in
practice. Therefore, it is also interesting to explore self-play fine-tuning in the non-stationary scenario,
which may require the advanced techniques from online optimization [28, 57, 79, 80, 94]. Third, we
also consider to apply SPACE to complex scenarios with limited annotated data, such as LLM agents.
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A Theoretical proofs

In this section, we provide the proofs of the proposition and theorems presented in the main paper.

A.1 Proof of Proposition 1

For the human-annotated data, each response is drawn from the real-world distribution pdata(·|x);
whereas for the synthetic data, each response comes from the opponent player pθ̂t(·|x). Consequently,
their conditional probabilities are

p(y|c = 1,x) = pdata(y|x) = pθ∗(y|x) and p(y′|c = 0,x) = pθ̂t(y
′|x),

where c is the label indicating the real or synthetic, and θ∗ is the optimal parameters for LLM. Then,
given the mixture distribution

pmix(y|x) =
1

1 + µ
pθ∗(y|x) + µ

1 + µ
pθ̂t(y|x),

we can calculate the posterior probabilities of sampling a response from pmix using Bayes’ theorem:

p(c = 1|y,x) = pθ∗(y|x)
pθ∗(y|x) + µpθ̂t(y|x)

and p(c = 0|y′,x) =
µpθ̂t(y

′|x)
pθ∗(y′|x) + µpθ̂t(y

′|x)
.

Finally, substituting the implicit reward r∗(y|x) = log pθ∗(y|x) − log pθ̂t(y|x) into the posterior
probabilities completes the proof.

A.2 Proof of Theorem 1

Recall that (8) can be rewritten as

LSPACE(θ) = −E
[∫

pdata(y|x) log
(

pθ(y|x)
p̃θ,θt(y|x)

)
+ µpθt(y|x) log

(
µpθt(y|x)
p̃θ,θt(y|x)

)
dy

]
,

where the expectation is taken over x ∼ q(·), and p̃θ,θt(y|x) ≜ pθ(y|x) + µpθt(y|x). Then, we take
the derivative of LSPACE(θ) with respect to pθ as below:

∇θLSPACE(θ) =−∇θE
[∫

pdata(y|x) log
(

pθ(y|x)
p̃θ,θt(y|x)

)
+ µpθt(y|x) log

(
µpθt(y|x)
p̃θ,θt(y|x)

)
dy

]
=− E

[
pdata(y|x)
pθ(y|x)

p̃θ,θt(y|x)∇pθ

(
pθ(y|x)
p̃θ,θt(y|x)

)
+ p̃θ,θt(y|x)∇pθ

(
µpθt(y|x)
p̃θ,θt(y|x)

)]
=− E

[
µpθt(y|x)
p̃θ,θt(y|x)

(
pdata(y|x)
pθ(y|x)

− 1

)
∇pθ(y|x)

]
=− E

[
σµ−1(−r(x,y))

(
pdata(y|x)
pθ(y|x)

− 1

)
∇pθ(y|x)

]
=− E

[
σµ−1(−r(x,y)) (pdata(y|x)− pθ(y|x))∇θ log pθ(y|x)

]
,

where σµ−1 = (1 + µ−1 exp(−x))−1 and r(x,y) = log pθ(y|x)− log pθt(y|x).

A.3 Proof of Theorem 2

For brevity, we denote p̃θ,θt(y|x) ≜ pθ(y|x) + µpθt(y|x) and p̃data,θt(y|x) ≜ pdata(y|x) +
µpθt(y|x). Then, we rewrite the loss function (8) as

LSPACE(θ) = −E
[∫

pdata(y|x) log
(

pθ(y|x)
p̃θ,θt(y|x)

)
+ µpθt(y|x) log

(
µpθt(y|x)
p̃θ,θt(y|x)

)
dy

]
, (10)

where the expectation is taken over x ∼ q(·). Note that our goal is to minimize (10) with respect to
pθ. Therefore, we can add the following constant term:

C = E
[∫

pdata(y|x) log
(

pdata(y|x)
p̃data,θt(y|x)

)
+ µpθt(y|x) log

(
µpθt(y|x)

p̃data,θt(y|x)

)
dy

]
(11)
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to the right side of (10) without changing the minimization problem. Hence, combining (10) and (11)
delivers

LSPACE(θ) + C =E
[∫

−pdata(y|x) log
(

pθ(y|x)
p̃θ,θt(y|x)

