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Abstract

Recently, self-play fine-tuning (SPIN) has been proposed to adapt large language
models to downstream applications with scarce expert-annotated data, by iteratively
generating synthetic responses from the model itself. However, SPIN is designed
to optimize the current reward advantages of annotated responses over synthetic re-
sponses at hand, which may gradually vanish during iterations, leading to unstable
optimization. Moreover, the utilization of reference policy induces a misalignment
issue between the reward formulation for training and the metric for generation. To
address these limitations, we propose a novel Triplet-based Self-Play fIne-tuNing
(T-SPIN) method that integrates two key designs. First, beyond current advantages,
T-SPIN additionally incorporates historical advantages between iteratively gener-
ated responses and proto-synthetic responses produced by the initial policy. Even if
the current advantages diminish, historical advantages remain effective, stabilizing
the overall optimization. Second, T-SPIN introduces the entropy constraint into
the self-play framework, which is theoretically justified to support reference-free
fine-tuning, eliminating the training-generation discrepancy. Empirical results on
various tasks demonstrate not only the superior performance of T-SPIN over SPIN,
but also its stable evolution during iterations. Remarkably, compared to supervised
fine-tuning, T-SPIN achieves comparable or even better performance with only
25% samples, highlighting its effectiveness when faced with scarce annotated data.

1 Introduction

Large language models (LLMs) have demonstrated powerful generalization capabilities and profound
impact across various fields [Ouyang et al., 2022, Huang and Chang, 2023, Qin et al., 2023, Bai
et al., 2023, Achiam et al., 2023, Liu et al., 2023, Jiang et al., 2024a, Wu et al., 2024a, Zhao et al.,
2024, Chen et al., 2024a, Liu et al., 2024, Hui et al., 2024, Guo et al., 2024a, Jiang et al., 2024b,
Anthropic, 2024a, Google, 2024, OpenAI, 2024, Sun et al., 2025a,b, Lu et al., 2025, Jiang et al., 2025].
The remarkable success of LLMs is inherently linked to the utilization of vast expert annotations.
Nevertheless, considerable curation costs for high-quality data pose major obstacles to downstream-
task adaptation [Wang et al., 2024a, Tan et al., 2024]. Consequently, numerous efforts have been
devoted to addressing this challenge, such as data augmentation [Dai et al., 2023, Zhu et al., 2023,
Guo et al., 2024b] and model distillation [Gunasekar et al., 2023, Luo et al., 2024, Xin et al., 2024].

∗Work done during the internship at Alibaba International Digital Commerce.
†Lijun Zhang is the corresponding author.
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Figure 1: Comparisons of three strategies: (a) supervised fine-tuning requires large amounts of
annotated data to train πθ; (b) self-play fine-tuning operates with limited annotated data and iteratively
generated samples, and employs the previous policy πθt as a reference for updates; (c) triplet-based
self-play fine-tuning employs triplet inputs, i.e., annotated data, synthetic samples, and proto-synthetic
ones from the initial policy πθ0 , and updates πθ without auxiliaries from any reference policies.

Recently, a promising research direction known as self-play fine-tuning has been introduced [Chen
et al., 2024b], and has since been applied to various LLM fields [Yuan et al., 2024a, Wu et al., 2024b,
Gao et al., 2024a]. The core idea of self-play fine-tuning is to progressively refine the LLM by
competing against itself. Formally, it can be framed as a two-player game between a main player
and an opponent player, each of which corresponds to an instance policy of the same LLM. In this
game, the main player aims to distinguish expert-annotated responses from generated ones, while the
opponent player strives to produce high-quality synthetic responses that can deceive the main player.

Based on this framework, Chen et al. [2024b] introduce the seminal method named SPIN, which is
designed to optimize the relative reward advantages of annotated responses over generated ones, and
employs the policy from previous iteration as a reference for reward computations. However, with
the evolution of LLM, the relative advantage between two types of data gradually diminishes over
time. When the relative advantage is eliminated, the optimization objective of SPIN degenerates into
a constant independent of the policy, allowing any policy to become an optimal solution and thus
leading to unstable optimization. Moreover, the incorporation of reference policy in SPIN causes a
misalignment between the reward formulation used for training and the log likelihood that guides
response generation. Empirical evidences in Figure 3 reveal that although annotated responses yield
higher rewards than generated responses, their log likelihoods become lower than synthetic samples
during iterations. In other words, higher rewards do not necessarily lead to higher generation priority.

To address these limitations, we propose a new self-play fine-tuning method, termed Triplet-based
Self-Play fIne-tuNing (T-SPIN). The basic intuition is to incorporate historical advantages for stable
evolution, and eliminate the reference policy for training-generation alignments. Specifically, we
introduce two key modifications to the self-play framework. First, the main player is required not
only to distinguish between real and synthetic data, but also discriminate proto-synthetic samples
produced by the initial policy. By incorporating triplet inputs of real, synthetic and proto-synthetic
samples, T-SPIN optimizes current and historical advantages simultaneously. Even if the current
advantage diminishes (i.e., synthetic samples become indistinguishable from annotated ones), the
historical advantages between synthetic responses and proto-synthetic responses still exist, ensuring
a stable optimization over the policy model. Second, the opponent player maximizes the confidence
of synthetic responses with an entropy constraint, where the confidence measures how likely the
main player believes a response comes from the annotated data. Through theoretical analysis, we
demonstrate that the incorporation of the entropy constraint removes the need for reference policy,
aligning the principles of training and generation. Empirical results show that T-SPIN consistently
maintains higher log-likelihoods for annotated data compared to synthetic samples.

We conduct experiments on Zephyr-7B [Tunstall et al., 2023] and Mistral-7B [Jiang et al., 2023],
and select 50k annotated samples from Ultrachat200k [Ding et al., 2023] as the training set. The
performance is evaluated across diverse tasks to assess multi-dimensional capabilities of LLMs, in-
cluding math and logic, multi-domain knowledge, commonsense reasoning, and instruction-following.
Experimental results demonstrate that T-SPIN significantly improves performance, particularly in
math and instruction-following, and achieves superior and stable performances during iterations
compared to SPIN. Furthermore, we also show that T-SPIN, using only 25% annotated samples, can
achieve comparable performance (or even better on certain tasks) to supervised fine-tuning with the
full training set, highlighting the effectiveness of T-SPIN in addressing the scarcity of annotated data.
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2 Preliminary

In this section, we provide a brief overview of three fine-tuning strategies (i.e., supervised fine-tuning,
self-play fine-tuning, and our T-SPIN) for LLMs. The comparisons are also illustrated in Figure 1.

2.1 Supervised fine-tuning

A common strategy to adapt a pretrained model to downstream tasks is fine-tuning it on high-quality
annotated data. Specifically, given a prompt x and its corresponding annotated response y, supervised
fine-tuning (SFT) aims to align the model with (x,y). Formally, the goal of SFT is to learn a policy
πSFT by maximizing the log-likelihood of high-quality annotated data:

πSFT = argmax
πθ

Ex∼q(·),y∼πdata(·|x) [log πθ(y|x)] , (1)

where q(·) and πdata(·|x) denote the distributions of prompts and annotated responses, respectively.
Mathematically, (1) is equivalent to the solution of minimizing the KL divergence between the target
distribution πdata(·|x) and the policy πθ(·|x):

πSFT = argmin
πθ

Ex∼q(·) [DKL(πdata(·|x)||πθ(·|x))] . (2)

It can be verified that the solution (2) exactly matches the target distribution of annotated responses,
i.e., πSFT(·|x) = πdata(·|x). Unfortunately, achieving the optimal policy typically demands extensive
high-quality samples, resulting in high costs for data curation and annotation, and thereby limiting
the practical applicability of supervised fine-tuning [Wang et al., 2024a, Tan et al., 2024].

