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Mathematical Optimization (1)

 Optimization Problem

 Optimization Variable: ଵ ௡

 Objective Function: ଴
௡

 Constraint Functions: ௜
௡

 ⋆ is called optimal or a solution
 ௜

⋆
௜, 

 For any with ௜ ௜, we have ଴
଴

∗

଴

௜ ௜



Mathematical Optimization (2)

 Linear Problem

 for all ௡ and all 
 Nonlinear Program
 If the optimization problem is not linear

 Convex Optimization Problem

 for all ௡ and all with 
, , 

௜ ௜ ௜

௜ ௜ ௜



Applications

 Abstraction
 represents the choice made
 ௜ ௜ represent firm requirements 

that limit the possible choices
 ଴ represents the cost of choosing 

 A solution corresponds to a choice that 
has minimum cost, among all choices 
that meet the requirements

଴

௜ ௜



Portfolio Optimization (1)

 Variables
 𝑥௜ represents the investment in the 𝑖-th asset
 𝑥 ∈ 𝐑௡ describes the overall portfolio allocation 

across the set of asset
 Constraints
 A limit on the budget the requirement 
 Investments are nonnegative
 A minimum acceptable value of expected 

return for the whole portfolio
 Objective
 Minimize the variance of the portfolio return



Portfolio Optimization (2)
 We want to spread our money over 𝑁 different 

assets; the fraction of our money we invest in 
asset 𝑛 is denoted 𝑥௡. 

 Denote the return of these investments as 
𝑎ଵ, . . . , 𝑎ே. The expected return which are usually 
calculated using some kind of historical average, 
is 𝜇ଵ, . . . , 𝜇ே. We specify some target expected 
return 𝜌, which means:

෍ 𝑥௡

ே

௡ୀଵ

ൌ 1, and 0 ൑ 𝑥௡ ൑ 1, for 𝑛 ൌ 1, . . . , 𝑁

E ෍ 𝑎௡

ே

௡ୀଵ

𝑥௡ ൌ ෍ Eሾ𝑎௡ሿ
ே

௡ୀଵ

𝑥௡ ൌ ෍ 𝜇௡

ே

௡ୀଵ

𝑥௡ ൌ 𝜇ୃ𝑥 ൒ 𝜌



Portfolio Optimization (3)
 We want to solve for the 𝑥 that achieves this level 

of return while minimizing the variance of our 
return

 Our Optimization Program

 Quadratic program with linear constraints, convex

Var ෍ 𝑎௡

ே

௡ୀଵ

𝑥௡ ൌ 𝑥ୃCov 𝑎 𝑥 ൌ 𝑥ୃ𝑅𝑥 ൌ ෍ ෍ 𝑅௠,௡

ே

௡ୀଵ

ே

௠ୀଵ

𝑥௠𝑥௡

ୃ

ୃ
௡

ே

௡ୀଵ
௡



Device Sizing

 Variables
 𝑥 ∈ 𝐑௡ describes the widths and lengths of the 

devices

 Constraints
 Limits on the device sizes 
 Timing requirements 
 A limit on the total area of the circuit 

 Objective
 Minimize the total power consumed by the 

circuit



Data Fitting

 Variables
 𝑥 ∈ 𝐑௡ describes parameters in the model

 Constraints
 Prior information
 Required limits on the parameters (such as 

nonnegativity)

 Objective
 Minimize the prediction error between the 

observed data and the values predicted by the 
model



Solving Optimization Problems

 General Optimization Problem
 Very difficult to solve
 Constraints can be very complicated, the 

number of variables can be very lage
 Methods involve some compromise, e.g., 

computation time, or suboptimal solution

 Exceptions
 Least-squares problems
 Linear programming problems
 Convex optimization problems
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Least-squares Problems (1)

 The Problem

 𝐴 ∈ 𝐑௞ൈ௡, 𝑎௜
ୃ is the 𝑖-th row of 𝐴, 𝑏 ∈ 𝐑௞

 𝑥 ∈ 𝐑௡ is the optimization variable

ଶ
ଶ

௜
ୃ

௜
ଶ௞

௜ୀଵ

How to solve it?



Least-squares Problems (1)

 The Problem

 𝐴 ∈ 𝐑௞ൈ௡, 𝑎௜
ୃ is the 𝑖-th row of 𝐴, 𝑏 ∈ 𝐑௞

 𝑥 ∈ 𝐑௡ is the optimization variable
 Setting the gradient to be 0

ଶ
ଶ

௜
ୃ

௜
ଶ௞

௜ୀଵ

ୃ  
ୃ ୃ

ୃ ିଵ ୃ



Least-squares Problems (2)

 A Set of Linear Equations

 Solving least-squares problems
 Reliable and efficient algorithms and 

software
 Computation time proportional to 

ଶ ௞ൈ௡ ; less if structured
 A mature technology

 Challenging for extremely large problems

ୃ ୃ



Using Least-squares

 Easy to Recognize
Weighted least-squares

 Different importance

௜ ௜
ୃ

௜
ଶ

௜ ௜
ୃ

௜ ௜
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Using Least-squares

 Easy to Recognize
Weighted least-squares

 Different importance
 Regularization

 More stable

௜ ௜
ୃ

௜
ଶ

௜ ௜
ୃ

௜ ௜
ଶ

௞
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Linear Programming

 The Problem

 ଵ ௠
௡, ଵ ௠

 Solving Linear Programs
 No analytical formula for solution
 Reliable and efficient algorithms and software
 Computation time proportional to 𝑛ଶ𝑚 if 𝑚 ൒ 𝑛; 

less with structure
 A mature technology
 Challenging for extremely large problems

்

௜
்

௜



Using Linear Programming

 Not as easy to recognize 
 Chebyshev Approximation Problem

௜ୀଵ,…,௞ ௜
ୃ

௜

௜ୀଵ,…,௞ ௜
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Convex Optimization

 Why Convexity?

