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ABSTRACT
Cross-domain recommendation (CDR) aims to leverage the rich

information from the source domain to enhance recommendation

performance in the target domain. However, the data imbalance

problem inherent across different domains compromises the ef-

fectiveness of CDR approaches, posing a significant challenge to

CDR. Most current CDR methodologies focus on creating better

user embeddings for the target domain, yet usually neglect the

inconsistency in user activities due to data imbalance. As a result,

the process of creating user embeddings tends to prioritize users

with more frequent interactions and leave less active users under-

served, leading these CDR methods to struggle in making accurate

recommendations for those with fewer interactions. Such bias in

creating embeddings reveals the fact that “not all embeddings are
created equal” in CDR, which serves as the primary motivation

of this study. Inspired by the recent development of contrastive

learning, this paper proposes User-aware Contrastive Learning

for Robust cross-domain recommendation (UCLR), enhancing the
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robustness of cross-domain recommendation. Specifically, our pro-

posed method consists of two sub-modules: (i) pretrained global em-

bedding, where the global user embeddings are pretrained across all

the domains; (ii) contrastive dual-stream collaborative autoencoder,

where more equal user embeddings are generated by optimizing

contrastive loss with individualized temperatures. To further im-

prove the performance of our method in each domain, we finetune

the whole framework of UCLR based on Low-Rank Adaptation

(LoRA). Theoretically, our method is equipped with a provable con-

vergence guarantee during the contrastive learning stage. Further-

more, we also conduct comprehensive experiments on real-world

datasets to validate the effectiveness of our proposed method.
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1 INTRODUCTION
Recommendation systems (RS) have been effectively implemented

in various real-world applications with the advent of the big data

era, serving as essential tools for understanding user preferences.
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Figure 1: (a) An illustration of cross-domain recommenda-
tion. Based on the historical interactions, CDR methods rec-
ommend romantic music in target domain to a user who
prefers to romanticmovies and books in source domain. (b) In
real-world applications, the frequency of interactions from
different users can be extremely diverse. Most existing CDR
methods tend to create poor embeddings for users with fewer
interactions, e.g., User B and C, resulting in inaccurate rec-
ommendations for these users in the target domain.

Most of the existing RS methods follow the structure of collabo-

rative filtering (CF), which make recommendations by creating

user and item embeddings based on the historical interactions

[10, 20, 21, 64, 65]. However, data sparsity has been a long-standing

issue for recommendation systems, as some services find it chal-

lenging to collect sufficient data. Cross-domain recommendation

(CDR) was introduced to alleviate this issue, aiming to transfer the

rich information from the source domain to improve the recom-

mendation performance in the target domain [74]. For example, as

shown in Figure 1(a), CDR methods tend to recommend romantic

music to a user based on his historical interactions in other domains.

Essentially, CDR methods aim to learn user’s preferences from rich

domains to make accurate recommendations in sparse domains. In

practical settings, AliExpress operates as a global e-commerce plat-

form catering to consumers worldwide. The variations in consumer

spending habits and levels across different countries contribute

to the issue of sparsity in interactions between consumers and

products in certain nations.

In recent years, many efforts have been made to improve the per-

formance of cross-domain recommendations [2, 3, 12, 32, 35, 40, 71].

The commonality among these methods is to create better user

embeddings based on the user-item interactions from the source

domain. However, in real-world scenarios, the frequency of in-

teractions from different users can be extremely diverse due to

data imbalance [6, 46, 55, 62]. Taking the AliExpress business as a

case study, the interaction frequency between the products on the

e-commerce platform and users from different countries exhibits

considerable variability, influenced by factors such as popularity,

usage, and pricing. As demonstrated in Figure 1(b), User A and D

exhibit frequent interactions in the source domain, in contrast to

User B and C who have notably fewer. When creating user em-

beddings with such imbalanced interactions, deep learning based

methods tend to focus more on users with frequent interactions

while overlooking those with fewer interactions, as the process of

creating embeddings invariably leans towards gradient descent in

directions that are easier to fit. Such biases will lead CDR methods

to create poor embeddings for inactive users, resulting in inaccurate

recommendations for these users in the target domain. We refer to

this observation as “not all embeddings are created equal”. Unfor-
tunately, most existing CDR methods neglect the inconsistency in

user activities, which is particularly unfriendly for users with fewer

interactions or some newly started users in real-world applications.

Hence, the above discussions motivate us to ask the following

question: “Can we develop a robust algorithm that is capable of miti-
gating the negative effects caused by data imbalance across different
users?” This paper provides an affirmative answer by proposing

a novel algorithm named User-aware Contrastive Learning for

Robust cross-domain recommendation (UCLR). Our proposed al-

gorithm consists of two sub-modules, including pretrained global

embedding and contrastive dual-stream collaborative autoencoder.

Our study focuses on investigating the multi-target CDR prob-

lem, aiming to simultaneously enhance the performance across

multiple domains. First, we adopt Matrix Factorization (MF) model

with the Bayes Personalized Ranking (BPR) loss [47] to create user

and item embeddings across all observable domains. We refer to

this BPRMFmodel as “pretrained global embedding”, where “global”

means that the user preferences are captured from all domains.

Second, we construct the dual-stream autoencoder that takes the

pretrained global user embedding both in its original form and with

random masking as inputs. After encoding the two input user em-

beddings, our goal is to push the similarity score between the user

embeddings of the same user to be higher than that between the

user embeddings of different users. However, due to the significant

variation in the quality of created user embeddings, the technical

challenge arises from the demand for varying degrees of force to ob-

tain separable embedding space. With the inspiration of the recent

development of contrastive learning [43], we propose user-aware

contrastive learning with automatic temperature individualization

to address this challenge. In contrast to conventional contrastive

learning, user-aware contrastive learning introduces an optimiz-

able individualized temperature for each user. This mechanism

adaptively adjusts the penalty strength for negative samples, effec-

tively dealing with the problem that “not all embeddings are created

equal”. We refer to this autoencoder as “contrastive dual-stream

collaborative autoencoder”.

To further enhance the performance of UCLR, we finetune the

whole framework within each domain. Given that the pretrained

global model is over-parameterized for each domain, i.e., the num-

ber of the pretrained model parameters across all domains is typ-

ically redundant for a single domain, we innovatively introduce

Low-Rank Adaptation (LoRA) [22] to finetune the whole framework

of UCLR within each domain for cross-domain recommendation.

Domain-aware LoRA finetuning method offers the dual advantages

of performance enhancement and efficiency improvement.

Our main contributions are summarized as follows:

• We propose a novel user-aware contrastive learning frame-

work with automatic temperature individualization to han-

dle the problem that “not all embeddings are created equal”

in cross-domain recommendation. Besides, our proposed
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method is specially designed with justifications, rather than

directly utilize the existing contrastive learning methods.