2.2 Self-play fine-tuning

Self-play fine-tuning has emerged as a promising way to address the scarcity of expert-annotated data
when adapting LLMs to downstream tasks [Chen et al., 2024b, Yuan et al., 2024a]. Different from
SFT that runs over a fixed annotated dataset, self-play fine-tuning employs both annotated samples
and self-generated responses as inputs, with the latter continuously refined as the model evolves.

Specifically, at each iteration t + 1, the model first generates a synthetic response y′ for a given
prompt x by sampling from the policy πθt(·|x). Then, the model utilizes the prompt x and pairwised
samples (i.e., the annotated response y and the synthetic response y′) to obtain the policy πθt+1

.
Let the reward for a response be formulated by the log ratio of the likelihood between the current
policy πθ and the previous policy πθt [Rafailov et al., 2023]. Then, the objective of SPIN [Chen et al.,
2024b] is to maximize the gap (referred to as the relative advantage) between the reward of annotated
response y and that of synthetic response y′:

πθt+1 = argmin
πθ

E
[
ℓ

(
λ log

πθ(y|x)
πθt(y|x)

− λ log
πθ(y

′|x)
πθt(y

′|x)

)]
, (3)

where λ > 0 denotes a hyper-parameter, ℓ(·) is a convex and monotonically decreasing function, and
the expectation operation is taken over the distributions x ∼ q(·),y ∼ πdata(·|x) and y′ ∼ πθt(·|x).
In the following, we elaborate two major limitations of SPIN: unstable optimization during iterations
and misalignment between training and generation.

Unstable optimization. The instability of SPIN arises from the inherent structure of the objective
in (3). To be precise, we consider the case where the synthetic response y′ becomes identical to the
annotated response y (i.e., y′ = y). In this case, the advantage of y over y′ vanishes, causing the
objective (3) to degenerate into a constant that is independent of the policy πθ. As a result, any policy
πθ becomes optimal to (3), leading to unstable optimization or even performance degradation.

Misalignment between training and generation. Given the reference policy πθt from the iteration
t, the objective (3) is designed to optimize the reward gap between two types of responses, where
the reward for a response ŷ is defined as r(x, ŷ) = λ log πθ(ŷ|x) − λ log πθt(ŷ|x). However, it
is important to note that the formulation of r(x, ŷ) differs from the principle used for generation,
i.e., log πθ(ŷ|x). In other words, due to the incorporation of reference policy πθt , a higher reward,
i.e., r(x,y) > r(x, z) for two responses y and z, does not necessarily imply a higher generation
probability, i.e., log πθ(y|x) > log πθ(z|x) may not hold. This demonstration has been empirically
verified by our experiments, as illustrated in Figure 3.
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3 Triplet-based self-play fine-tuning

In this section, we introduce our triplet-based self-play fine-tuning (T-SPIN), a stable and reference-
free method for fine-tuning LLMs. Building upon the self-play framework, our T-SPIN involves two
players: a main player and an opponent player, both of which are different policy instances from the
same LLM. For clarity, we describe the update rules for two players separately.

The update rule for main player. Recall that the goal of the main player is to distinguish among
the annotated response y, the synthetic response y′ generated from the previous policy πθt and the
proto-synthetic response y0 produced by the initial policy πθ0 . Conceptually, the triple responses are
expected to satisfy the relation y ⪰ y′ ⪰ y0, where the operator ⪰ indicates that the main player
has greater preference for one response than in another. In other words, y0 serves as an anchor that
helps to evaluate how far the current policy πθt has progressed. This design is partially inspired by
the schema-equilibration process in cognitive development, where knowledge builds upon and refines
pre-existing cognitive anchors [Piaget, 1952]. Formally, we are motivated by the integral probability
metric (IPM) [Müller, 1997] to establish the objective of the main player. In detail, let c(x, ŷ) denote
the confidence with which the main player believes a response ŷ is sampled from the real-world data
distribution πdata(·|x). Then, the goal of main player is to find a confidence function

ct+1 = argmin
c∈C

E [ℓ (c(x,y)− c(x,y′)) + βℓ (c(x,y′)− c(x,y0))] , (4)

where β ≥ 0 denotes a trade-off hyper-parameter, and C denotes a function class that will be
specified later, and ℓ(·) denotes a monotonically decreasing function, e.g., the logistic function
ℓ(x) = − log σ(x) and the exponential function ℓ(x) = exp(−x). The expectation operation here is
taken over the distributions x ∼ q(·),y ∼ πdata(·|x),y′ ∼ πθt(·|x) and y0 ∼ πθ0(·|x). Given the
triple responses y, y′, and y0, the objective in (4) consists of two terms:

• The first term ℓ (c(x,y)− c(x,y′)) measures the gap between the real response y ∼ πdata(·|x)
and the synthetic one y′ ∼ πθt(·|x), reflecting the relative advantages of πdata over πθt ;

• The second term ℓ (c(x,y′)− c(x,y0)) compares the synthetic response y′ to the proto-synthetic
response y0 ∼ πθ0(·|x), capturing historical advantages of πθt over πθ0 during iterations.

During the self-play process, the opponent player evolves over time, generating synthetic responses
y′ that progressively approximate the real response y. As a result, the current advantage, i.e., the first
term in (4), gradually diminishes. In contrast, since y0 remains fixed during iterations, the historical
advantage, i.e., the second term in (4), remains meaningful even when the current advantage vanishes,
ensuring that (4) does not degenerate to a constant independent of πθ.

The update rule for opponent player. In this part, we suppose that the main player has learned a
confidence function ct+1 capable of effectively distinguishing between y and y′. Then, we proceed
to elaborate on the update rule for the opponent player. Note that the goal of the opponent player
is to generate a response y′ that misleads the main player to the best of its ability. Therefore, with
the given confidence function ct+1, the opponent player aims to find a policy πθ̂ that maximizes the
expected confidence score over synthetic responses y′ generated from itself:

πθ̂ =argmax
πθ

Ex∼q(·),y′∼πθ(·|x) [ct+1(x,y
′)] + αEx∼q(·) [H(πθ(·|x))] , (5)

where α > 0 denotes the regularization parameter, and H(·) denotes the entropy constraint. In (5),
the first part reflects the confidence that how the main player believes that y′ is sampled from the
real-world distribution πdata, and the second part serves to stabilize the optimization. It is worth
noting that (5) has a closed-form solution, as stated below.
Proposition 1. Given a general confidence function ct+1, the optimal policy of the opponent player
in (5) takes the form of

π∗(y′|x) = exp(ct+1(x,y
′)/α)∑

z∈Y exp(ct+1(x, z)/α)

where Y denotes the set that contains all possible responses for the prompt x.