)
+ pdata(y|x) log

(
pdata(y|x)
p̃data,θt(y|x)

)
dy

]
+ E

[∫
−µpθt(y|x) log

(
µpθt(y|x)
p̃θ,θt(y|x)

)
+ µpθt(y|x) log

(
µpθt(y|x)

p̃data,θt(y|x)

)
dy

]

Rearranging the above equation, we have

LSPACE(θ) + C

=E
[∫

p̃data,θt(y|x)
[
H1

data(x,y) log

(
H1

data(x,y)

H1
θ (x,y)

)
+H0

data(x,y) log

(
H0

data(x,y)

H0
θ (x,y)

)]
dy

]
=E

[∫
p̃data,θt(y|x)KL (Hdata(x,y)||Hθ(x,y)) dy

]

where H1
data(x,y) = pdata(y|x)

p̃data,θt (y|x)
, H0

data(x,y) =
µpθt (y|x)

p̃data,θt (y|x)
and H1

θ (x,y) = pθ(y|x)
p̃θ,θt (y|x)

,

H0
θ (x,y) =

µpθt (y|x)
p̃θ,θt (y|x)

. Since the KL divergence is non-negative, we always have LSPACE(θ) ≥ 0,
and when Hdata(c,x,y) = Hθ(c,x,y), i.e., pθ(y|x) = pdata(y|x), the loss function (8) achieves
its minimum value.

A.4 Proof of Theorem 3

We suppose at the iteration t, the model pθt has converged to the data distribution pdata,
i.e., pdata(·|x) = pθt(·|x) for any prompt x ∼ q(·). Then, at the iteration t, the generated re-
sponse y′ ∼ pθt(·|x) also closely approximates the real response y ∼ pdata(·|x), i.e., y = y′.
Therefore, at the iteration t+ 1, (8) can be further reformulated as:

LSPACE(θ)

=− Ex∼q(·),y∼pdata(·|x),y′∼pθ̂t
(·|x)

[
log σµ

(
log

pθ(y|x)
pθt(y|x)

)
+ µ log σµ−1

(
log

pθt(y
′|x)

pθ(y′|x)

)]
=− Ex∼q(·),y∼pdata(·|x)

[
log σµ

(
log

pθ(y|x)
pdata(y|x)

)
+ µ log σµ−1

(
log

pdata(y|x)
pθ(y|x)

)]
=− Ex∼q(·),y∼pdata(·|x)

[
log

pθ(y|x)
pθ(y|x) + µpdata(y|x)

+ µ log
pdata(y|x)

pdata(y|x) + µ−1pθ(y|x)

]
(12)

where the last equality is due to the definition of the function σµ(x). For brevity, we denote

hθ,µ(y|x) := log
pθ(y|x)

pθ(y|x) + µpdata(y|x)
+ µ log

pdata(y|x)
pdata(y|x) + µ−1pθ(y|x)

. (13)

Then, we take the derivative over (13) with respect to pθ(y|x) as below:

∇pθ
LSPACE(θ) = −∇pθ

Ex∼q(·),y∼pdata(·|x) [hθ,µ(y|x)] = −Ex∼q(·),y∼pdata(·|x)[∇pθ
hθ,µ(y|x)]

where the last equality holds due to the linearity of expectation. Let ∇pθ
hθ(y|x) = 0, we obtain

∇pθ
hθ(y|x) =

1

pθ(y|x)
− 1

pθ(y|x) + µpdata(y|x)
− 1

pdata(y|x) + µ−1pθ(y|x)
= 0, (14)

which indicates that the optimal distribution of (12) satisfies pθ∗(y|x) = pdata(y|x). Since we
update pθt+1

(y|x) = pθ∗(y|x), the model pθt+1
still converges to pdata.
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Figure 7: The training dynamics (including the rewards of generated responses and human-annotated
responses, and the gap between them) of SPACE at iterations 0, 1 and 2 on Mistral-7B.

B Self-play variants

In this section, we introduce self-play variants of two gap-based methods: IPO [3] and SimPO [50].