• Weemploy Low-RankAdaption (LoRA) to finetune thewhole

framework, leading to a significant improvement for cross-

domain recommendation.

• Theoretically, we provide a rigorous analysis to establish

the convergence guarantee of our method during the con-

trastive learning stage. Furthermore, we also conduct com-

prehensive experiments on benchmark datasets to support

our claims. Compared with the state-of-the-art methods for

single-domain or cross-domain recommendation, our pro-

posed method achieves superior performance.

2 RELATEDWORK
In this section, we briefly introduce the recent studies on cross-

domain recommendation and contrastive learning, which bear sig-

nificance to our proposed method.

2.1 Cross-Domain Recommendation
Cross-domain recommendation aims to leverage the rich informa-

tion from multiple source domains to enhance the recommendation

performance in target domain. According to the number of source

domains, cross-domain recommendation can be categorized into

three types: single-target cross-domain recommendation (STCDR),

dual-target cross-domain recommendation (DTCDR), and multi-

target cross-domain recommendation (MTCDR). Both STCDR and

DTCDR focus on just two domains. While STCDR leverages the

abundant information from the source domain to make better rec-

ommendations within the target domain [14, 26, 27, 41, 53, 57, 66,

70], DTCDR utilizes the observed information from both domains

to improve the recommendation performance across them at the

same time [2, 3, 33, 35, 36, 39, 40, 49, 71–73, 76]. However, in real-

world scenarios, we often have access to more than just two source

domains, implying that STCDR and DTCDR methods cannot fully

exploit the information from all source domains. Therefore, MTCDR

has gained significant attention in recent years, as it presents a more

general and challenging scenario. Multi-target cross-domain rec-

ommendation (MTCDR) seeks to improve the recommendation per-

formance within all domains simultaneously. Existing studies focus

on how to construct domain-shared information based on multiple

domains, with the aim of leveraging such information to enhance

the performance within each individual domain [12, 30, 32, 61, 75].

HeroGraph [12] constructs a domain-shared heterogeneous graph

based on user-item interactions across all domains and creates

graph embeddings to improve the performance. GA-MTCDR [75]

combines user embeddings across all domains by element-wise

attention to create better embeddings. Moreover, CAT-ART [32]

utilizes contrastive loss to create global user embeddings, and en-

hances the performancewithin specific domain by combining global

and local user embeddings. However, previous studies on MTCDR

ignore the imbalanced user activities.

2.2 Contrastive Learning
Contrastive learning aims to ensure that the similarity scores for

positive pairs exceed those of negative pairs, which is the corner-

stone of most existing self-supervised models [9, 16, 18, 23, 45, 52].

For a given anchor point, a commonly used contrastive loss can be

generally written as:

L𝑖 = − log

exp(sim(𝑧𝑖 , 𝑧+𝑖 )/𝜏)∑
𝑘≠𝑖 exp(sim(𝑧𝑖 , 𝑧𝑘 )/𝜏)

(1)

where 𝑧𝑖 is the feature of anchor point sample, 𝑧+
𝑖
is the feature of

positive sample and 𝑧𝑘 (𝑘 ≠ 𝑖) is the feature of negative sample, 𝜏

is the temperature parameter that controls the penalty strength on

negative samples [54, 68], and sim(·, ·) is the similarity function for

two input vectors.

In the seminal studies of contrastive learning methods [9, 18],

they directly optimize InfoNCE loss [42] to learn visual representa-

tions. To further enhance the effectiveness of contrastive learning,

a series of studies dedicate to deal with hard negative samples

[7, 11, 13, 25, 48, 58, 60, 68] or employ innovative contrasting tech-

niques [4, 15, 34, 50, 51, 56]. Additionally, several recent studies aim

to design novel contrastive losses to get better representations. For

instance, spectral decomposition on the population augmentation

graph is incorporated into contrastive learning, leading to the devel-

opment of a new contrastive loss objective [17]. In order to enable

most CL methods to break free from the dependency on large batch

sizes, a global contrastive loss is introduced to attain provable guar-

antees [67]. Considering the long-tail distribution often observed in

unsupervised learning, Qiu et al. [43] propose a novel contrastive

loss with individualized temperatures and develop a mechanism for

automatic temperature individualization. Inspired by Qiu et al. [43],

this paper introduces a user-aware contrastive learning framework

for cross-domain recommendation. Different from the contrastive

learning in Qiu et al. [43], our proposedmethod necessitates the spe-

cially designed formulation of positive and negative sample pairs

for each individual user. Consequently, this paper proposes a novel

autoencoder structure coupled with a masking mechanism, aiming

to mitigate the negative impact caused by imbalanced interactions

across different users.

3 METHODOLOGY
In this section, we introduce our proposed method named User-

aware Contrastive Learning for Robust cross-domain recommen-

dation (UCLR). First, we elaborate the problem formulation of

Multi-Target Cross-Domain Recommendation. Then, we provide

an overview of UCLR framework. Furthermore, we give details of

models consisted of UCLR and optimization methods. Finally, we

also summarize the whole algorithm procedure and provide the

convergence guarantee of user-aware contrastive learning in UCLR.

3.1 Problem Formulation
We focus on the MTCDR problem with a overlapped domain-shared

user set𝑈 , and domain-specific item sets {𝑉1, · · · ,𝑉𝑛} for multiple

domains, where 𝑛 is the number of domains. For each domain 𝑑 ,

user-item interactions are denoted by a matrix 𝑅𝑑 ∈ R |𝑈 |× |𝑉𝑑 |
,

where |𝑈 | and |𝑉𝑑 | are the number of users and items respectively.

Each element in matrix 𝑅𝑑 is represented by 𝑟𝑑
𝑖 𝑗

∈ [0, 1] indicating
whether user 𝑖 has interacted with item 𝑗 , where 𝑖 ∈ {1, · · · , |𝑈 |}
and 𝑗 ∈ {1, · · · , |𝑉𝑑 |}. The goal of MTCDR problem is to enhance

performance of recommendations over all domains simultaneously.
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3.2 Overview of UCLR Framework
The illustration of UCLR framework is shown in Figure 2. First,

we pretrain global user and item embedding matrices by adopting

BPRMF model based on user-item interactions over all domains.

Then, we develop contrastive dual-stream collaborative autoen-

coder, where one stream is to reconstruct the original global user

embedding and the another stream is to generate user embedding

that mitigate the effects from other users. In detail, the reconstruc-

tion stream takes the original global user embeddings as its input,

while the generation stream works with randomly masked user

embeddings. After encoding these two user embeddings, we apply

user-aware contrastive loss with automatic temperature individual-

ization to their latent representations of user embeddings, aiming to

push the similarity score between the same users to be higher than

that between different users. It is worth noting that individualized

temperatures are able to control different degrees of the penalty

strength for different users. Furthermore, we employ reconstruction

loss to ensure the stability of autoencoders in two streams. Finally,

to further enhance the performance within each domain, we adopt

Low-Rank Adaption (LoRA) to finetune the whole framework of

our method, as illustrated in Figure 2(b).