Note that due to the generality of ct+1, the closed-form solution π∗(y′|x) may not be attainable in
the policy space of LLM. To resolve this issue, we need to choose a specific form of the function
class C such that the closed-form solution becomes tractable. Specifically, we hope to find a policy
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Algorithm 1 Triplet-based Self-Play Fine-Tuning (T-SPIN)
Inputs: A set of high-quality data {xi,yi}ni=1, a pretrained LLM πθ0 , and the number of iterations T

1: Produce the proto-synthetic response y0 with the policy πθ0 for each prompt x.
2: for t = 0, 1, · · · , T − 1 do
3: For each prompt x, generate one synthetic response y′ by the policy πθt .
4: Update the policy πθt+1

by minimizing (7) with prompt x and triplet responses {y,y′,y0}.
5: end for

πθ that satisfies πθ(y
′|x) = π∗(y′|x) with the confidence ct+1 learned from a certain class C. To

this end, according to Proposition 1, we can obtain πθ(y
′|x) ∝ exp(ct+1(x,y

′)/α), which implies
ct+1(x,y

′) = α log πθ(y
′|x). In other words, we can choose the function class

C = {α log πθ(·|x)|θ ∈ Θ} (6)

where Θ denote the parameter space of LLM, and optimize (4) to obtain the confidence ct+1(x,y
′) =

α log πθ(y
′|x) where the policy πθ is exactly the optimal solution of (5). Therefore, we do not need

to solve (5) explicitly. Moreover, since (6) depends solely on the policy πθ and does not rely on any
reference policy, it inherently avoids the training-generation misalignment issue suffered by SPIN.

The end-to-end objective. We consolidate the two update rules into a unified end-to-end objective
by substituting (6) into (4), and obtain the loss function for T-SPIN as follows:

LT-SPIN(θ) =E [ℓ (α log πθ(y|x)− α log πθ(y
′|x)) + βℓ (α log πθ(y

′|x)− α log πθ(y0|x))] . (7)

The expectation is taken over distributions x ∼ q(·),y ∼ πdata(·|x),y′ ∼ πθt(·|x),y0 ∼ πθ0(·|x).
Overall, the training of T-SPIN can be viewed as alternating updates between the main player and
the opponent player. At each iteration t+ 1, the opponent player first generates synthetic responses
y′ sampled from the previous iteration policy πθt . Then, the main player takes the triplet responses
y,y′ and y0 as inputs to obtain its confidence ct+1 = α log πθt+1

. After that, the opponent player
chooses the policy πθt+1

for the next iteration. The detailed steps are presented in Algorithm 1.

Comparisons between T-SPIN and SPIN. Both methods are designed to handle the limited available
data when adapting LLMs to downstream tasks, but they fundamentally differ in (i) optimization
principles, (ii) implicit reward formulation, and (iii) computational overhead, as detailed below:

• SPIN only optimizes the current advantage between the annotated response y ∼ πdata(·|x) and
the synthetic response y′ ∼ πθt(·|x) in (3), which may result in the instability issue during
iterations. In contrast, T-SPIN optimizes not only the current advantage of y over y′, but also
the historical advantage of y′ over the proto-synthetic response y0 ∼ πθ0(·|x), ensuring a stable
evolution and thereby mitigating the unstable optimization;

• In SPIN, the reward function for a response z is formulated as rθ(z|x) = λ log πθ(z|x) −
λ log πθt(z|x). This formulation misaligns with the generation metric (i.e., the log-likelihood),
resulting in potential suboptimal performance. By contrast, the reward function in T-SPIN (also
referred to as the confidence function under the self-play framework) is defined as rθ(z|x) =
α log πθ(z|x), which matches the generation metric and thus resolves the misalignment issue;

• Compared to SPIN, T-SPIN incurs only a marginal increase in computational and memory costs.
Specifically, T-SPIN performs a one-time generation of y0 at the beginning, which is not repeated
in subsequent iterations. In practice, the costs of this generation is negligible compared to the
iterative training process. Moreover, while T-SPIN expands each training instance from a pair
of (y,y′) to a triplet of (y,y′,y0), the overall memory costs remains nearly unchanged, as
it eliminates the need for a reference model, which is necessary in SPIN. Consequently, the
additional overhead of T-SPIN is minimal compared to SPIN.

Gradient analysis. To mechanistically understand the impact of T-SPIN on the training process, we
examine the gradient of (7) with respect to the parameter θ, as presented in the following theorem.
Theorem 1. Define u(πθ) = log πθ(y|x)− log πθ(y

′|x) and v(πθ) = log πθ(y
′|x)− log πθ(y0|x).

Then, given a monotonically decreasing function ℓ(x), the gradient of (7) with respect to θ is

∇θLT-SPIN(θ) = αE
[
ℓ′(αu(πθ)) · (∇θ log πθ(y|x)−∇θ log πθ(y

′|x))

+ βℓ′(αv(πθ)) · (∇θ log πθ(y
′|x)−∇θ log πθ(y0|x))

] (8)
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Table 1: Performance (%) comparisons among three fine-tuning methods, where SPIN and T-SPIN
are trained on 50k annotated data from Ultrachat200k, and SFT is trained on the complete dataset.At
the average (Avg) column, we also report improvements (or degradations) over the previous iteration.
Abbreviations: MMLU-Pro → MMLUP, Winograde → WG, Instruction Following → IF.

Model Math & Logic Multi-Domain Knowledge Commonsense Reasoning IF Avg
GSM8K MATH MUSR MMLU MMLUP GPQA HellaSwag WG BBH IFEval

Zephyr-7B 25.85 1.75 38.92 56.90 28.88 28.91 82.79 74.19 44.60 2.76 38.56

SFT 42.25 3.10 39.18 57.29 29.19 28.28 83.44 73.16 44.90 19.31 42.01

S
P
I
N

Iter0 30.06 4.46 41.67 56.25 28.39 29.53 84.29 73.56 44.41 8.12 40.07
Iter1 32.47 3.05 39.02 56.86 27.88 29.06 83.76 73.72 44.59 7.95 39.84(−0.23)

Iter2 36.62 2.57 41.27 57.74 28.67 28.39 83.75 73.95 43.95 14.46 41.14(+1.30)

Iter3 33.32 2.75 39.41 55.88 27.98 27.61 82.64 74.19 43.19 22.25 40.92(−0.22)

Iter4 35.54 2.72 38.21 53.59 25.95 26.21 83.48 74.51 43.10 22.88 40.62(−0.30)

T
-S
P
I
N

Iter0 36.20 3.29 37.05 56.42 28.88 28.05 82.97 73.48 44.17 7.02 39.75
Iter1 40.64 3.68 37.84 56.89 29.13 28.92 82.95 73.72 44.82 26.98 42.56(+2.81)

Iter2 40.69 3.63 38.91 56.89 29.26 29.40 83.37 73.64 44.48 27.67 42.79(+0.23)

Iter3 40.71 3.82 39.18 57.67 29.37 30.12 83.30 73.74 45.27 29.15 43.23(+0.44)

Iter4 40.67 3.84 39.72 57.68 29.32 30.44 83.12 73.80 45.00 31.08 43.47(+0.24)

(a) GSM8K (b) IFEval (c) Average Score
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Figure 2: Performance (%) comparisons between T-SPIN and SPIN on two tasks: GMS8K and IFEval
over 5 iterations. The average scores over 10 different tasks are also illustrated in the right panel.

where ℓ′(·) denotes the derivative of ℓ(·), and the expectation is taken over the distributions x ∼
q(·),y ∼ πdata(·|x),y′ ∼ πθt(·|x),y0 ∼ πθ0(·|x). With a specific choice of ℓ(x), we can derive
more explicit forms of the gradient. Detailed derivation are provided in Appendix A.2.

