Applications (I1)

Lijun Zhang
z1 j@n ju. edu. cn
http://cs.nju. edu. cn/zlj




Outline

Experiment Design
B The Relaxed Problem
B Scalarization

Projection
B Projection on a Set
B Projection on a Convex Set




Statistical Estimation

Estimate a Vector

yi=a/x+w,i=1,..,m
B w; IS Independent Gaussian random
variables with zero mean and unit variance
® qa..,a, Span R"
Maximum Likelihood Estimate
B |east-Squares Approximation

m
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min ||Ax — y||5 = Z(aiTx - ;)
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Statistical Estimation

Estimate a Vector
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Statistical Estimation

Estimation Error
e=X—Xx

B Zero mean, covariance matrix
-1

m

E = Eee' = z a;a;

=1
B £ characterizes the accuracy of the
estimation
B «-confidence level ellipsoid for x
E={z|(z-2)TE Y (z—2%) < B}
v' B is a constant that depends on n and «



Experiment Design

Setting
® We are allowed to choose aq, ...,a,,

Goal
® Choose aq,...,a, such that

-1
m
E = Eee' = (z al-air)
is small =1

A Special Case of Active Learning




Experiment Design

The Basic Problem

B The menu of possible choices for
experiments vy, ..., v,

B The total number m of experiments to be
carried out

B Let m; denote the number of
experiments that v; was choose

my;+--+tm, =m

-1 -1
m p
= z al-al-T = Z ijjU]T
i=1 j=1



Experiment Design

The Basic Problem

The menu of possible choices for
experiments vy, ..., v,

The total number m of experiments to be
carried out

Let m; denote the number of
experiments that v; was choose

Decide the value of m; to make the error
covariance E small



Experiment Design

The Basic Problem

-1
p

min(w.r.t. S%) E = ijvjva
j=1

s. t. m; =20,m; +--+m, =m
miEZ

B Variable are integers m;, ..., m,

B A vector optimization problem over the
positive semidefinite cone

B A hard combinatorial problem



Outline

Experiment Design
B The Relaxed Problem
B Scalarization

Projection
B Projection on a Set
B Projection on a Convex Set




The Relaxed Problem

Introduce 1; = m;/m

-1
p
min(w.r.t. S§) E = zmjvjv]T
=1
s. t. m; =2 0,my + -+ mp =m
m; S/
~1
p
min(w.r.t. S) E = L EA'V'V'T
.r.t. S - J Vi
j=1
S. t. /11'20;/114""_'_/11?:1

m;
m



The Relaxed Problem

When m iIs large, a good approximate
solution can be found by relaxing 4; =
m;/m

P -1
in(w.r.t. S) E—l Liviv]
min(w.r.t. S = iVjV;
j=1
S. t. 220+ A, =1

B The relaxed experiment design problem
B A convex optimization problem

B Provide a lower bound on the optimal
value of the combinatorial one



The Relaxed Problem

Let A; be the solution of the relaxed
problem

We can find a approximation solution
by m; = round(mA4,;), i=1,..,p

Correspond to this choice of my,...,m,

IS the vector .
A= Eround(m/li), i=1,..,p

When m iIs large

g - 1
A=A, ' A=Al <—,i=1,..,
51nce| i l| oL p
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Scalarization

D-optimal Design
B Minimize the determinant of the error
covariance matrix E

P -1
min log det ( AiviviT>
=1
s.t. A201"A=1
B Minimize the volume of the resulting
confidence ellipsoid
B A convex optimization problem



Scalarization

E-optimal Design

B Minimize the norm of the error covariance
matrix, i.e., the maximum eigenvalue of E

p . -1
Aivv;
i=1

s.t. 1=01"1=1

min

B Minimize the diameter of the confidence
ellipsoid

B A convex optimization problem



Scalarization

E-optimal Design
B Minimize the norm of the error covariance
matrix, i.e., the maximum eigenvalue of E

14 . -1
Aivivi
=1

s.t. 1201"2=1
B Minimize the diameter of the confidence

ellipsoid
B A convex optimization problem

max ¢
SDP p

—> s.t Aviv! =t

=1
A=01"1=1

min




Scalarization

A-optimal Design

B Minimize the trace of the error
covariance matrix E

-1
. p T
min tr( Aiv;v; >

i=1
s.t. 1=01"1=1

B Minimize the dimensions of the enclosing
box around the confidence ellipsoid

B A convex optimization problem



Scalarization

A-optimal Design

B Minimize the trace of the error
covariance matrix E

v SDP  min 1Tu

p

Lv:v] e
s. t. ol TV TRl s 0k =1,...n
! elI U |
A=01"1=1

B Minimize the dimensions of the enclosing
box around the confidence ellipsoid

B A convex optimization problem



Optimal Experiment Design antiyy’
Duality N

The Dual of D-optimal Design
max logdetWW +nlogn
s.t. vWv; <1,i=1,..,p

B WeS" and domain S%,

B W determines the minimum volume
ellipsoid {x|x'W*x < 1} that contains v, ..., v,

B Complementary Slackness
A(1—v/W* ) =0,i=1,..,p
B The optimal design only uses the

experiments v; which lie on the surface of
the minimum volume ellipsoid



Optimal Experiment Design antiyy’
Duality &

The Dual of E-optimal Design

max ftrWW
S. t. vl-TWvl-Sl,i:l,...,p
W =0
mWesS"