3.3 Pretrained Global Embedding
To fully exploit the rich information of different users across all

domains, we integrate the historical user-item interactions from

all domains and denote it as 𝑅 ∈ R |𝑈 |× (∑𝑑
𝑖=1 |𝑉𝑑 | ) . To factorize the

interaction matrix 𝑅, we create two trainable embedding matrices

E ∈ R( |𝑈 |+1)×𝑚
and I ∈ R(

∑𝑑
𝑖=1 |𝑉𝑑 |+1)×𝑚 to represent user and

item embeddings, where𝑚 denotes the number of dimensions in

the latent space. Given a user 𝑢𝑖 ∈ 𝑈 and an item 𝑣 𝑗 ∈ {𝑉1, · · · ,𝑉𝑛},
we can obtain a user embedding 𝐸𝑖 ∈ R𝑚 and an item embedding

𝐼 𝑗 ∈ R𝑚 by adopting two embedding matrices. The preference score

of the user 𝑢𝑖 to the item 𝑣 𝑗 is computed by 𝑟𝑖 𝑗 = 𝐸⊤
𝑖
𝐼 𝑗 . Then, we

employ the following BPR loss:

L
bpr

= −
∑︁
𝑖∈𝑈

∑︁
𝑗∈𝑝𝑖

∑︁
𝑘∉𝑝𝑖

log𝜎 (𝑟𝑖 𝑗 − 𝑟𝑖𝑘 )

+ 𝜆𝑈

∑︁
𝑖∈𝑈

∥𝐸𝑖 ∥2 + 𝜆𝑉

∑︁
𝑗∈{𝑉1,· · · ,𝑉𝑛 }

∥𝐼 𝑗 ∥2,
(2)

where 𝑝𝑖 is the set of items that user 𝑢𝑖 has interacted, 𝜎 (·) repre-
sents the sigmoid function, 𝜆𝑈 and 𝜆𝑉 are the regularization terms.

After pretraining two embedding matrices by BPRMF model, we

can obtain global user and item embeddings that capture the user

preferences across all domains.

3.4 Contrastive Dual-Stream Collaborative
AutoEncoder

The pretrained global embeddings are derived from the interaction

information of all users across multiple domains. Given the diverse

interaction frequencies among different users in real-world sce-

narios, there arises a problem that not all embeddings are created

equal. Such bias results in the BPR loss primarily enhancing the

embeddings for users with frequent interactions, while neglecting

those who are less active. To address this challenge, we develop

contrastive dual-stream collaborative autoencoder.

The key idea is to ensure that the embeddings generated for

the same user exhibit a higher similarity compared to those gen-

erated for different users, thereby mitigating the negative impact

of imbalanced interaction frequencies among different users. To

facilitate the understanding, we proceed to delve into the details.

Given a global set of users 𝑈 , we first obtain a pretrained global

user embedding E ∈ R |𝑈 |×𝑚
, where 𝐸𝑖 denotes user embedding

for user 𝑖 . More explicitly, E = [𝐸1, 𝐸2, · · · , 𝐸 |𝑈 | ]⊤. To eliminate

the effect caused by different users, we randomly mask some of

the user embeddings in E by replacing the original embeddings

with zero vectors according to mask ratio. The masked global user

embedding is denoted as E′ = [𝐸1, 0, · · · , 𝐸 |𝑈 | ]⊤. For example, if

we set mask ratio to 30%, it means that 30% of the user embeddings

in E will be replaced with zero vectors to obtain E′.
In order to achieve the latent representations of global user em-

beddings, we employ a dual-stream autoencoder, with user embed-

ding E and masked user embedding E′ as its inputs. After encoding
these two user embeddings, we denote their latent representations

as e and e′, respectively. Similarly, e = [𝑒1, 𝑒2, · · · , 𝑒 |𝑈 | ]⊤ where 𝑒𝑖
is the latent representation of user embedding for user 𝑖 . For each

user 𝑖 , we treat the embedding of the same user in the generation

path as a positive sample, and those of other users as negative

samples. Given the imbalanced interactions across different users,

the pretrained global user embeddings necessitate varying penalty

strengths for negative samples to ensure separable embedding space.

Specifically, user embeddings created by rare interactions are more

vulnerable to influences from other users, necessitating a smaller 𝜏

that can penalize much more on negative samples. Conversely, user

embeddings created by frequent interactions are more readily influ-

ence others, demanding a larger 𝜏 that can treat all negative samples

equally. Inspired by the recent study on contrastive learning [43],

we propose a user-aware contrastive loss with individualized tem-

perature, which is formulated as:

L𝑖
con

= −𝜏𝑖 log
exp(sim(𝑒𝑖 , 𝑒′𝑖 )/𝜏𝑖 )∑

𝑘∈𝑈 \{𝑖 } exp(sim(𝑒𝑖 , 𝑒′𝑘 )/𝜏𝑖 )
, (3)

where 𝜏𝑖 is an individual temperature for user 𝑖 . Next, we decode

the latent representations e and e′ in reconstructive and generative

stream, respectively. The reconstructive stream autoencoder aims

to enhance the ability of preserving the original pretrained global

user embedding, while the generative stream strives to generate

the user embeddings with random masking. We share the weights

of dual-stream autoencoder to obtain better and more equal user

embeddings based on the original ones. We denote the reconstruc-

tive user embeddings and generative user embeddings as Ê and

Ê′, where Ê = [𝐸1, 𝐸2, · · · , 𝐸 |𝑈 | ]⊤ and Ê′ = [𝐸′
1
, 𝐸′

2
, · · · , 𝐸′|𝑈 | ]

⊤
. To

ensure the stability of autoencoders, we also employ the following

reconstructions loss for user 𝑖:

L𝑖
rec

= ∥𝐸𝑖 − 𝐸𝑖 ∥22 + ∥𝐸′𝑖 − 𝐸𝑖 ∥22 . (4)

Finally, we jointly train our dual-stream autoencoder through the

following combined loss:

L
combined

=
∑︁
𝑖∈𝑈

(
L𝑖
con

+ 𝛼L𝑖
rec

)
. (5)

By minimizing the combined loss, we obtain better and more equal

global user embedding for cross-domain recommendation.
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Figure 2: Overall framework of UCLR. (a) shows that UCLR consists of two sub-modules: pretrained global embedding and
contrastive dual-stream collaborative autoencoder. (b) illustrates the method of domain-aware LoRA finetune in domain movie.