Note that the function ℓ(x) is monotonically decreasing, leading to a non-positive derivative ℓ′(x) ≤
0,∀x ∈ R. Therefore, during the training, the gradient in (8) tends to increase the likelihood of y
and decrease the likelihood of y0 with weights corresponding to the current advantage u(πθ) and
the historical advantage v(πθ), respectively. For the synthetic response y′, the update direction is
influenced by both current and historical advantages, with the latter weighted by hyperparameter β.

4 Experiments

In this section, we commence by conducting empirical evaluations of T-SPIN, SPIN, and SFT on a set
of benchmarks with 10 different tasks. Then, we provide in-depth ablation analysis to investigate the
impact of components (i.e., historical advantages, reward function and hyperparameters) in T-SPIN.

4.1 Experimental setups

Models and training settings. Following the setup in Chen et al. [2024b], we randomly sample
50k prompt-response pairs from the first round of interactions in Ultrachat200k [Ding et al., 2023]
as the training set, and choose Zephyr-7B-SFT-Full [Tunstall et al., 2023] and Mistral-7B-v0.1
[Jiang et al., 2023] as pretrained LLMs in our experiments. We employ the commonly used template:
“### Instruction: {prompt}\n\n### Response:” [Taori et al., 2023] to construct the prompts,
and set ℓ(x) = − log σ(x) by the logistic loss function in the objectives of T-SPIN and SPIN. The
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Figure 3: Comparisons between SPIN and T-SPIN at iteration 1: (a) Training dynamics (including
rewards and log-likelihoods of y and y′) and generation statistic (i.e., associations between rewards
and log-likelihoods) measured on the training set for iteration 1 of SPIN; (b) Training dynamics and
generation statistic of T-SPIN. For brevity, we denote ry = r(y|x) and log πy = log π(y|x).

training process adheres to the iterative framework described in Section 3. At each iteration, we first
employ the latest policy to generate synthetic responses, which are then combined with annotated
responses as the training data for the next iteration. In total, there are 50k synthetic responses and 50k
annotated responses in each iteration. For T-SPIN, we additionally incorporate 50k proto-synthetic
responses produced by the initial policy, into the training set.

Evaluation benchmarks. We evaluate the performance across diverse tasks, each designed to assess
specific capabilities of LLMs.These tasks include mathematical and logical reasoning with GSM8K
[Cobbe et al., 2021], MATH [Hendrycks et al., 2021b], MUSR [Sprague et al., 2024]; multi-domain
knowledge understanding through MMLU [Hendrycks et al., 2021a], MMLU-Pro [Wang et al.,
2024d], GPQA [Rein et al., 2023]; commonsense reasoning by HellaSwag [Zellers et al., 2019],
Winogrande [Sakaguchi et al., 2021] and BBH [Suzgun et al., 2022]; and instruction-following
via IFEval [Zhou et al., 2023]. For each task, we follow the standard evaluation protocols in the
literature. For instance, we utilize 3-shot examples and normalized accuracy as the metric in BBH.
More detailed introductions about the evaluation benchmarks can be found in Appendix B.2.

4.2 Experimental results

Comparisons to SPIN and SFT. We first compare T-SPIN with SPIN and SFT on multiple tasks,
where two self-play methods are trained with only 50k annotated data, while SFT is trained with
200k annotated data. Table 1 summarizes the results on Zephyr-7B, and the results on Mistral-7B
are deferred to the Appendix B.3. The results demonstrate that T-SPIN significantly improve the
performances of pretrained models, and outperform other two fine-tuning methods. Specifically,
T-SPIN achieves a significant improvement in average score compared to Zephyr-7B, particularly
excelling in GSM8K and IFEval tasks with 14.82-point and 28.32-point increases respectively, which
is also illustrated in Figure 2(a) and Figure 2(b). Moreover, from the results shown in Figure 2(c),
we also observe that SPIN suffers from performance instability over iterations, reaching the peak
performance at the third iteration and then suffering the degradation at the subsequent iterations. In
contrast, T-SPIN demonstrates stable evolutions over all iterations. Compared to SFT that utilizes the
complete annotated set as training data, T-SPIN with only 50k annotated data achieves comparable
(or better) performances, highlighting the effectiveness of T-SPIN when facing the data scarcity issue.
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Figure 4: Performance comparisons over different settings: (a) comparison between T-SPIN and
SFT with varying amounts of annotated data; (b) performances of T-SPIN versus the variant without
historical advantage (w/o H-A); (c) robustness analysis with respect to hyperparameters α and β.

Aligning training rewards and generation log-likelihoods. We then show that T-SPIN is able
to alleviate the misalignment issue suffered by SPIN. We plot the training dynamics and genera-
tion statistics of SPIN and T-SPIN on Zephyr-7B at the iteration 1 in Figure 3(a) and Figure 3(b),
respectively. We observe that in SPIN, annotated responses yield higher rewards than synthetic
responses, but their log-likelihoods are lower than those of synthetic responses, shown in the left
and middle panels of Figure 3(a). The reason lies in that the reward function of SPIN incorporates
both the current policy πθ and the reference policy πθt from the previous iteration, expressed as
rSPIN(x, z) = λ log πθ(z|x) − λ log πθt(z|x) for a response z. This formulation differs from the
generation principle that solely relies on log πθ(z|x). Consequently, responses with higher reward
does not necessarily enjoy higher generation probability. To further illustrate this phenomenon, we
also analyze the generation statistics of rewards and log-likelihoods at the right panel of Figure 3(a).
The results indicate that nearly half of the samples exhibit higher rewards but lower log-likelihoods.
By contrast, T-SPIN effectively mitigates the mismatch issue by aligning the reward formulation for
training and log-likelihood used for generation, i.e., rT-SPIN(x, z) = α log πθ(z|x) where α = 1 in
this experiment. Empirical evidence, shown in the left and middle panels of Figure 3(b), demonstrates
that both the rewards and log-likelihoods of real responses are consistently higher than those of
generated responses. We also examine the generation statistic of two types of responses in terms of
rewards and log-likelihoods, with similar trends observed at the right panel of Figure 3(b).

Fine-tuning with less annotated data. We now demonstrate that T-SPIN can achieve comparable or
even superior performances to SFT, while using less annotated training data. To validate this claim,
we conduct experiments with different sizes of annotated data. Specifically, we construct subsets of
14k, 26k, 50k, 100k, and 200k samples from Ultrachat200k [Ding et al., 2023], where each larger
subset encompasses all smaller ones. For comparison, we train T-SPIN on Zephyr-7B using the
smaller subsets (14k, 26k, and 50k samples) and SFT using the larger subsets (50k, 100k and 200k
samples). We report the performances of T-SPIN after 2 iterations and SFT after 2 consecutive epochs.
Figure 4(a) illustrates the empirical results, from which we can observe that: (i) both fine-tuning
methods show improved performance with the increased annotated data size; (ii) with the same
amount of annotated data (i.e., 50k), T-SPIN achieves a superior average score of 42.56% compared
to 40.65% of SFT; (iii) T-SPIN using only 50k annotated responses attains 42.56% average score,
slightly outperforming 42.01% of SFT trained with 200k annotated data.

4.3 Ablation studies

In this part, we conduct ablation studies on Zephyr-7B to investigate the impact of each component
(i.e., historical advantages, reference-free reward function, and hyper-parameters) in T-SPIN.