Self-play IPO (S-IPO). IPO [3] is originally proposed to align the LLM with human-preference over
a set of pair-wise training data {x,yw,yl}, where yw and yl denote the preferred and dispreferred
responses corresponding to the prompt x, respectively. The loss function of IPO is shown below:

LIPO(θ) = E(x,yw,yl)∼D

[(
log

pθ(yw|x)
pref(yw|x)

− log
pθ(yl|x)
pref(yl|x)

− 1

2τ

)2
]
,

where D denotes the preference dataset, pref(·|x) denotes the reference model that is typically set with
the pre-trained LLM, and τ denotes the hyper-parameter. To adapt IPO to the self-play scenario where
only the high-quality response is available, we follow the similar strategy of SPACE and SPIN [10],
generating synthetic data from the previous iteration as the training data for IPO, i.e., yl ∼ pθt(·|x).
Moreover, we choose the last iteration model pθt(·|x) as the reference model pref(·|x). In this way,
the loss function of S-IPO is shown below:

LS-IPO(θ) = E

[(
log

pθ(y|x)
pθt(y|x)

− log
pθ(y

′|x)
pθt(y

′|x)
− 1

2τ

)2
]
, (15)

where the expectation is taken over x ∼ q(·), y ∼ pdata(·|x) and y′ ∼ pθt(·|x). It should be
highlighted that similar to SPIN, S-IPO also focuses on the gap between the high-quality response
and the synthetic response. When y = y′, (15) also degenerates to a constant independent of θ, and
any θ ∈ Θ is an optimal solution of (15), leading to unstable traning.

Self-play SimPO (S-SimPO). SimPO [50] is also proposed for human preference alignment, of
which the loss function is shown below:

LSimPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log pθ(yw|x)−

β

|yl|
log pθ(yl|x)− γ

)]
, (16)

where β and γ are hyper-parameters, and σ(·) is the sigmoid function. Similar to S-IPO, we can also
modify (16) to the self-play scenario, as shown below:

LS-SimPO(θ) = −E
[
log σ

(
β

|y|
log pθ(y|x)−

β

|y′|
log pθ(y

′|x)− γ

)]
, (17)

where the expectation is taken over x ∼ q(·), y ∼ pdata(·|x) and y′ ∼ pθt(·|x). It can be observed
that (17) still optimizes the gap between y and y′, and therefore incurs the same issue as S-IPO.

C More empirical studies

In this section, we present more experimental investigations of SPACE.

Rewards at different iterations. In Section 4.2, we have shown that our SPACE is able to increase the
reward of high-quality responses and decrease the reward of generated ones. In this part, we further
analyze the reward trends of two types of responses at different iterations. The experimental results

20



Table 4: Performance (%) comparisons on various tasks among our SPACE (red) , SPIN, S-IPO
and S-SimPO. Avg denotes the average score over different tasks, where highest and second-highest
scores over iterations 0 to 4 are highlighted in bold and underline, respectively.

Model ARC GSM8K HellaSwag MMLU TruthfulQA Winogrande IFEval BBH GPQA MMLUpro Avg

Zephyr-7B 60.92 25.85 82.79 56.90 43.67 74.19 2.76 44.60 28.91 28.18 44.88

S-
IP

O

Iter0 63.23 27.77 83.77 57.19 46.93 72.30 7.66 45.22 28.87 29.22 46.22
Iter1 61.95 32.26 83.92 57.16 47.64 72.98 8.73 44.57 28.80 29.01 46.70
Iter2 63.48 16.72 83.13 57.48 45.92 72.61 6.50 43.48 27.74 29.11 44.62
Iter3 63.91 17.65 84.07 57.86 45.95 73.09 6.12 43.48 28.87 29.29 45.03
Iter4 63.40 15.83 84.01 58.03 46.00 72.69 6.05 43.45 28.70 29.39 44.76

S-
Si

m
PO

Iter0 61.35 34.33 80.01 57.39 41.46 72.69 7.45 45.28 26.80 40.49 45.54
Iter1 62.54 31.08 82.36 57.23 43.93 72.93 5.59 45.19 28.35 41.41 45.80
Iter2 62.80 25.80 82.66 57.26 43.08 73.40 5.74 45.40 28.18 28.65 45.30
Iter3 63.14 26.31 82.63 57.17 42.59 73.48 5.32 45.11 27.85 28.62 45.22
Iter4 62.71 23.05 82.55 57.29 42.56 72.80 5.49 44.99 27.40 28.77 44.76