3.5 Domain-aware LoRA Finetune
To further improve the performance within each domain, we dedi-

cate to finetune the framework of our method based on the user-

item interations in each domain. For each domain 𝑑 , we first adopt

matrix factorization model with the BPR loss, which is formulated

as:

L𝑑
ft-bpr

= −
∑︁
𝑖∈𝑈

∑︁
𝑗∈𝑝𝑑

𝑖

∑︁
𝑘∉𝑝𝑑

𝑖

log𝜎 (𝑟𝑖 𝑗 − 𝑟𝑖𝑘 )

+ 𝜆𝑈

∑︁
𝑖∈𝑈

∥𝐸𝑖 ∥2 + 𝜆𝑉

∑︁
𝑗∈𝑉𝑑

∥𝐼 𝑗 ∥2,
(6)

where 𝑝𝑑
𝑖
is the set of items that user 𝑢𝑖 has interacted in domain

𝑑 , 𝑟𝑖 𝑗 = 𝐸𝑖
⊤𝐼 𝑗 is the preference score, and 𝜆𝑈 and 𝜆𝑉 are the reg-

ularization terms. Then we construct the combined loss in (5) for

contrastive dual-stream collaborative autoencoder. Therefore, the

final finetuning loss for domain 𝑑 can be concluded as:

L𝑑
ft
= L𝑑

ft-bpr
+ L

combined
. (7)

Nevertheless, directly optimizing model parameters with the fine-

tune loss in (7) may encounter a issue that the pretrained model

across all domains is over-parameterized for the finetuned model

within one single domain. Following the hypothesis of previous

studies [1, 31] that the learned over-parameterized models in fact re-

side on a low intrinsic dimension, we propose Low-Rank Adaption

(LoRA) [22] to finetune the whole framework of UCLR. Domain-

aware LoRA finetuning method is illustrated in Fig 2(b). Specifically,

we construct two trainable matrices 𝐴 ∈ R𝑟×𝑚 and 𝐵 ∈ R |𝑈 |×𝑟
,

where 𝑟 is the low rank that 𝑟 ≪ |𝑈 |. We denote the weight of

pretrained global user embedding as𝑊0 ∈ R |𝑈 |×𝑚
, and formulate

the domain-aware LoRA finetuning update as,𝑊 =𝑊0 +𝐵𝐴. We fix

the weight of pretrained global user embedding𝑊0 and optimize

the weight of𝐴 and 𝐵 by minimizing (7) during the finetuning stage.

As a result, we can obtain the domain-aware finetuned embedding

which is denoted as𝑊 .

Algorithm 1 User-aware contrastive learning for robust cross-

domain recommendation

1: Pretrain user and item embeddings by adopting matrix factor-

ization model with the BPR loss in (2) across all the domains

2: Sample a batch of users B ⊂ 𝑈 and achieve pretrained global

user embedding E ∈ R | B |×𝑚

3: Mask user embedding E to attain E′

4: Encode user embedding E and E′ to obtain latent representa-

tions of user embeddings e and e′

5: Compute L𝑖
con

in (3) for each user 𝐸𝑖 ∈ E (𝑖 = 1, · · · , |B|)
6: Optimize 𝜏𝑖 for each user 𝐸𝑖 ∈ E with the gradient of L𝑖

con

7: Decode latent representations e and e′ to achieve generative

and reconstructive user embedding Ê and Ê′

8: Compute the combined loss L
combined

in (5) for all users

9: Optimize the weight of contrastive dual-stream collaborative

autoencoder with the gradient of L
combined

10: Finetune the whole framework of two sub-modulues within

specific domain 𝑑 by employing LoRA with L𝑑
ft
in (7)

3.6 Algorithm Procedure
Our algorithm is summarized in Algorithm 1. To capture the user

preferences across all the domains, we adopt BPRMF model to get

pretrained global user and item embeddings in Step 1. To eliminate

the negative effects from different users with diverse frequency

of interactions, we employ user-aware contrastive learning. In
Step 3, we first mask the pretrained global user embedding ran-

domly. Then, we encoder two user embeddings in Step 4 and com-

pute the user-aware contrastive loss of their latent representations

in Step 5. Furthermore, we optimize the individualized temperature

with the gradients of user-aware contrastive loss for each user. To

control the structure of reconstructive and generative user embed-

dings, we utilize reconstruction loss to optimize the parameters of

autoencoder in Step 9. Finally, we adopt domain-aware LoRA fine-

tuning method to further enhance the performance of our method

within each domain. Theoretically, we present the following con-

vergence guarantee of user-aware contrastive learning.
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Table 1: Statistics of Datasets

Dataset Domain #Users #Items #Interactions

Amazon

Books

26507

102800 311539

Movies 14912 153361

Electronics 26933 119342

Douban

Books

1733

90096 206609

Movies 33728 967475

Music 79179 176556

Theorem 1. Under the standard assumptions of stochastic op-
timization, by setting appropriate optimizer and learning rate, the
user-aware contrastive learning can find an 𝜖-stationary solution after

O
(

|𝑈 |
| B |2𝜖4

)
iterations.

Remark 1. Theorem 1 indicates that our algorithm converges to a

stationary solution for user-aware contrastive learning. The com-

plexity O
(

|𝑈 |
| B |2𝜖4

)
is same as the previous studies on contrastive

learning [43, 67]. We highlight the differences between our theoreti-

cal analysis and theirs. Compared with Yuan et al. [67], our method

employs individualized temperature instead of global temperature

to address the problem that “not all embeddings are created equal”.

Compared with Qiu et al. [43], our negative samples in contrastive

loss are from a deterministic set depending on the user embedding

rather than a set independent from batch of samples.

4 EXPERIMENTS
To validate the effectiveness of ourmethod, we conduct experiments

to answer the following research questions (RQs):

• RQ1: How does our proposed method UCLR perform when

compared with other baselines?

• RQ2: Does our proposed method UCLR address the problem

that “not all embeddings are created equal”?

• RQ3: How do our proposed sub-modules contribute to the

performance improvement?

4.1 Datasets
To make a fair comparison with existing work, we evaluate our

method on two real-world datasets, including the Amazon dataset

[19] and the Douban dataset. Additionally, we select three do-

mains on each dataset to validate the effectiveness of our proposed

MTCDR method. For the Amazon dataset, these domains are Books,

Movies and Electronics; for the Douban dataset, they are Books,

Movies, and Music. To validate the performance of the graph-based

CDRmethod on the Amazon dataset, we preprocessed the rawAma-

zon dataset by randomly deleting 70% of the items. Table 1 provides

concrete statistics of datasets with three domains. Furthermore, the

motivation for this study is the observation that the interactions

across different users are imbalanced in real-world scenarios. As

illustrated in Figure 3, the phenomenon of data imbalance does ex-

ist in multiple domains of the Douban dataset, meaning that some

users have frequent interactions with items while others have only

a few. This phenomenon also appears in the Amazon dataset, which

is illustrated in Appendix A.
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Figure 3: Illustration of imbalanced interactions across dif-
ferent users on the Douban dataset.