Historical advantages. In T-SPIN, the historical advantage, i.e., the second term in (7), is introduced
to address the instability issues caused by the vanishing current advantage, i.e., the first term in (7).
To verify the effectiveness of historical advantages, we conduct ablation experiments by comparing
T-SPIN with a variant that removes the historical advantage from (7), referred to as w/o H-A. Specif-
ically, for T-SPIN, we initialize β = 0 in the first iteration, as the historical advantage is identical
to the current advantage at iteration 0, and set β = 0.1 for all subsequent iterations. For w/o H-A,
we fix β = 0 over all iterations. We report the performances of T-SPIN and w/o H-A on all tasks in
Table 2. The average performances over different tasks reveal two key findings: (i) both T-SPIN and
w/o H-A are able to improve the performances, although w/o H-A suffers from a performance decline
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Table 2: Performance (%) comparisons between T-SPIN and w/o H-A on Zephyr-7B. At the average
(Avg) column, we also report the performance improvements (or degradations) over the previous
iteration. Abbreviations: MMLU-Pro → MMLUP, Winograde → WG, Instruction Following → IF.

Methods Math & Logic Multi-Domain Knowledge Commonsense Reasoning IF Avg
GSM8K MATH MUSR MMLU MMLUP GPQA HellaSwag WG BBH IFEval

Iter0 36.20 3.29 37.05 56.42 28.88 28.05 82.97 73.48 44.17 7.02 39.75

w
/o

H
-A

Iter1 29.89 3.33 37.06 57.51 28.98 27.35 82.13 73.16 44.63 10.46 39.45(−0.30)

Iter2 38.95 3.19 37.83 56.72 27.65 28.19 83.29 73.95 44.64 21.87 41.63(+2.18)

Iter3 41.71 2.63 37.59 56.87 27.82 28.96 83.28 73.32 44.63 20.10 41.64(+0.01)

Iter4 38.12 3.83 37.05 56.96 28.40 28.61 83.71 74.11 43.86 23.20 41.79(+0.05)

T
-S
P
I
N

Iter1 40.64 3.68 37.84 56.89 29.13 28.92 82.95 73.72 44.82 26.98 42.56(+2.81)

Iter2 40.69 3.63 38.91 56.89 29.26 29.40 83.37 73.64 44.48 27.67 42.79(+0.23)

Iter3 40.71 3.82 39.18 57.67 29.37 30.12 83.30 73.74 45.27 29.15 43.23(+0.44)

Iter4 40.67 3.84 39.72 57.68 29.32 30.44 83.12 73.80 45.00 31.08 43.47(+0.24)
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Figure 5: Performance (%) comparisons between T-SPIN and w/o H-A on GMS8K, MATH and IFEval.

at iteration 1; (ii) without the historical advantage, w/o H-A improves slowly and plateaus at 41.64%
at iteration 3, whereas T-SPIN reaches a higher performance of 42.56% earlier, at iteration 1. When
we dig into the performance of each task, we find that w/o H-A suffers from unstable performance
trends, as shown in Figure 5. For example, on the task of GMS8K, w/o H-A suffers from a significant
performance decline at the iteration 1. On MATH and IFEval, the performance degradation occurs at
iteration 3. In contrast, T-SPIN demonstrates consistent improvements across all tasks and maintains
stability when reaching the performance peak, highlighting the effectiveness of historical advantages.

Reference-free reward function. To address the training-generation misalignment issue in SPIN,
T-SPIN introduce an entropy constraint into the self-play framework as shown in (5), from which
we theoretically deliver a reference-free reward function for T-SPIN. To investigate its effectiveness,
we compete our T-SPIN with a variant, namely T-SPINref, that still optimizes with triplet inputs, but
uses the reward function with reference policy. The loss function of T-SPINref is given by:

LT-SPINref(θ) = E
[
ℓ

(
α log

πθ(y|x)
πθt(y|x)

− α log
πθ(y

′|x)
πθt(y

′|x)

)
+ βℓ

(
α log

πθ(y
′|x)

πθt(y
′|x)

− α log
πθ(y0|x)
πθt(y0|x)

)]
. (9)

We report the average performances of T-SPIN and T-SPINref on all tasks in Figure 4(b). From the
results, we observe that T-SPIN demonstrates superior performance compared to T-SPINref over
all iterations. This can be attributed to that using the reference-free reward function preserves the
alignment between training and generation, which in turn facilitates performance improvement.

Parameter robustness. T-SPIN involves two hyper-parameters: (i) the trade-off parameter β that
balances the current and historical advantages, and (ii) the regularization coefficient α that controls
the entropy penalty. To investigate the robustness of these parameters, we conduct experiments at
iteration 1 with varying α and β. We select values for α and β from the set {0.1, 0.3, 0.5, 1.0}, and
report the average performances over all 10 tasks with different parameters in Figure 4(c). The results
demonstrate that T-SPIN is relatively insensitive to a wide range of α and β with diverse values.
Accordingly, we use α = 1.0 and β = 0.1 as the default values in our experiments.
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5 Related work

Self-play fine-tuning for LLMs. The self-play learning framework originates from TD-Gammon
[Tesauro, 1995], and has produced profound impacts in various fields, such as multi-agent reinforce-
ment learning [Lanctot et al., 2017, Muller et al., 2019, Bansal et al., 2018] and game-playing [Silver
et al., 2017a,b, Anthony et al., 2017]. The central idea of this framework is to train the model by
playing against its previous version for progressive improvements. Recently, self-play fine-tuning has
been introduced into the investigations for LLMs [Chen et al., 2024b], which then leads to a series
of subsequent works [Ren et al., 2024, Guo et al., 2024b, Yuan et al., 2024b, Rosset et al., 2024,
Cheng et al., 2024, Pang et al., 2024, Wu et al., 2024b, Wang et al., 2025]. For example, Gao et al.
[2024a] introduce the self-play mechanism into the recommendation systems to calibrate item-level
predictions and suppress the bias issue, and Yuan et al. [2024a] incorporate the idea of self-play into
diffusion models, resulting in a novel diffusion-based method. Different from the above studies that
apply self-play fine-tuning to specific domains of LLMs, our work follows the seminal study of Chen
et al. [2024b], investigating the fundamental nature of self-play fine-tuning, and aims to resolve the
unstable evolution and misalignment issues in the original method.

Data generation in LLMs. Large language models are typically data-driven, heavily relying on
the high-quality annotated data [Ouyang et al., 2022, Tan et al., 2024]. However, the available
data is often limited for LLM training, and the costs of human expert annotation are prohibitively
expensive. For this reason, recent efforts have been made to employ advanced LLMs, such as GPT
series [OpenAI, 2023, 2024, 2025], Gemini series [Google, 2023, 2024, 2025], and Claude series
[Anthropic, 2024a,b, 2025], to generate synthetic data for LLM fine-tuning [Josifoski et al., 2023,
Gupta et al., 2023, Long et al., 2024, Qin et al., 2025]. It has been shown that in most domains,
advanced expert LLMs are capable of generating high-quality data that can benefit others [Ubani
et al., 2023, Peng et al., 2023, Xu et al., 2023, Yang et al., 2024, Choi et al., 2024, Zhang, 2024, Wang
et al., 2024b, DeepSeek-AI et al., 2025]. Compared to these studies, our self-play fine-tuning method
focuses on using data generated by the current policy model to train itself to achieve the progressive
performance improvements, and offers an alternative to expert-LLM-based strategies.