S
P
I
N

Iter0 63.14 29.34 84.10 56.47 48.93 73.48 9.16 43.96 29.87 28.47 46.69
Iter1 64.33 31.08 83.76 57.34 52.12 74.11 10.06 44.70 29.75 28.03 47.53
Iter2 63.23 36.62 83.75 57.74 51.77 73.95 14.46 43.95 28.39 28.67 48.25
Iter3 63.82 33.59 83.13 55.56 52.85 74.51 13.59 44.05 28.10 28.57 47.78
Iter4 63.99 31.69 83.15 56.37 51.73 74.35 11.75 43.29 28.56 27.73 47.26

S
PA

C
E

(o
ur

s) Iter0 61.35 40.49 83.53 57.81 46.05 73.88 10.65 42.96 28.64 28.81 47.42
Iter1 63.65 40.56 83.55 58.20 48.74 73.64 12.14 43.01 28.60 28.54 48.06
Iter2 64.85 40.64 83.58 58.10 48.32 74.03 14.19 43.51 28.64 28.72 48.46
Iter3 64.59 40.94 83.60 58.01 48.51 74.11 16.28 43.75 28.30 28.76 48.69
Iter4 64.85 41.93 83.64 58.00 48.38 73.48 16.82 45.07 29.14 28.72 49.00
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Figure 8: The performance comparisons among four self-play fine-tuning methods on Zephyr-7B. (a)
the performances on GSM8K; (b) the average scores over different tasks; (c) the average ranks over
different iterations, where the best rank among iterations 0 to 4 is highlighted with a “gold medal”.

are shown in Figure 7. From the results, we observe that (i) the rewards for generated responses are
decreasing at three iterations; (ii) the rewards for human-annotated responses increase at the first
iteration, then oscillate near zero in subsequent iterations, which we consider as the model identifying
a potential optimal distribution initially and subsequently exploring its vicinity; (iii) given the reward
patterns of both positive and negative samples, the margins demonstrate a consistent increasing trend,
reflecting the improved capability of our model to distinguish two types of responses.

Experimental results on Zephyr-7B. We present the experimental results on Zephyr-7B in Ta-
ble 4 and provide in-depth comparisons in Figure 8, including the performance on GSM8K, average
performance across all tasks, and average ranks over different iterations. Table 4 shows that SPACE sig-
nificantly improves the performance of the base model, especially on GSM8K and IFEval. Moreover,
we also observe that gap-based baselines suffer from unstable evolution, with their best performance
occurring in early iterations, while our SPACE maintains stable evolution and continuously improves
performance. This phenomenon is more evident in Figure 8(a) and Figure 8(b). Additionally, Fig-
ure 8(c) also shows that the model performance in later iterations surpasses that of earlier iterations,
demonstrating the continuous evolution and improvement of SPACE.
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D Case studies

In the following, we present synthetic responses generated by SPACE at different iterations.

Table 5: Example 1 between the expert-annotated response, the responses generated by the base
model (Mistral-7B) and the model trained by SPACE at iterations 0, 1, and 2.

Example 1: Prompt Here is a piece of text: LIAM Payne missed his
granddad’s funeral because of One Direction’s current
Take Me Home world tour. The 20-year-old boy band
singer is devastated following the loss of his
grandfather but has been grateful for the huge amount
of support he has received from fans who took to
twitter to show they were thinking of him, leading to
the hashtags "#RIPGrandpaPayne" and "#StayStrongLiam"
trending on the social networking site. The star
later wrote on his own page to thank his fans for
their kind words, writing: "Thanks for everyone’s
support at this hard time obviously this has been
a tough few weeks for me I’ve never been through
anything like this." Liam dedicated the track ’More
Than This’ to his grandfather whilst on stage in
Australia, as he was not able to be with his family
during this difficult time. One Direction - which
includes Niall Horan, Zayn Malik, Harry Styles and
Louis Tomlinson - kicked off the Australian leg
of their ’Take Me Home’ world tour in September.
They took to the stage last night (02.10.13) at
the country’s culture capital Melbourne performing
at the Rod Laver Arena and are set to do so again
tonight (03.10.13). Based on the text material above,
generate the response to the following quesion or
instruction: Which song did Liam Payne dedicate to
his grandfather during One Direction’s concert in
Australia?

Annotated Response Liam Payne dedicated the song ’More Than This’ to
his grandfather during One Direction’s concert in
Australia.