4.2 Experiment Setting
Evaluation. Following the previous studies [3, 29, 40], we adopt
the widely used leave-one-out method to ensure a fair comparison.

Specifically, during the testing stage, we construct a item setV𝑑
𝑖

by randomly sampling 1 positive item and 99 negative items for

each user𝑢𝑖 in each domain 𝑑 . A positive item refers to an item that

the user 𝑢𝑖 has interacted with in testing set. Conversely, negative

items denote items that the user 𝑢𝑖 has not interacted with across

training, validation and testing sets. Subsequently, we rank 100

items in the item setV𝑑
𝑖
and evaluate the performance of top-10/20

ranking results by employing three widely-used metrics, including

Mean Reciprocal Rank (MRR) [44], Hit Ratio (HR), and Normalized

Discounted Cumulative Gain (NDCG) [24].

Baselines. To demonstrate the effectiveness of our proposed CDR

method, we compare UCLR with the following state-of-the-art

methods, including (1) single-domain recommendation: BPRMF

[47], NeuMF [21], and LightGCN [20]; (2) cross-domain recommen-

dation: HeroGraph [12], GA-MTCDR [75], and CAT-ART [32].

Implementation. For a fair comparison, we conduct all the ex-

periments by using PyTorch with python 3.7 and train the whole

pipeline of all the models on Tesla A10 GPUs. Furthermore, we

set all the embedding size to𝑚 = 128 for both single-domain rec-

ommendation and cross-domain recommendation methods. Dur-

ing training optimization, we apply a mini-batch size 𝑁 = 2048

and the Adam optimizer [28] with fixed learning rate 𝜂 = 10
−3
.

Next, we elaborate the details on our proposed method. For the

contrastive dual-stream collaborative autoencoder, we construct

the Multi-Layer Perceptron (MLP) where the size of the hidden

layer is [128, 32]. In the loss function L
combined

defined in (5) , we

set 𝛼 = 10
−3
. In the loss function L

bpr
defined in (2), we set the

regularization terms 𝜆𝑈 = 𝜆𝑉 = 10
−5
. For the individualized tem-

perature 𝜏𝑖 for each user 𝑢𝑖 in the loss functions L𝑖
con

defined in

(3), we bound the temperature parameter 𝜏𝑖 in [10−5, 1] by apply-

ing clipping technique. For a more comprehensive comparison of

the experimental results, we repeate each experiment five times

by employing different random seeds and record the average and

standard deviation of the experimental results.

3200



Not All Embeddings are Created Equal: Towards Robust Cross-domain Recommendation via Contrastive Learning WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 2: Performance (%) comparison between our proposed method and baselines on two datasets.

Model

Amazon

Domain

Metric@10 Douban

Domain

Metric@10

MRR HR NDCG MRR HR NDCG

S
i
n
g
l
e
-
d
o
m
a
i
n

BPRMF

Books 19.01 ± 0.08 32.32 ± 0.08 21.73 ± 0.06 Books 22.19 ± 1.23 37.58 ± 1.59 25.84 ± 1.31

Movies 31.51 ± 0.11 58.55 ± 0.26 37.93 ± 0.14 Movies 38.42 ± 0.41 73.00 ± 0.88 46.99 ± 0.45

Electronics 15.13 ± 0.12 32.26 ± 0.38 19.14 ± 0.17 Music 17.82 ± 0.58 33.56 ± 1.24 21.54 ± 0.72

NeuMF

Books 19.01 ± 0.10 35.56 ± 0.26 22.90 ± 0.07 Books 26.67 ± 0.58 46.66 ± 1.92 31.41 ± 0.77

Movies 31.19 ± 0.68 60.57 ± 0.74 38.14 ± 0.69 Movies 39.95 ± 0.30 71.83 ± 1.21 47.50 ± 0.52

Electronics 22.68 ± 0.22 44.92 ± 0.36 27.91 ± 0.25 Music 24.41 ± 0.13 46.67 ± 0.57 29.68 ± 0.04

LightGCN

Books 19.23 ± 0.41 36.50 ± 0.91 23.30 ± 0.53 Books 21.19 ± 0.33 41.40 ± 0.61 25.94 ± 0.11

Movies 21.26 ± 0.97 57.52 ± 0.31 29.74 ± 0.84 Movies 28.72 ± 1.16 70.69 ± 1.92 38.58 ± 1.29

Electronics 18.42 ± 0.29 38.57 ± 0.43 23.16 ± 0.31 Music 15.12 ± 0.37 36.43 ± 0.87 20.11 ± 0.48

C
r
o
s
s
-
d
o
m
a
i
n

HeroGraph

Books 19.61 ± 0.32 35.73 ± 0.47 23.39 ± 0.35 Books 19.63 ± 0.22 39.72 ± 0.58 24.34 ± 0.27

Movies 34.55 ± 0.10 61.95 ± 0.11 41.07 ± 0.10 Movies 28.10 ± 0.99 67.58 ± 1.33 37.41 ± 1.05

Electronics 23.26 ± 0.06 43.21 ± 0.25 27.97 ± 0.10 Music 17.45 ± 0.62 39.22 ± 0.45 22.54 ± 0.56

GA-MTCDR

Books 20.43 ± 0.22 37.14 ± 0.25 24.35 ± 0.22 Books 24.10 ± 0.47 43.81 ± 0.69 28.76 ± 0.49

Movies 36.92 ± 0.18 65.65 ± 0.07 43.76 ± 0.16 Movies 39.92 ± 0.42 71.80 ± 1.09 47.50 ± 0.60

Electronics 22.48 ± 0.19 42.79 ± 0.20 27.26 ± 0.19 Music 23.12 ± 0.42 44.09 ± 0.68 28.06 ± 0.44

CAT-ART

Books 21.70 ± 0.28 36.82 ± 0.43 25.27 ± 0.31 Books 27.88 ± 0.48 46.86 ± 1.07 32.40 ± 0.63

Movies 37.47 ± 0.12 65.78 ± 0.18 44.22 ± 0.11 Movies 39.87 ± 0.63 73.92 ± 1.39 47.55 ± 0.77

Electronics 22.91 ± 0.11 43.51 ± 0.18 27.77 ± 0.13 Music 23.15 ± 0.45 41.91 ± 0.12 27.59 ± 0.34

O
u
r
s

UCLR

Books 24.17 ± 0.22 42.19 ± 0.16 28.47 ± 0.20 Books 29.75 ± 0.50 48.85 ± 0.87 34.29 ± 0.59