6 Conclusion and discussion

In this paper, we investigate self-play fine-tuning for LLMs and identify two issues of the existing
method SPIN: unstable optimization during iterations and misalignment between training and gen-
eration. To address these issues, we propose a novel self-play fine-tuning method named T-SPIN
with two key designs. First, our T-SPIN simultaneously optimizes the current advantage of the
annotated response y over the newly generated response y′, and the historical advantage of y′ over
the proto-synthetic response y0. When current advantages vanish, historical advantages can still
guide the fine-tuning process, avoiding the unstable optimization. Second, T-SPIN incorporates the
entropy constraint into the self-play framework, which eliminates the need for a reference policy in
the reward computations, thus aligning the reward formulation and the generation metric. Empirically,
we conduct extensive experiments and examine the performances of T-SPIN on a variety of tasks.
Experimental results show that T-SPIN maintains stable evolution and achieves better performance
than its contenders, and outperforms supervised fine-tuning by leveraging only 25% annotated data.

Limitations and future work. There are several promising directions for future research. First, at
each iteration, T-SPIN needs to re-generate synthetic responses for all prompts, although some of
them may no longer contribute to further evolutions. Consequently, a carefully designed filter strategy
is necessary to choose valuable samples before generation. Second, in T-SPIN, the expert-annotated
data is fixed during iterations. But, in real-world applications, the target distribution may shift over
time, and hence the fixed annotated samples may not be suitable for online fine-tuning. For this
reason, self-play fine-tuning for non-stationary target distributions is another interesting direction, for
which we believe that some advanced techniques from online learning may offer valuable insights
[Hazan, 2016, Orabona, 2019, Zhang et al., 2018, Wang et al., 2024c,e].
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A Mathematical derivations

In this section, we provide mathematical derivations for the propositions and theorems.

A.1 Proof of Proposition 1

In this part, we proceed to derive the optimal solution of the following objective:
πθ̂ = argmax

πθ

Ex∼q(·),y′∼πθ(·|x) [ct+1(x,y
′)] + αEx∼q(·) [H(πθ(·|x))] . (10)

under a general confidence function ct+1 with the entropy constraint H(·). The proof is inspired by
Rafailov et al. [2023], converting (10) into a KL-divergence minimization problem. Specifically, by
the definition of entropy, we have:

H(πθ(·|x)) = −Ey′∼πθ(·|x) [log πθ(y
′|x)] . (11)

Combining (10) and (11), we have:
argmax

πθ

Ex∼q(·),y′∼πθ(·|x) [ct+1(x,y
′)] + αEx∼q(·) [H(πθ(·|x))]

= argmax
πθ

Ex∼q(·),y′∼πθ(·|x) [ct+1(x,y
′)− α log πθ(y

′|x)]

= argmin
πθ

Ex∼q(·),y′∼πθ(·|x)

[
log πθ(y

′|x)− 1

α
ct+1(x,y

′)

]
=argmin

πθ

Ex∼q(·),y′∼πθ(·|x)

[
log

πθ(y
′|x)

1
Z(x) exp(

1
αct+1(x,y′))

− logZ(x)

]
.

(12)

where Z(x) =
∑

z∈Y exp( 1
αct+1(x, z)) denotes the partition function for normalization. Note that

Z(x) is a function of the prompt x, and independent of the policy πθ. We define

πθ∗(y|x) = 1

Z(x)
exp

(
1

α
ct+1(x,y)

)
,

which is a valid policy, since πθ∗(y|x) ≥ 0 for any y and
∑

y πθ∗(y|x) = 1. Next, we can rewrite
(12) as:

argmin
πθ

Ex∼q(·),y′∼πθ(·|x)

[
log

πθ(y
′|x)

πθ∗(y′|x)
− logZ(x)

]
=argmin

πθ

Ex∼q(·) [DKL(πθ(·|x)||πθ∗(·|x))− logZ(x)] ,

from which we can observe that the optimal policy is exactly πθ∗ . Therefore, the opponent policy is

πθ̂(y|x) = πθ∗(y|x) = 1

Z(x)
exp

(
1

α
ct+1(x,y)

)
.

A.2 Proof of Theorem 1

In this part, we derive the gradient of (7) with respect to the parameter θ. For brevity, we denote
u(πθ) = log πθ(y|x)− log πθ(y

′|x)
v(πθ) = log πθ(y

′|x)− log πθ(y0|x)
(13)

and the expectation operator in this part is taken over the distributions x ∼ q(·),y ∼ πdata(·|x),y′ ∼
πθt(·|x),y0 ∼ πθ0(·|x). By utilizing the chain rule, we have

∇θLT-SPIN =E [∇θℓ(αu(πθ)) + β∇θℓ(αv(πθ))]

=αE [ℓ′(αu(πθ))∇θu(πθ)] + αβE [ℓ′(αv(πθ))∇θv(πθ)] .
(14)

Next, we consider two specific choices of ℓ(x) and its derivative ℓ′(x). For the logistic loss function
ℓ(x) = − log σ(x), we have ℓ′(x) = −σ(x). Then, combining (13) and (14) delivers

∇θLT-SPIN =− αE [σ(αu(πθ))∇θu(πθ) + βσ(αv(πθ))∇θv(πθ)]

=− αE [σ(αu(πθ))[∇θ log πθ(y|x)−∇θ log πθ(y
′|x)]

+βσ(αv(πθ))[∇θ log πθ(y
′|x)−∇θ log πθ(y0|x)]] .

(15)
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Table 3: The number of few-shots and evaluation metrics for each task.

Datasets GSM8k MATH MUSR MMLU MMLU-Pro GPQA HellaSwag Winograde BBH IFEval

# few-shot 5 4 0 5 5 0 10 5 3 0
Metric acc acc acc_norm acc acc acc_norm acc_norm acc acc_norm acc

For the exponential function ℓ(x) = exp(−x), we have ℓ′(x) = − exp(−x). Then, combining (13)
and (14), we can obtain that

∇θLT-SPIN =− αE [exp(−αu(πθ))∇θu(πθ) + β exp(−αv(πθ))∇θv(πθ)]

=− αE [exp(−αu(πθ))[∇θ log πθ(y|x)−∇θ log πθ(y
′|x)]

+β exp(−αv(πθ))[∇θ log πθ(y
′|x)−∇θ log πθ(y0|x)]] .

(16)

B More details on experiments

In this section, we provide more information about the experiments, including implementation details,
task introductions, comparisons between T-SPIN, SPIN and SFT, and more ablation studies.

B.1 Implementation details

We choose the Alignment Handbook [Tunstall et al., 2024] as the codebase for our experiments, and
the Accelerate library [Gugger et al., 2022] for distributed training. Following Chen et al. [2024b],
we employ the RMSProp [Scroccaro et al., 2023] with no weight decay as the optimizer for training,
and set max sequence length to be 2048 and warmup steps to be 10% of the total training steps. All
experiments are conducted on 8 H100 GPUs with 80GB memory. On each GPU, we set the batch
size as 8 and thus the global batch size is 64.

B.2 Tasks

In the following, we provide a detailed description of the tasks used in the experiments:

• GSM8K [Cobbe et al., 2021] is a dataset of 8, 500 high-quality, linguistically diverse grade
school math word problems, divided into 7.5k training problems and 1k test problems. These
problems require between 2 and 8 steps to solve, with solutions primarily consisting of a sequence
of elementary calculations using basic arithmetic operations (+,−, /, ∗). GSM8K is designed to
assess the mathematical reasoning abilities of LLMs.

• MATH [Hendrycks et al., 2021b] contains 12, 500 challenging competition mathematics problems.
Each problem in MATH has a full step-by-step solution which can be used to teach models to
generate answer derivations and explanations.

