Applications (II)

Lijun Zhang <u>zlj@nju.edu.cn</u> http://cs.nju.edu.cn/zlj

Outline

D Experiment Design

- The Relaxed Problem
- Scalarization

Projection

- Projection on a Set
- Projection on a Convex Set

Statistical Estimation

Estimate a Vector

 $y_i = a_i^{\mathsf{T}} x + w_i, i = 1, ..., m$

w_i is independent Gaussian random variables with zero mean and unit variance

 \blacksquare a_1, \dots, a_m span \mathbb{R}^n

Maximum Likelihood Estimate

Least-Squares Approximation

min
$$||Ax - y||_2^2 = \sum_{i=1}^m (a_i^T x - y_i)^2$$

Statistical Estimation

Estimate a Vector

 $y_i = a_i^{\mathsf{T}} x + w_i, i = 1, ..., m$

w_i is independent Gaussian random variables with zero mean and unit variance

 \blacksquare a_1, \dots, a_m span \mathbb{R}^n

Maximum Likelihood Estimate

Least-Squares Approximation

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^{\mathsf{T}}\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

Statistical Estimation

Estimation Error

$$e = \hat{x} - x$$

Zero mean, covariance matrix

$$E = \mathbf{E}ee^{\mathsf{T}} = \left(\sum_{i=1}^{m} a_i a_i^{\mathsf{T}}\right)^{-1}$$

- E characterizes the accuracy of the estimation
- \square *a*-confidence level ellipsoid for *x*

$$\mathcal{E} = \{ z | (z - \hat{x})^{\mathsf{T}} E^{-1} (z - \hat{x}) \le \beta \}$$

Setting
We are allowed to choose a₁,..., a_m
Goal
Choose a₁,..., a_m such that
E = Eee^T = (\$\sum_{i=1}^{m} a_i a_i^T \$)^{-1}\$ is small

□ A Special Case of Active Learning

□ The Basic Problem

- The menu of possible choices for experiments v_1, \dots, v_p
- The total number m of experiments to be carried out
- Let m_j denote the number of experiments that v_j was choose

$$m_1 + \dots + m_p = m$$
$$E = \left(\sum_{i=1}^m a_i a_i^{\mathsf{T}}\right)^{-1} = \left(\sum_{j=1}^p m_j v_j v_j^{\mathsf{T}}\right)^{-1}$$

□ The Basic Problem

- The menu of possible choices for experiments v_1, \dots, v_p
- The total number m of experiments to be carried out
- Let m_j denote the number of experiments that v_j was choose
- Decide the value of m_j to make the error covariance E small

□ The Basic Problem

min(w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = \left(\sum_{j=1}^{p} m_{j} v_{j} v_{j}^{\mathsf{T}}\right)^{-1}$
s.t. $m_{i} \ge 0, m_{1} + \dots + m_{p} = m$
 $m_{i} \in \mathbf{Z}$

- Variable are integers m_1, \dots, m_p
- A vector optimization problem over the positive semidefinite cone
- A hard combinatorial problem

Outline

Experiment Design

- The Relaxed Problem
- Scalarization

Projection

- Projection on a Set
- Projection on a Convex Set

The Relaxed Problem

 \Box Introduce $\lambda_i = m_i/m$ min(w.r.t. \mathbf{S}_{+}^{n}) $E = \left(\sum_{i=1}^{p} m_{j} v_{j} v_{j}^{\mathsf{T}}\right)^{\mathsf{T}}$ s.t. $m_i \ge 0, m_1 + \dots + m_p = m$ $m_i \in \mathbf{Z}$ min(w.r.t. \mathbf{S}_{+}^{n}) $E = \frac{1}{m} \left(\sum_{j=1}^{p} \lambda_{j} v_{j} v_{j}^{\mathsf{T}} \right)^{-1}$ $\lambda_i \geq 0, \lambda_1 + \dots + \lambda_p = 1$ s.t. $\lambda_i = \frac{m_i}{m}$, $m_i \in \mathbf{Z}$

The Relaxed Problem

□ When *m* is large, a good approximate solution can be found by relaxing $\lambda_i = m_i/m$ min(w.r.t. **S**ⁿ) $E = \frac{1}{2} \left(\sum_{i=1}^{p} \lambda_i v_i v_i^{\mathsf{T}} \right)^{-1}$

in(w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = \frac{1}{m} \left(\sum_{j=1}^{n} \lambda_{j} v_{j} v_{j}^{\mathsf{T}} \right)$
s.t. $\lambda_{i} \ge 0, \lambda_{1} + \dots + \lambda_{p} = 1$

- The relaxed experiment design problem
- A convex optimization problem
- Provide a lower bound on the optimal value of the combinatorial one

The Relaxed Problem

- Let $λ_i$ be the solution of the relaxed problem
- □ We can find a approximation solution by $m_i = round(m\lambda_i), \quad i = 1, ..., p$
- Correspond to this choice of m_1, \ldots, m_p is the vector $\tilde{\lambda}_i = \frac{1}{m} \operatorname{round}(m\lambda_i), \quad i = 1, \ldots, p$ When *m* is large $\lambda \approx \tilde{\lambda}, \quad \operatorname{since} |\lambda_i - \tilde{\lambda}_i| \leq \frac{1}{2m}, i = 1, \ldots, p$

Outline

Experiment DesignThe Relaxed Problem

Scalarization

Projection

- Projection on a Set
- Projection on a Convex Set

D-optimal Design

Minimize the determinant of the error covariance matrix E

min log det
$$\left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\mathsf{T}}\right)^{-1}$$

s.t. $\lambda \ge 0, 1^{\mathsf{T}} \lambda = 1$

- Minimize the volume of the resulting confidence ellipsoid
- A convex optimization problem