Movies 35.97 ± 0.14 66.00 ± 0.11 43.12 ± 0.13 Movies 40.33 ± 0.19 73.28 ± 1.35 48.17 ± 0.45

Electronics 23.68 ± 0.07 46.36 ± 0.04 29.03 ± 0.05 Music 27.10 ± 0.36 48.08 ± 0.56 31.95 ± 0.31

4.3 Performance Comparisons (RQ1)
The performances of our proposed UCLR method and all the base-

line methods over two datasets across three domains according

to Metric@10 are summarized in Table 2. As can be seen, com-

pared with the baseline methods, our method achieves superior

performance across most of domains over two datasets. From the

experimental results, we have the following insightful observations:

(1) The performances of the three single-domain recommenda-

tion methods vary across different datasets. For instance, Light-

GCN performs best on Amazon-Books, while NeuMF shines on

Amazon-Electronics, and BPRMF stands out on Douban-Movies.

(2) Compared with single-domain recommendation methods, CDR

approaches indeed achieve improvements by leveraging knowledge

from multiple domains. (3) Although our proposed CDR method

does not achieve the best performance in domain Movies on the

Amazon and Douban datasets, the performance of our proposed

method is still highly competitive with the top-performing CAT-

ART method. Next, we delve into the reasons why UCLR under-

performs CAT-ART in domain Movies. Firstly, in domain Movies

of the Douban dataset, we observe that UCLR slightly lags behind

CAT-ART in terms of HR metric. It is highly probable that the

number of interactions in domain Movies is significantly higher

than the other two domains in the Douban dataset, resulting in

our created equal embeddings exhibiting a less pronounced effect.

Secondly, in domain Movies of the Amazon dataset, UCLR appears

to fall marginally behind CAT-ART on the MRR and NDCG metrics,

both indicative of recommendation ranking. This discrepancy stems

from domain Movies of the Amazon dataset containing the fewest

number of items, potentially limiting the efficacy of our created

equal embeddings in optimizing the ranking order among a small

set of items. It is also observable that the three CDR methods have

varying performances across different domains in both datasets.

Meanwhile, our proposed method outperforms the baseline meth-

ods in most scenarios, demonstrating greater robustness.

4.4 Refined Analysis (RQ2)
Given the frequent issue of imbalanced user interactions in real-

world scenarios, existing CDR methods tend to overly focus on

users with higher interactions during the construction of user em-

beddings. Consequently, this often results in the inability to provide

accurate recommendations for users with fewer interactions in the

target domain during the testing stage. To validate the existence

of such bias, we conduct detailed experiments accordingly. Specif-

ically, we focus our recommendation on the users with only one

or two interactions in the Amazon dataset. For these users with

fewer interactions, the performances of our proposed UCLRmethod

and other CDR baseline methods over the Amazon dataset across

three domains according to Metric@10 are summarized in Table 3.

Compared with other CDRmethods, our proposed method achieves

significant performance improvement for less active users. This

underscores the capability of our method to effectively address the

problem that “not all embeddings are created equal” across all do-

mains. We attribute the success of the UCLR method to user-aware

contrastive learning, which is specially designed to eliminate the

negative effects across different users. Diverging from the global

temperature employed in traditional contrastive learning, our pro-

posed user-aware contrastive learning method creates individual-

ized temperatures for each user. This allows for continual adaptive
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Table 3: Refined performance (%) comparison of CDR meth-
ods on users with fewer interactions.

Model

Amazon

Domain

Metric@10

MRR HR NDCG

Hero

Graph

Books 17.25 ± 0.17 31.66 ± 0.06 20.62 ± 0.14

Movies 31.08 ± 0.50 65.16 ± 0.91 39.20 ± 0.56

Elec. 20.19 ± 0.35 38.55 ± 0.72 24.52 ± 0.13

GA-M

TCDR

Books 17.21 ± 0.49 34.56 ± 0.15 21.27 ± 0.41

Movies 34.50 ± 0.29 61.98 ± 0.31 41.03 ± 0.30

Elec. 19.88 ± 0.14 40.41 ± 0.43 24.69 ± 0.18

CAT-

ART

Books 17.56 ± 0.74 30.53 ± 1.06 20.62 ± 0.76

Movies 34.50 ± 0.86 60.42 ± 1.35 40.68 ± 0.99

Elec. 21.48 ± 0.41 41.28 ± 0.25 26.15 ± 0.35

UCLR

Books 20.53 ± 0.28 38.52 ± 0.29 24.75 ± 0.28

Movies 35.77 ± 0.26 67.33 ± 0.19 43.25 ± 0.18

Elec. 21.88 ± 0.26 43.27 ± 0.32 26.92 ± 0.26

adjustment of the penalty strength across different users during the

embedding creation stage. In real-world scenarios, our proposed

method attentively considers the interaction information of each

user equally, thereby enhancing the attractiveness of the product

platform to less active users.

4.5 Ablation Study (RQ3)
We conduct ablation experiments to demonstrate the effectiveness

of each proposed sub-modules. To illustrate the impact of different

sub-modules, we conduct experiments on the following models:

• PGE: We adopt the pretrained global embedding model.

• PGE + AE: We further add the single-stream autoencoder

with reconstruction loss.

• PGE + CL-AE: We employ dual-stream autoencoder with

reconstruction loss and contrastive loss. For the contrastive

loss here, we adopt a global temperature parameter.

• PGE + UCL: We further incorporate user-aware contrastive

learning with individualized temperatures.

• UCLR: Finally, we employ domain-aware LoRA finetuning

method within each domain.

The ablation results over two datasets are summarized in Table 4

and Table 5. From the ablation results, we have the following in-

sightful observations: (1) We pretrain the BPRMF model across all

domains to obtain the pretrained global embedding. Compared with

the BPRMF model trained individually on each single domain as

shown in Table 2, the performance of the PGE model improve in

domain Books and Electronics on both datasets. (2) After incor-

porating the AutoEncoder, the model can mitigate the negative

impact between different domains through the reconstruction pro-

cess. However, performance issues still persist in domain Movies of

the Douban dataset. (3) With the dual-stream AutoEncoder based

on contrastive learning, we improve the performance across all

domains. However, there are still two issues: the enhancement is

not pronounced, and there is a decline in performance on domain

Movies of the Amazon dataset. (4) We refine the contrastive learn-

ing by introducing a novel user-aware contrastive loss objective,

where we transition from a global temperature to automatically

Table 4: Ablation results (%) on the Amazon dataset.