• MUSR [Sprague et al., 2024] is designed to evaluate multistep, context-dependent reasoning in
language models through long-form, algorithmically generated problems approximately 1, 000
words in length. The dataset includes tasks such as murder mysteries, spatial reasoning (e.g.,
object placement), and team assignment optimization, all presented in natural language narratives.

• MMLU [Hendrycks et al., 2021a] evaluates the multitask accuracy of language models on general
knowledge and reasoning across 57 diverse subjects, ranging from STEM fields to humanities. In
MMLU, each question is accompanied by four choices, and the answer is one of the four choices.

• MMLU-Pro [Wang et al., 2024d] is an enhanced dataset designed to extend the mostly knowledge-
driven MMLU benchmark by integrating more challenging, reasoning-focused questions and
expanding the choice set from four to ten options.

• GPQA [Rein et al., 2023] is a graduate-level, domain-specific benchmark composed of 448
expertly-authored multiple-choice questions in biology, physics, and chemistry. It aims to evaluate
the ability of language models to reason about complex scientific concepts.

• HellaSwag [Zellers et al., 2019] is a benchmark dataset designed to evaluate the commonsense
reasoning and natural language understanding capabilities of machine learning models, particularly
in the context of sentence completion tasks.
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Table 4: Performance (%) comparisons among three fine-tuning methods, where SPIN and T-SPIN
are trained on 50k annotated data from Ultrachat200k, and SFT is trained on the complete dataset. At
the average (Avg) column, we also report improvements (or degradations) over the previous iteration.
Abbreviations: MMLU-Pro → MMLUP, Winograde → WG, Instruction Following → IF.

Model Math & Logic Multi-Domain Knowledge Commonsense Reasoning IF Avg
GSM8K MATH MUSR MMLU MMLUP GPQA HellaSwag WG BBH IFEval

Mistral-7B 37.68 3.27 41.27 57.86 29.99 29.86 83.24 74.03 44.26 23.63 42.51

SFT 43.69 3.08 42.12 58.37 30.18 27.98 83.40 74.11 45.56 33.22 44.17

S
P
I
N

Iter0 39.59 2.86 41.26 57.97 30.36 29.47 83.40 74.03 44.56 22.54 42.60
Iter1 39.67 3.43 39.65 57.63 29.80 28.33 83.66 74.51 42.50 26.04 42.52(−0.08)

Iter2 39.52 3.50 39.64 57.49 29.82 28.00 83.69 73.80 41.97 25.56 42.30(−0.22)

Iter3 37.34 3.71 37.93 57.80 29.64 28.77 83.91 74.19 41.40 18.31 41.30(−1.00)

Iter4 37.15 4.56 38.59 58.05 29.90 28.73 84.05 74.43 42.88 24.90 42.32(+1.02)

T
-S
P
I
N

Iter0 39.67 3.53 40.20 57.74 30.47 28.82 83.98 74.27 44.06 24.36 42.71
Iter1 44.03 3.32 38.95 57.48 30.45 29.10 83.41 74.66 44.91 26.88 43.32(+0.61)

Iter2 44.31 3.43 38.68 57.61 30.52 30.92 83.47 75.30 45.05 26.33 43.56(+0.24)

Iter3 45.87 3.85 38.59 58.51 31.42 30.83 84.53 73.88 44.97 36.50 44.90(+1.34)

Iter4 45.92 3.94 38.46 58.55 31.34 31.06 84.60 74.51 44.90 36.90 45.02(+0.12)

(a) GSM8K (b) IFEval (c) Average Score
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Figure 6: Performance (%) comparisons between T-SPIN and SPIN on two tasks: GMS8K and IFEval
over 5 iterations. The average scores over 10 different tasks are also illustrated in the right panel.

• Winograde [Sakaguchi et al., 2021] is a large-scale dataset of 44k problems, inspired by the
original WSC design, but adjusted to improve both the scale and the hardness of the dataset.

• BBH [Suzgun et al., 2022] is a curated subset of 23 challenging tasks that span algorithmic
reasoning, language understanding, world knowledge, and multi-step logic.

• IFEval [Zhou et al., 2023] is a benchmark dataset designed to evaluate the instruction-following
capabilities of LLMs. It includes 500 carefully curated prompts annotated with 25 distinct
instruction types. The benchmark focuses on a set of “verifiable instructions” such as “write in
more than 400 words” and “mention the keyword of AI at least 3 times”.

All tasks are evaluated using the Language Model Evaluation Harness framework [Gao et al., 2024b]3,
with default evaluation settings as specified in Table 3.

B.3 Experimental results on Mistral-7B

In this part, we conduct experiments on Mistral-7B to compare the performances of T-SPIN, SPIN
and SFT. The results over 10 different tasks are displayed in Table 4. From the table, we first observe
that T-SPIN achieves a notable performance improvement over iterations, and outperforms SFT at the
iteration 3. This indicates that with less annotated data, T-SPIN can achieve better performances than
SFT that leverages more annotated samples, highlighting the effectiveness of T-SPIN in handling
the annotation shortage issue. Second, compared with SPIN, T-SPIN exhibits better performances
and stable improvements. Specifically, SPIN suffers from performance degradations at the iterations

3https://github.com/EleutherAI/lm-evaluation-harness

19



1

(a) Log-likelihood dynamics of SPIN  

(b) Log-likelihood dynamics of TSPIN  

-600

-400

-200

0

0 25 50 75 100

Iteration 1

steps (%)

real generated gap

real generated gap

-700

-400

-100

200

500

0 25 50 75 100

Iteration 0

steps (%)

-600

-400

-200

0

0 25 50 75 100

Iteration 2

steps (%)

-700

-400

-100

200

500

0 25 50 75 100

Iteration 0

steps (%)

-900

-500

-100

300

0 25 50 75 100

Iteration 2

steps (%)

-900

-500

-100

300

0 25 50 75 100

Iteration 1

steps (%)

Figure 7: The log-likelihoods of annotated samples and synthetic samples during the model training
of T-SPIN and SPIN at different iterations.

1, 2 and 3, while T-SPIN maintains a stable refinement over all iterations. To further illustrate the
instability of SPIN, we plot the performances on GSM8K, IFEval and average score in Figure 2.
As can be seen, at iteration 3, SPIN exhibits performance degradation compared to iteration 2. In
contrast, T-SPIN maintains steady improvements throughout the iterations.

B.4 Comparisons on log-likelihoods

In Section 4.2, we have reported the log-likelihood dynamics of two self-play methods at iteration
1. In the following, we examine the trend of log-likelihood changes across different iterations.
Specifically, we track the log-likelihoods of annotated samples log πθ(y|x) and synthetic samples
log πθ(y

′|x) during policy training at iterations 0, 1 and 2, and calculate the gap between them,
defined as log πθ(y|x)− log πθ(y

′|x). The results are presented in Figure 7. It is observed that at
iteration 0, for both methods, the log-likelihoods of annotated samples are higher than that of synthetic
samples, resulting in positive gaps between them. However, at iterations 1 and 2, SPIN demonstrates
an unexpected pattern: the log-likelihoods of annotated samples fall below those of synthetic samples,
resulting in negative gaps. This reversal stems from the misalignment between the reward function
employed in SPIN and the log-likelihood. Specifically, the objective function (3) of SPIN maximizes
the reward gap between annotated and synthetic samples. Due to the incorporation of a reference
policy, the reward is no longer equivalent to the log-likelihood. As a result, optimizing for high reward
during training does not guarantee an increase in log-likelihood. Importantly, since log-likelihood
underlies the generation behavior of LLM and reflects its preference for certain responses, it is
undesirable that SPIN assigns higher log-likelihoods to synthetic samples than to annotated ones. In
contrast, T-SPIN exhibits consistent behavior in terms of log-likelihood: across all iterations, the
log-likelihoods of annotated samples remain higher than those of synthetic samples. This desirable
property stems from T-SPIN’s elimination of the reference policy in its reward function, which
ensures alignment between the reward and log-likelihood.