The Dual of A-optimal Design

max (tr W1/2)2
s.t. vWv; <1,i=1,..,p

B W eS" and domain S



Example

A Problem with x € R4, and p = 20
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//’F—_O T _-““‘«_
7 O \‘-\
/ © ~
| O \\\
: o ~ S
\ CC)> ~
N Sy
O
o + o) ™~
/\2:05 ~ (g) \\
\\\ @) \
~ @)
T~ 000 /

Figure 7.9 Experiment design example. The 20 candidate measurement vec-
tors are indicated with circles. The D-optimal design uses the two measure-
ment vectors indicated with solid circles, and puts an equal weight \; = 0.5
on each of them. The ellipsoid is the minimum volume ellipsoid centered at

the origin, that contains the points v;.



Example

A Problem with x € R4, and p = 20

r\OD\ b T~
C“l -~
[0) ~
TEy =~
= o
e 8 ~
o _ + 0 -
A.? =0.2 o T~
E ~ "NO - F ~
~o_ o°
~9.00°

/\3 =08 ==

Figure 7.10 The FE-optimal design uses two measurement vectors. The
dashed lines are (part of) the boundary of the ellipsoid {z | 2 W*z < 1}
where W™ is the solution of the dual problem (7.30).



Example

A Problem with x € R4, and p = 20
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Figure 7.11 The A-optimal design uses three measurement vectors. The
dashed line shows the ellipsoid {z | 7 W*z < 1} associated with the solution
of the dual problem (7.31).



Example

A Problem with x € R4, and p = 20
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Figure 7.12 Shape of the 90% confidence ellipsoids for D-optimal, A-optimal,
E-optimal, and uniform designs.
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Projection on a Set

The distance of a point x, € R™ to a
closed set € € R™, In the norm |||

dist(xg, C) = inf{||x, — x]|||x € C}
B The infimum is always achieved
Projection of x, on C
B Any point z € C which Is closest to x,
1z = xoll = dist(xo, C)
B Can be more than one projection of x, on C

B If C i1s closed and convex, and the norm is
strictly convex, there is exactly one




Projection on a Set

The distance of a point x, € R™ to a
closed set € € R™, In the norm |||

dist(xg, C) = inf{||x, — x]|||x € C}
B The infimum is always achieved
P-:R" — R" to denote the projection

of x, on C
Pc(xo) S C, ”xo — Pc(xo)” — diSt(xo, C)

P¢(xo) = argmin{||x — x,|||x € C}

B We refer to P, as projection on C



Example

Projection on the Unit Square in R?

B Consider the boundary of the unit square
in R?, i.e., C = {x € R?|||x]l, = 1}, take x, = 0

B In the ¢;-norm, the four points (1,0),
(0,—1), (—1,0), and (0,1) are closest to x, =
0, with distance 1, so we have dist(xg, C) =
1 in the £;-norm

B In the Y,-norm, all points in C lie at a
distance 1 from x,, and dist(x,,C) =1



Example

Projection onto Rank-k Matrices

B The set of m X n matrices with rank less
than or equal to k

C ={X € R™"|rank X < k}
with k < min{m, n}
B The Projection of X, € R™"™ on C in |||,
v’ SVD of X, r

_ T
Xo = E o;U;V;

=1

min{k,r} -
Pc(x9) = 2 . oY
1=
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Projection on a Convex Set

1 C I1s Convex

B Represent C by a set of linear
equalities and convex inequalities

Ax = b, fi(x)<0,i=1,..,m
1 Projection of x, on C

min ||x — x|
s.t. fi(x)<0,i=1,..,m
Ax =0b

B A convex optimization problem
B Feasible If and only If C Is nonempty




Example

Euclidean Projection on a Polyhedron
B Projection of x, on C = {x|Ax < b}
min ||x — xpll;
s.t. Ax<Db
B Projection of x, on C = {x|a'x = b}
(b—a'xy)a
lall3
B Projection of x, on C = {x|a"x < b}

( (b—a'xy)a
lall5

X0, a'xo <b

Pc(xg) = xo +

a'xg>b
Pc(xg) =4 ’




Example

Euclidean Projection on a Polyhedron
B Projection of x, on C = {x|l < x < u}

( lk! X0k < lk
Pc(x0)k = { %ok e < xox < Uy
\ Ug, Uy, < Xok

Property of Euclidean Projection
B (C is Convex

[Pc(x) = Pc()l2 < llx — vl
for all x, y



Example

Euclidean Projection on a Proper Cone

[ Projection of Xo ON a proper cone K
min |[[x — x|l
s.t. x>0
B KKT Conditions
x =i 0, X — Xy = Z, Z Fx+ 0, z'x =0
B Introduce x, =x and x_ =z
Xg =Xy —X_, X4 =g 0, x_ 7+ 0,  xix_=0

B Decompose x, into two orthogonal elements
v" One nonnegative with respect to K
v" The other nonnegative with respect to K*



Example

K =R%
Pk (xo) = max{xgy, 0}

B Replace each negative component with 0

K =S"

n
Py (X,) = z max{0, A;} viviT
i=1

B The eigendecomposition of X, Is X, =

B Drop terms associated with negative
eigenvalues
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