Model

Amazon

Domain

Metric@10

MRR HR NDCG

PGE

Books 19.34 ± 0.41 34.98 ± 0.54 23.03 ± 0.44

Movies 31.03 ± 0.49 59.32 ± 0.64 37.75 ± 0.53

Elec. 18.98 ± 0.18 38.22 ± 0.44 23.50 ± 0.23

PGE+

AE

Books 19.40 ± 0.06 36.52 ± 0.18 23.42 ± 0.09

Movies 33.55 ± 0.08 63.18 ± 0.08 40.58 ± 0.07

Elec. 22.18 ± 0.04 43.99 ± 0.14 27.30 ± 0.06

PGE+

CL-AE

Books 20.06 ± 0.36 37.41 ± 0.44 23.91 ± 0.39

Movies 32.84 ± 0.17 63.74 ± 0.11 40.18 ± 0.12

Elec. 22.99 ± 0.32 45.17 ± 0.43 28.22 ± 0.34

PGE+

UCL-AE

Books 22.46 ± 0.17 40.97 ± 0.06 26.83 ± 0.14

Movies 35.48 ± 0.04 65.34 ± 0.09 42.59 ± 0.02

Elec. 23.63 ± 0.09 45.20 ± 0.07 29.03 ± 0.09

UCLR

Books 24.17 ± 0.22 42.19 ± 0.16 28.47 ± 0.20

Movies 35.97 ± 0.14 66.00 ± 0.11 43.12 ± 0.13

Elec. 23.68 ± 0.07 46.36 ± 0.04 29.03 ± 0.05

optimized individual temperatures for all users. This overall lead

to a noticeable improvement in performance across all domains.

(5) Lastly, we adopt domain-aware LoRA finetuning method to

tackle the over-parameterization problem arising from transferring

from the global model to the domain-specific model. As can be

seen, it is evident that LoRA plays a crucial role in improving the

performance of UCLR. These observations underscore the pivotal

role each sub-module of the UCLR method plays in cross-domain

recommendation.

5 CONCLUSION
This paper investigates the multi-target cross-domain recommen-

dation (MTCDR) problem. In real-world scenarios, the frequency

of interactions from different users can be extremely diverse. The

bias in creating embeddings hinders most CDR methods from mak-

ing accurate recommendations for less active users. To address the

problem that “not all embeddings are created equal”, we propose

User-aware Contrastive Learning for Robust cross-domain recom-

mendation (UCLR) in this paper. First, we develop pretrained global

embedding to capture user preferences from all observable domains.

Second, we build contrastive dual-stream collaborative autoencoder,

where one stream is to reconstruct the original user embedding

and another stream is to generate more equal user embedding by

optimizing the user-aware contrastive loss with individualized tem-

peratures. Third, we adopt low-rank adaption (LoRA) to finetune

the whole framework of UCLR. Compared with the previous CDR

studies, our proposed model effectively handles the issue of imbal-

anced interactions across different users, leading to a significant

performance enhancement.
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A ADDITIONAL EXPERIMENTS
A.1 Illustration of the Amazon Dataset
As illustrated in Figure 4, data imbalance problem also exists in

multiple domains of the Amazon dataset, meaning that some users

have frequent interactions with items while others have only a few.
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Figure 4: Illustration of imbalanced interactions across dif-
ferent users on the Amazon dataset.

A.2 More Performance Comparison
In Table 8, we provide the additional performances of our proposed

UCLRmethod and all the baseline methods over two datasets across

three domains according to Metric@20. We introduce an additional

baseline, named as Recycs-DAN [53], which addresses both cross-

domain and within-domain data imbalance.

A.3 Ablation Study
We provide the ablation study on the Douban dataset in Table 5.

Table 5: Ablation results (%) on the Douban dateset.

Model

Douban

Domain

Metric@10

MRR HR NDCG

PGE

Books 25.75 ± 0.68 43.79 ± 0.87 28.73 ± 0.72

Movies 32.54 ± 0.31 68.26 ± 0.38 40.97 ± 0.34

Music 22.11 ± 0.31 43.39 ± 0.88 27.15 ± 0.40

PGE+

AE

Books 26.47 ± 1.13 44.54 ± 1.74 30.09 ± 1.28

Movies 35.24 ± 0.25 69.82 ± 1.53 43.43 ± 0.55

Music 22.52 ± 0.19 43.27 ± 0.76 27.43 ± 0.24

PGE+

CL-AE

Books 26.91 ± 0.73 44.76 ± 1.10 31.16 ± 0.80

Movies 38.44 ± 0.51 71.37 ± 1.40 46.27 ± 0.70

Music 23.86 ± 0.12 43.41 ± 0.18 28.49 ± 0.11

PGE+

UCL-AE

Books 28.97 ± 0.56 47.80 ± 0.72 33.46 ± 0.59

Movies 40.24 ± 0.35 73.12 ± 1.62 48.07 ± 0.63

Music 26.75 ± 0.47 47.88 ± 0.44 31.74 ± 0.43

UCLR

Books 29.75 ± 0.50 48.85 ± 0.87 34.29 ± 0.59

Movies 40.33 ± 0.19 73.28 ± 1.35 48.17 ± 0.45

Music 27.10 ± 0.36 48.08 ± 0.56 31.95 ± 0.31

A.4 More Baselines for Pretrained Embedding
Within the framework of UCLR, we choose BPRMF as pretrained

global embeddings. In the literature, there exist other baselines

caplable of learning better user representations, such as LightGCN

[20] and PEPNet [5]. We conduct experiments that incorporate

these baselines into our framework on the Amazon dataset, with

results presented in the Table 6.

Table 6: Performance (%) comparison on pretrained models.

Model

Amazon

Domain

Metric@10

MRR HR NDCG

UCLR with

LightGCN

Books 22.66 ± 0.10 40.13 ± 0.25 26.29 ± 0.13

Movies 34.42 ± 0.12 62.21 ± 0.11 41.03 ± 0.09

Elec. 23.11 ± 0.05 43.41 ± 0.11 27.90 ± 0.12

UCLR with

PEPNet

Books 20.41 ± 0.48 37.12 ± 0.66 24.35 ± 0.52

Movies 32.67 ± 0.58 64.74 ± 0.45 40.33 ± 0.55

Elec. 24.30 ± 0.41 46.09 ± 0.51 29.46 ± 0.43

UCLR with

BPRMF

Books 24.17 ± 0.22 42.19 ± 0.16 28.47 ± 0.20

Movies 35.97 ± 0.14 66.00 ± 0.11 43.12 ± 0.13

Elec. 23.68 ± 0.07 46.36 ± 0.04 29.03 ± 0.05

A.5 Illustration of User Temperatures
Regarding the Amazon dataset, we categorize its 26,507 users into

9 groups based on the number of interactions, arranging them from

the most to the least active, and calculate the average and standard

deviation of their temperatures for each group (See Figure 5).
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Figure 5: Illustration of user temperatures.