C Case study

In this section, we provide an example including annotated responses and synthetic responses
generated at each iteration, to illustrate the progressive evolution of the model trained by T-SPIN.
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Table 5: Examples of the model fine-tuned by T-SPIN at each iteration.

Prompt → Q: Create a thank you card to an organization that helped
your community in a time of crisis.

Annotated → Dear [Organization Name],
I am writing this letter to express my sincere gratitude to
your organization for the exceptional help you provided to
our community during a time of crisis. The assistance and
support that you and your team showed to us when we were
going through difficult times are immeasurable, and we will
forever be thankful to you.
Your prompt response, the dedication of your volunteers,
and the resources that you made available to us, made a
difference in our community. Because of your efforts,
families who were affected by [the crisis] found a place
to stay, food to eat, and support to help them get back on
their feet.
It is remarkable to see how your organization came together
and worked tirelessly to provide relief to those in need.
Your kindness and empathy for our community are truly
appreciated, and it has left a lasting impact on our
residents.
Thank you once again for your unwavering support during that
trying time. Your actions demonstrate the true meaning of
community spirit and the good that can come from working
together. Your kindness will always be remembered and
cherished.
Sincerely,
[Your Name]

Proto-synthetic → 1. What is the name of the organization? 2. What is the
organization’s mission? 3. What is the organization’s
history? 4. What is the organization’s impact on the
community? 5. What is the organization’s impact on the
world? 6. What is the organization’s impact on you? 7.
What is the organization’s impact on your family? 8. What
is the organization’s impact on your friends? 9. What is
the organization’s impact on your community? 10. What is
the organization’s impact on the world?

T-SPIN Iter 0 → 1. I would like to thank the American Red Cross for their
help in the aftermath of Hurricane Katrina. The American
Red Cross provided shelter, food, and medical care to
thousands of people who were displaced by the hurricane.
They also provided emotional support to those who had
lost loved ones or their homes. The American Red Cross
is a vital organization that helps people in times of
crisis, and I am grateful for their work. 2. I would
also like to thank the Salvation Army for their assistance
during Hurricane Katrina. The Salvation Army provided
food, water, and shelter to those in need, and they also
provided emotional support to those who were struggling.
The Salvation Army is a compassionate organization that
helps people in times of crisis, and I am grateful for their
work. 3. Finally, I would like to thank the United Way
for their support during Hurricane Katrina. The United
Way provided financial assistance to those who had lost
their homes or their jobs, and they also provided emotional
support to those who were struggling. The United Way is
an organization that helps people in times of crisis, and
I am grateful for their work. Thank you to all of these
organizations for their help during Hurricane Katrina
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T-SPIN Iter 1 → 1. What is the name of the organization you are thanking?
2. What crisis did this organization help your community
with? 3. How did this organization help your community?
4. What did you learn from this experience? 5. How can
you help your community in the future?
## Extended Response:
Dear American Red Cross,
I am writing to express my deepest gratitude for the
incredible work you did during the recent hurricane that
hit our community. Your organization was instrumental in
providing relief and support to those affected by the storm.
The hurricane caused widespread damage to our area, leaving
many people without homes, food, and water. The American
Red Cross was there to provide assistance to those in
need. Your volunteers worked tirelessly to set up shelters,
distribute food and water, and provide emotional support to
those who had lost everything.
Your organization’s efforts did not go unnoticed. The
community was grateful for the help and support you provided
during this difficult time. Your actions demonstrated the
true spirit of compassion and generosity that is at the
heart of the American Red Cross.
Through this experience, I learned the importance of coming
together as a community to help those

T-SPIN Iter 2 → Dear [Organization Name],
I am writing to express my deepest gratitude for the
incredible work you did during the recent crisis that
affected our community. Your unwavering dedication and
commitment to helping those in need truly made a difference
in the lives of many.
Your organization’s quick response and willingness to go
above and beyond to provide assistance to those affected
by the crisis was truly inspiring. Your team’s tireless
efforts to provide food, shelter, and other essential
resources to those in need were a true testament to
your organization’s values and commitment to serving the
community.
Your organization’s efforts did not go unnoticed, and I am
sure that many in our community feel the same way. Your
selfless acts of kindness and generosity have touched
the hearts of many and have made a lasting impact on our
community.
Once again, thank you for your incredible work during this
difficult time. Your organization’s efforts have not gone
unnoticed and are truly appreciated.
Sincerely,
[Your Name]

T-SPIN Iter 3 → Dear [Organization Name],
I am writing to express my deepest gratitude for the
incredible work you did during the recent crisis that
affected our community. Your unwavering dedication and
commitment to helping those in need truly made a difference
in the lives of so many people.
Your organization’s quick response and willingness to go
above and beyond to provide assistance during a time of
crisis is a testament to your selflessness and compassion.
Your efforts have not gone unnoticed and are greatly
appreciated.
I am proud to be a part of a community that has such an
amazing organization like yours. Your tireless work has not
only helped those in need but has also brought our community
closer together.
Thank you again for all that you do. Your kindness and
generosity will never be forgotten.
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Sincerely,
[Your Name]

T-SPIN Iter 4 → Dear [Organization Name],
We, the residents of [insert community name], would like
to extend our deepest gratitude for your unwavering support
during the recent natural disaster that struck our town.
Your swift response and tireless efforts to provide aid and
relief to those affected by the [insert type of disaster]
were truly remarkable. Your team of volunteers worked
tirelessly to ensure that our community had access to
essential resources such as food, water, and shelter.
Your kindness and generosity did not go unnoticed and we are
forever grateful for the support you provided during this
difficult time. You have restored our faith in humanity and
have shown us that there is still good in this world.
Once again, thank you from the bottom of our hearts for all
that you have done for us. You are truly heroes and we are
blessed to have had you by our side during this crisis.
Sincerely,
[Insert community name]

D Pseudocode

In the following, we provide the pytorch pseudocode for calculating the loss function (7) of T-SPIN.

import torch.nn.functional as F

def tpsin_loss(alpha, beta, policy_real_logps, policy_generated_logps,
policy_proto_logps):
"""
Compute the loss for T-SPIN (Triplet-based Self-Play Fine-Tuning).
Args:

alpha: the regularization coefficient
beta: the trade-off parameter
policy_real_logps: Policy’s log probs for real samples
policy_generated_logps: Policy’s log probs for synthetic samples
policy_proto_logps: Policy’s log probs for proto-synthetic samples

Returns:
torch.Tensor: scalar loss value (mean over batch)

"""
# Compute advantage terms
current_advantage = policy_real_logps - policy_generated_logps
history_advantage = policy_generated_logps - policy_proto_logps

# Scale advantages to get rewards
current_rewards = alpha * current_advantage
history_rewards = alpha * history_advantage

# Convert rewards to losses using log-sigmoid
current_loss = -F.logsigmoid(current_rewards)
history_loss = -F.logsigmoid(history_rewards)

# Combine loss components
losses = current_loss + beta * history_loss

return losses.mean()
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