“ The great watershed in optimization isn’t between linearity and 
nonlinearity, but convexity and nonconvexity.” 

— R. Rockafellar, SIAM Review 1993



Convex Optimization

 Why Convexity?

“ The great watershed in optimization isn’t between linearity and 
nonlinearity, but convexity and nonconvexity.” 

— R. Rockafellar, SIAM Review 1993

Local minimizers 
are also global 

minimizers.



Convex Optimization Problems (1)

 The Problem

 Functions ଴ ௠
௡

for all ௡ and all with 
, , 

 Least-squares and linear programs as 
special cases

଴

௜ ௜

௜ ௜ ௜



Convex Optimization Problems (2)

 Solving Convex Optimization 
Problems
 No analytical solution 
 Reliable and efficient algorithms (e.g., 

interior-point methods)
 Computation time (roughly) proportional 

to ଷ ଶ

 𝐹 is cost of evaluating 𝑓௜
ᇱs and their first and 

second derivatives 
 Almost a technology 



Using Convex Optimization

 Often difficult to recognize

 Many tricks for transforming 
problems into convex form

 Surprisingly many problems can be 
solved via convex optimization 



An Example (1)

 lamps illuminating patches

 Intensity ௞ at patch depends 
linearly on lamp powers ௝

𝐼௞ ൌ ෍ 𝑎௞௝

௠

௝ୀଵ

𝑝௝, 𝑎௞௝ ൌ 𝑟௞௝
ିଶmax cos𝜃௞௝, 0



An Example (2)

 Achieve desired illumination ୢୣୱ
with bounded lamp powers

௞ୀଵ,...,௡ ௞ ୢୣୱ

௝ ୫ୟ୶

How to solve it?



An Example (3)

1. Use uniform power: ௝ , vary 
2. Use least-squares

 Round ௝ if ௝ ୫ୟ୶ or ௝

3. Use weighted least-squares

 Adjust weights ௝ until ௝ ୫ୟ୶

min ෍ 𝐼௞ െ 𝐼ୢୣୱ
ଶ

௞

௜ୀଵ
ൌ ෍ ෍ 𝑎௞௝𝑝௝

௠

௝ୀଵ
െ 𝐼ୢୣୱ

ଶ௞

௜ୀଵ

min ෍ 𝐼௞ െ 𝐼ୢୣୱ
ଶ

௞

௜ୀଵ
൅ ෍ 𝑤௝

௠

௝ୀଵ

𝑝௝ െ
𝑝୫ୟ୶

2

ଶ



An Example (4)

4. Use linear programming

5. Use convex optimization

௞ୀଵ,...,௡ ௞ ୢୣୱ

௝ ୫ୟ୶

௞ୀଵ,...,௡ ௞ ୢୣୱ

௝ ୫ୟ୶

௞ୀଵ,...,௡
௞

ୢୣୱ

ୢୣୱ

௞

௝ ୫ୟ୶



An Example (5)


ଵ
௨

௞ୀଵ,...,௡
௞

ୢୣୱ

ୢୣୱ

௞

௝ ୫ୟ୶

௞ୀଵ,...,௡
௞

ୢୣୱ ୢୣୱ
௞௝ ௝

௠

௝ୀଵ

௝ ୫ୟ୶



Outline

 Mathematical Optimization

 Least-squares

 Linear Programming

 Convex Optimization

 Nonlinear Optimization

 Summary



Nonlinear Optimization

 An optimization problem when the 
objective or constraint functions are not 
linear, but not known to be convex

 Sadly, there are no effective methods 
for solving the general nonlinear 
programming problem
 Could be NP-hard

 We need compromise



Local Optimization Methods

 Find a point that minimizes ଴ among 
feasible points near it
 The compromise is to give up seeking 

the optimal 
 Fast, can handle large problems
 Differentiability 

 Require initial guess
 Provide no information about distance to 

(global) optimum
 Local optimization methods are more art 

than technology



Comparisons

Problem
Formulation

Solving the 
Problem

Local Optimization 
Methods for
Nonlinear 
Programming

Straightforward Art

Convex Optimization Art Standard



Global Optimization

 Find the global solution
 The compromise is efficiency

Worst-case complexity grows 
exponentially with problem size

Worst-case Analysis
 Whether the worst-case value is 

acceptable
 A local optimization method can be 

tried



Role of Convex Optimization in 
Nonconvex Problems

 Initialization for local optimization
 An approximate, but convex, formulation

 Convex heuristics for nonconvex 
optimization
 Sparse solutions (compressive sensing)

 Bounds for global optimization
 Relaxation
 Lagrangian relaxation
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Summary

 Mathematical Optimization
 Least-squares
 Closed-form Solution

 Linear Programming
 Efficient algorithms

 Convex Optimization
 Efficient algorithms, Modeling is an art

 Nonlinear Optimization
 Compromises, Optimization is an Art


