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Mathematical Optimization (1)

Optimization Problem
min  fo(x)
s.t.  fi(x) < b;, i=1,...,m
B Optimization Variable: x = (xq,...,xy,)
B Objective Function: f;:R" - R
B Constraint Functions: f;:R" - R
1 x* is called optimal or a solution
B f(x*)<b;,i=1,..,m
B For any z with f;(z) < b;, we have f,(z) =

fo(x™)




Mathematical Optimization (2)

Linear Problem

filax + By) = afi(x) + Bfi(y)
B forall x,yeR" and all o, €R

Nonlinear Program
B If the optimization problem is not linear

Convex Optimization Problem

filax + By) < afi(x) + ffi(y)

B for all x,ye R" and all a,5 € R with a +
f=1,a=0,=0




Applications

min  fo(x)

s.t.  fi(x) < by, i=1,...,m
Abstraction
B x represents the choice made

B f.(x) < b; represent firm requirements
that limit the possible choices

B f,(x) represents the cost of choosing x

B A solution corresponds to a choice that
has minimum cost, among all choices
that meet the requirements



Portfolio Optimization (1)

Variables
B x; represents the investment in the i-th asset

B x € R" describes the overall portfolio allocation
across the set of asset

Constraints
B A limit on the budget the requirement
B Investments are nonnegative

B A minimum acceptable value of expected
return for the whole portfolio

Objective
B Minimize the variance of the portfolio return




Portfolio Optimization (2)

[

We want to spread our money over N different
assets; the fraction of our money we invest In
asset n Is denoted x,,.

N
an =1l,and0<x, <1,forn=1,...,N
n=1

Denote the return of these investments as
a,,...,ay. The expected return which are usually
calculated using some kind of historical average,

IS uq,...,uy. We specify some target expected
return p, which means:

[ N

2
2

E Ap Xn| = E[an]xnzzﬂnxnzﬂTXZP

_n=1 . n=1 n=1



Portfolio Optimization (3)

[ We want to solve for the x that achieves this level
of return while minimizing the variance of our

return
[ N ] N N
Var Z a, x,| = x"Cov(a)x = x"Rx = Z z Roin XmXn
n=1 | m=1n=1
[1 Our Optimization Program
min x " Rx
N
ulx > p,z x, =1
5. t. n=1

0<x,<1n=1,.. N

B Quadratic program with linear constraints, convex



Device Sizing

Variables

B x € R" describes the widths and lengths of the
devices

Constraints

B Limits on the device sizes
B Timing requirements
H A limit on the total area of the circuit

Objective

B Minimize the total power consumed by the
circuit



Data Fitting

Variables
B x € R" describes parameters in the model

Constraints
B Prior information

B Required limits on the parameters (such as
nonnegativity)

Objective

B Minimize the prediction error between the

observed data and the values predicted by the
model



Solving Optimization Problemst

1 General Optimization Problem
B Very difficult to solve

B Constraints can be very complicated, the
number of variables can be very lage

B Methods involve some compromise, e.g.,
computation time, or suboptimal solution

1 Exceptions

B |east-squares problems
B Linear programming problems
B Convex optimization problems
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Least-squares Problems (1)

The Problem
k
min ||Ax — b||5 = Z (af x — bl-)2
i=1

B A eR¥" 4 is the i-th row of 4, b € R¥
B x € R" is the optimization variable

How to solve I1t?




Least-squares Problems (1)

The Problem
k
min ||Ax — b||5 = Z (af x — bl-)2
i=1

B A eR¥" 4 is the i-th row of 4, b € R¥
B x € R" is the optimization variable

Setting the gradient to be O

24T (Ax — b) = 0
— ATAx = A"b
= x=(ATA) 147D



Least-squares Problems (2)

A Set of Linear Equations
ATAx =A"b
Solving least-squares problems

B Reliable and efficient algorithms and
software

B Computation time proportional to
n’k (A € R®™); less if structured

B A mature technology

B Challenging for extremely large problems



Using Least-squares

1 Easy to Recognize
1 Weighted least-squares

k
z Wi(aiTx — bi)z
i=1

B Different importance




Using Least-squares

1 Easy to Recognize
1 Weighted least-squares

k k
2 2
D wilafx=b)" = ) (ywialx —ywib)
=1 =1
B Different importance
1 Reqgularization

k n
Z(a;x — bl-)2 + pz x?
i=1

i=1
B More stable
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Linear Programming

The Problem
min clx
S. t. aiTbei, i=1,....m

®mca,..,a, €ER" by, ..,b,, ER

Solving Linear Programs
B No analytical formula for solution
B Reliable and efficient algorithms and software

B Computation time proportional to n?m if m > n;
less with structure

B A mature technology
B Challenging for extremely large problems




Using Linear Programming

Not as easy to recognize
Chebyshev Approximation Problem

min  max |a]x — by
1=1,...,k
min ¢
— S. t. t=_rr% |a x—b‘
min ¢
— S. t. tz‘aiTx—bi‘,izl,...,k
min ¢
~ st —t<a/x—b; <t,i=1,..,k
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Convex Optimization

Why Convexity?