Base Model 1. More Than This 2. I Want to Break Free 3. I Will
Always Love You 4. I’m Yours

Iteration 0 Liam Payne dedicated the track ’More Than This’ to his
grandfather whilst on stage in Australia, as he was
not able to be with his family during this difficult
time.

Iteration 1 Liam Payne dedicated the track ’More Than This’ to his
grandfather whilst on stage in Australia, as he was
not able to be with his family during this difficult
time.

Iteration 2 Liam Payne dedicated the song ’More Than This’ to
his grandfather during One Direction’s concert in
Australia.
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Table 6: Example 2 between the expert-annotated response, the responses generated by the base
model (Mistral-7B) and the model trained by SPACE at iterations 0, 1, and 2.

Prompt Tatiana Daniliyants is a poet, film-maker, and artist.
She is the author of three books of poetry in Russian:
Red Noise (2012), White (2006), Venetian (2005), and
four bilingual books (in Russian paired with Polish,
Italian, French, and Armenian). She has twice won
the International Festival of Verse Libre (Russia),
as well as the Nosside prize (Italy). In 2014 she
received the Catherine the Great medal for achievement
in contemporary Russian literature (St. Petersburg
Union of Avangardists). Her poetry has been
translated and published in English, French, Italian,
Polish, Armenian, German, Serbian, Macedonian, and
other languages. Based on the passage above, Can
you summarize the achievements and career of Tatiana
Daniliyants as a poet, filmmaker, and artist?

Annotated Response Tatiana Daniliyants is a prominent poet, filmmaker,
and artist who has authored several books of poetry
in Russian, as well as four bilingual books in Russian
paired with other languages. She has won numerous
awards, including the International Festival of Verse
Libre and the Nosside prize, and in 2014, she received
the Catherine the Great medal for her contributions
to contemporary Russian literature. Her poetry has
been translated and published in several languages,
including English, French, Italian, Polish, Armenian,
German, Serbian, and Macedonian.

Base Model Tatiana Daniliyants is a poet, film-maker, and
artist. She is the author of three books of poetry
in Russian: Red Noise (2012), White (2006), Venetian
(2005), and four bilingual books (in Russian paired
with Polish, Italian, French, and Armenian). She
has twice won the International Festival of Verse
Libre (Russia), as well as the Nosside prize (Italy).
In 2014 she received the Catherine the Great medal
for achievement in contemporary Russian literature
(St. Petersburg Union of Avangardists). Her
poetry has been translated and published in English,
French, Italian, Polish, Armenian, German, Serbian,
Macedonian, and other languages.

Iteration 0 Tatiana Daniliyants is a Russian poet, filmmaker,
and artist who has written three books of poetry in
Russian and four bilingual books. She has won several
awards for her poetry, including the International
Festival of Verse Libre and the Nosside prize. Her
poetry has been translated and published in multiple
languages.

Iteration 1 Tatiana Daniliyants is a Russian poet, filmmaker,
and artist who has authored three books of poetry
in Russian and four bilingual books. She has won
several awards, including the International Festival
of Verse Libre and the Nosside prize. In 2014, she
received the Catherine the Great medal for achievement
in contemporary Russian literature. Her poetry has
been translated and published in various languages.
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Iteration 2 As a poet, Tatiana Daniliyants has authored three
books in Russian and four bilingual books. She has
won the International Festival of Verse Libre twice
and the Nosside prize in Italy. In 2014, she received
the Catherine the Great medal for achievement in
contemporary Russian literature. Her poetry has been
translated and published in multiple languages.

E Pseudocode

We present the pseudocode to computing the loss function in SPACE as follows:

def space_loss(mu, player_real_logps, player_generated_logps,
opponent_real_logps, opponent_generated_logps):

"""
Args:

mu: the generation ratio
player_real_logps: Player’s log probs for real samples
player_generated_logps: Player’s log probs for synthetic samples
opponent_real_logps: Opponent’s log probs for real samples
opponent_generated_logps: Opponent’s log probs for synthetic samples

Returns:
scalar loss value (mean over batch)

"""

log_ratio_real = player_real_logps - opponent_real_logps
real_loss = F.logsigmoid(log_ratio_real - torch.log(mu))

log_ratio_generated = opponent_generated_logps - player_generated_logps
generated_loss = mu * F.logsigmoid(log_ratio_generated - torch.log(1/mu))

losses = -(real_loss + generated_loss)
return losses.mean()
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