A.6 Running Time of UCLR
We summarize the running time of our proposed UCLR and other

three CDR baselines in Table 7.

Table 7: Running time comparison.

Method GA-MTCDR HeroGraph CAT-ART UCLR

Training 1172s 1260s 1255s 1563s

Inference 153s 151s 157s 164s
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Table 8: More performance (%) comparison between our proposed method and baselines on two datasets.

Model

Amazon

Domain

Metric@20 Douban

Domain

Metric@20

MRR HR NDCG MRR HR NDCG

S
i
n
g
l
e
-
d
o
m
a
i
n

BPRMF

Books 19.09 ± 0.07 41.54 ± 0.38 24.04 ± 0.07 Books 22.92 ± 1.20 48.14 ± 1.14 28.50 ± 1.19

Movies 32.28 ± 0.11 69.46 ± 0.16 40.69 ± 0.09 Movies 39.33 ± 0.37 85.30 ± 0.32 50.29 ± 0.28

Electronics 14.07 ± 0.05 35.93 ± 0.26 18.87 ± 0.10 Music 18.56 ± 0.52 44.25 ± 1.03 24.23 ± 0.55

NeuMF

Books 19.71 ± 0.09 45.78 ± 0.28 25.47 ± 0.05 Books 27.29 ± 0.58 54.12 ± 1.36 33.71 ± 0.71

Movies 32.05 ± 0.67 72.87 ± 0.59 41.26 ± 0.65 Movies 40.87 ± 0.26 84.96 ± 0.40 50.84 ± 0.33

Electronics 23.50 ± 0.24 56.74 ± 0.55 30.90 ± 0.30 Music 25.09 ± 0.13 56.15 ± 0.55 32.19 ± 0.03

LightGCN

Books 19.97 ± 0.42 47.35 ± 1.06 26.03 ± 0.57 Books 22.02 ± 0.30 53.54 ± 1.19 29.00 ± 0.06

Movies 22.17 ± 0.92 70.48 ± 0.38 33.04 ± 0.70 Movies 29.71 ± 1.11 84.63 ± 0.73 42.14 ± 1.05

Electronics 19.19 ± 0.28 49.63 ± 0.20 25.96 ± 0.27 Music 16.12 ± 0.34 50.98 ± 0.37 23.78 ± 0.36

C
r
o
s
s
-
d
o
m
a
i
n

HeroGraph

Books 20.34 ± 0.31 46.49 ± 0.25 26.10 ± 0.30 Books 20.45 ± 0.16 51.58 ± 0.68 27.34 ± 0.17

Movies 35.31 ± 0.10 72.85 ± 0.16 43.83 ± 0.09 Movies 29.16 ± 0.97 82.33 ± 0.88 41.18 ± 0.97

Electronics 24.05 ± 0.06 54.69 ± 0.11 30.86 ± 0.07 Music 18.29 ± 0.57 51.62 ± 0.59 25.66 ± 0.38

Recycs-DAN

Books 22.34 ± 0.16 49.91 ± 0.03 28.44 ± 0.13 Books 29.64 ± 0.50 57.79 ± 0.75 36.06 ± 0.53

Movies 35.68 ± 0.13 76.99 ± 0.08 45.10 ± 0.11 Movies 32.44 ± 0.63 85.05 ± 0.98 44.40 ± 0.66

Electronics 24.08 ± 0.13 57.64 ± 0.07 31.58 ± 0.10 Music 24.43 ± 0.33 54.34 ± 0.88 31.22 ± 0.44

GA-MTCDR

Books 21.17 ± 0.21 47.79 ± 0.35 27.04 ± 0.21 Books 24.77 ± 0.50 53.56 ± 1.07 31.21 ± 0.60

Movies 37.70 ± 0.17 76.77 ± 0.15 46.58 ± 0.11 Movies 40.78 ± 0.40 84.16 ± 0.88 50.63 ± 0.54

Electronics 23.30 ± 0.19 54.69 ± 0.20 30.26 ± 0.19 Music 23.84 ± 0.41 54.56 ± 0.47 30.70 ± 0.40

CAT-ART

Books 22.31 ± 0.27 45.83 ± 0.31 27.54 ± 0.28 Books 28.48 ± 0.47 55.46 ± 0.92 34.57 ± 0.59

Movies 38.19 ± 0.12 76.05 ± 0.10 46.82 ± 0.11 Movies 40.73 ± 0.59 84.37 ± 1.01 51.54 ± 0.65

Electronics 23.65 ± 0.10 54.19 ± 0.16 30.47 ± 0.08 Music 23.88 ± 0.38 52.35 ± 1.09 30.23 ± 0.16

O
u
r
s

UCLR

Books 24.29 ± 0.36 52.23 ± 0.21 30.52 ± 0.33 Books 30.27 ± 0.63 55.70 ± 0.54 36.19 ± 0.61

Movies 36.98 ± 0.27 77.26 ± 0.40 46.16 ± 0.30 Movies 41.19 ± 0.18 85.46 ± 0.61 51.26 ± 0.31

Electronics 24.37 ± 0.07 57.70 ± 0.03 31.82 ± 0.05 Music 27.26 ± 0.37 56.41 ± 0.31 33.85 ± 0.33

B MORE DISCUSSIONS
B.1 More Related Works
Many existing CDR methods also focus on data imbalance problem,

such as Recycs-DAN for single-target CDR [53]. They aim to ad-

dress both cross-domain imbalance and within-domain imbalance.

In contrast, the goal of our study is to address the imbalanced in-

teractions among different users. Furthermore, recent work [38]

also applies LoRA to the research of CDR. They construct domain-

specific adapter cell external to the pretrained embedding layer. In

contrast, our proposed algorithm employs LoRA to finetune the

whole model framework, aiming to decrease the scale of parameters

of pretrained global embedding.

B.2 Masking Strategy
The fundamental idea of themask strategy is to obscure information

in specified areas, thereby ensuring that such information does

not affect other regions. Most methodologies utilize a 0-1 mask

[8, 59, 63], i.e., mask_value ∈ {0, 1}, as this proves more effective

in eliminating irrelevant information.

B.3 Domain-Variant and Invariant
Representation Learning

The purpose of this study is to leverage contrastive learning to

eliminate the influence among users, thereby learning fair domain-

shared representations to accurately capture user preferences (do-

main invariant representations). As for domain-specific/variant

representations [14, 37, 69], our proposed method can also be di-

rectly applied to each domain. Delving further into methods for

enhancing domain-(in)variant representations is worthwhile to

explore in the future. It may require specially designed modifica-

tions to our proposed framework, such as the incorporation of an

attention module.

C CONVERGENCE ANALYSIS
Due to page limit, the analysis is organized in a separate document.
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