-

“ The great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.”

\

— R. Rockafellar, SIAM Review 1993)

Non-Convex Optimization

Convex Optimization




Convex Optimization

Why Convexity?

-
“ The great watershed in optimiz

nonlinearity, but convexity and n
L — R.

Non-Convex Optimization

Local minimizers
are also global
minimizers.

Convex Optimization




Convex Optimization Problems (1)

The Problem

min  fo(x)
s.t.  fi(x) < by, i=1,...,m

B Functions f,, ..., fm: R™ = Rare convex:

filax + py) < afi(x) + Bfi(y)

for all x,y e R" and all a,5 € R with a +
f=1,a=0,=0

B [Least-squares and linear programs as
special cases




Convex Optimization Problems (2)

Solving Convex Optimization
Problems
B No analytical solution

B Reliable and efficient algorithms (e.q.,
Interior-point methods)

B Computation time (roughly) proportional
to max{n3,n°m, F}
v Fis cost of evaluating f;'s and their first and
second derivatives

B Almost a technology



Using Convex Optimization

[1 Often difficult to recognize

[1 Many tricks for transforming
problems into convex form

1 Surprisingly many problems can be
solved via convex optimization



An Example (1)

1 m lamps illuminating n patches

lamp power p;
’
ff'

/
/
[ Tkj

\ /
\“9;{: |
\r?z
\l.nf
illumination I

B Intensity I, at patch k depends
linearly on lamp powers p;

m

_ =2
I, = Z Ak Pj Ayj = Ty; max{cos@kj, 0}
j=1



An Example (2)

1 Achieve desired illumination 14,
with bounded lamp powers

min - maxg=1, n [10g 1 — loglges|
s.t. 0=<p;<PmaxJ=1....m

How to solve I1t?




An Example (3)

1. Use uniform power: p; = p, vary p
2. Use least-sguares

k k m 2
min z (I, — Ides)2 = Z (Z AkjPj — Ides)
=1 =1 Jj=1

B Round p; If p; > ppax Or p; <0
3. Use weighted least-sguares

k m 2
min 2 1(Ik — [40s)% + Z w; (pj — pr;ax)
L= —1

J
B Adjust weights w; until 0 < p; < ppax




An Example (4)

4. Use linear programming
min maxjp=1,. nlIk Idesl

s.t. 0<p;<PmaxJj=1...,m
5. Use convex optimization

min  maxg—q,nl|logly —loglgesl
s.t. 0<p;<PmaxJj=1....,m

min max max | lo L lo Ldes
<:> k=1,.n gIdes’ g Ik

S. t. OSijpmaX,j=1,...,m



An Example (5)

min max max( L Ides)
<:> k=1,.n ’
Ides Ik

s.t. 0<p;<PmaxJj=1....m

I
> min maXg=1 . n h( i )
Ides
S. t. O0<p;<PmaxJ=1....m

B h(u) = max (u, 1) y

u
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Nonlinear Optimization

An optimization problem when the
objective or constraint functions are not
linear, but not known to be convex

Sadly, there are no effective methods
for solving the general nonlinear
programming problem

B Could be NP-hard

We need compromise



Local Optimization Methods

Find a point that minimizes f, among
feasible points near it

B The compromise iIs to give up seeking
the optimal x

Fast, can handle large problems
B Differentiability
Require Initial guess

Provide no information about distance to
(global) optimum

Local optimization methods are more art
than technology



Comparisons

Problem Solving the
Formulation Problem
Local Optimization
Methods for Straightforward Art

Nonlinear
Programming

Convex Optimization Art Standard




Global Optimization

1 Find the global solution
B The compromise is efficiency

1 Worst-case complexity grows
exponentially with problem size

1 Worst-case Analysis

B Whether the worst-case value iIs
acceptable

B A local optimization method can be
tried



Role of Convex Optimization In{gy
Nonconvex Problems

Initialization for local optimization
B An approximate, but convex, formulation

Convex heuristics for nonconvex
optimization
B Sparse solutions (compressive sensing)

Bounds for global optimization
B Relaxation
B |agrangian relaxation
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Summary

1 Mathematical Optimization

1 Least-sguares
B Closed-form Solution

1 Linear Programming
B Efficient algorithms

1 Convex Optimization
B Efficient algorithms, Modeling is an art

1 Nonlinear Optimization
B Compromises, Optimization is an Art