E-optimal Design

Minimize the norm of the error covariance matrix, i.e., the maximum eigenvalue of E

min
$$\left\| \left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\mathsf{T}} \right)^{-1} \right\|$$

s.t. $\lambda \ge 0, 1^{\mathsf{T}} \lambda = 1$

- Minimize the diameter of the confidence ellipsoid
- A convex optimization problem

E-optimal Design

Minimize the norm of the error covariance matrix, i.e., the maximum eigenvalue of E

$$\min \left\| \left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\mathsf{T}} \right)^{-1} \right\| \xrightarrow{\text{SDP}} \text{s.t.} \frac{t}{\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\mathsf{T}}} \ge tI$$

s.t. $\lambda \ge 0, 1^{\mathsf{T}} \lambda = 1$
 $\lambda \ge 0, 1^{\mathsf{T}} \lambda = 1$

- Minimize the diameter of the confidence ellipsoid
- A convex optimization problem

□ *A*-optimal Design

Minimize the trace of the error covariance matrix E

min
$$\operatorname{tr}\left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\mathsf{T}}\right)^{-1}$$

s.t. $\lambda \ge 0, 1^{\mathsf{T}} \lambda = 1$

- Minimize the dimensions of the enclosing box around the confidence ellipsoid
- A convex optimization problem

 \checkmark

□ A-optimal Design

Minimize the trace of the error covariance matrix E

SDP min
$$1^{\mathsf{T}}u$$

s.t. $\begin{bmatrix} \sum_{i=1}^{p} \lambda_i v_i v_i^{\mathsf{T}} & e_k \\ e_k^{\mathsf{T}} & u_k \end{bmatrix} \ge 0, k = 1, ..., n$
 $\lambda \ge 0, 1^{\mathsf{T}}\lambda = 1$

- Minimize the dimensions of the enclosing box around the confidence ellipsoid
- A convex optimization problem

Optimal Experiment Design an Duality

□ The Dual of *D*-optimal Design

- max $\log \det W + n \log n$
- s.t. $v_i^\top W v_i \le 1, i = 1, \dots, p$
- $W \in \mathbf{S}^n$ and domain \mathbf{S}_{++}^n
- W^* determines the minimum volume ellipsoid $\{x | x^\top W^* x \le 1\}$ that contains $v_1, ..., v_p$
- Complementary Slackness

$$\lambda_{i}^{*}(1 - v_{i}^{\top}W^{*}v_{i}) = 0, i = 1, ..., p$$

The optimal design only uses the experiments v_i which lie on the surface of the minimum volume ellipsoid

□ The Dual of *E*-optimal Design

 $\begin{array}{ll} \max & \operatorname{tr} W\\ \text{s.t.} & v_i^\top W v_i \leq 1, i = 1, \dots, p\\ & W \geq 0 \end{array}$

• $W \in \mathbf{S}^n$

□ The Dual of A-optimal Design max $(tr W^{1/2})^2$

s.t. $v_i^\top W v_i \leq 1, i = 1, \dots, p$

• $W \in \mathbf{S}^n$ and domain \mathbf{S}^n_+

\square A Problem with $x \in \mathbb{R}^2$, and p = 20

Figure 7.9 Experiment design example. The 20 candidate measurement vectors are indicated with circles. The *D*-optimal design uses the two measurement vectors indicated with solid circles, and puts an equal weight $\lambda_i = 0.5$ on each of them. The ellipsoid is the minimum volume ellipsoid centered at the origin, that contains the points v_i .

\square A Problem with $x \in \mathbb{R}^2$, and p = 20

Figure 7.10 The *E*-optimal design uses two measurement vectors. The dashed lines are (part of) the boundary of the ellipsoid $\{x \mid x^T W^* x \leq 1\}$ where W^* is the solution of the dual problem (7.30).

\square A Problem with $x \in \mathbb{R}^2$, and p = 20

Figure 7.11 The *A*-optimal design uses three measurement vectors. The dashed line shows the ellipsoid $\{x \mid x^T W^* x \leq 1\}$ associated with the solution of the dual problem (7.31).

\square A Problem with $x \in \mathbb{R}^2$, and p = 20

Figure 7.12 Shape of the 90% confidence ellipsoids for *D*-optimal, *A*-optimal, *E*-optimal, and uniform designs.

Outline

Experiment Design

- The Relaxed Problem
- Scalarization

□ Projection

- Projection on a Set
- Projection on a Convex Set

Projection on a Set

□ The distance of a point $x_0 \in \mathbf{R}^n$ to a closed set $C \subseteq \mathbf{R}^n$, in the norm $\|\cdot\|$

 $dist(x_0, C) = \inf\{\|x_0 - x\| | x \in C\}$

The infimum is always achieved

- $\square Projection of x_0 on C$
 - Any point $z \in C$ which is closest to x_0

 $||z - x_0|| = \operatorname{dist}(x_0, C)$

- Can be more than one projection of x_0 on C
- If C is closed and convex, and the norm is strictly convex, there is exactly one

Projection on a Set

□ The distance of a point $x_0 \in \mathbb{R}^n$ to a closed set $C \subseteq \mathbb{R}^n$, in the norm $\|\cdot\|$

 $dist(x_0, C) = \inf\{\|x_0 - x\| | x \in C\}$

The infimum is always achieved

 $\square P_C: \mathbf{R}^n \longrightarrow \mathbf{R}^n \text{ to denote the projection}$ of x_0 on C

 $P_C(x_0) \in C, ||x_0 - P_C(x_0)|| = \operatorname{dist}(x_0, C)$

 $P_C(x_0) = \arg\min\{||x - x_0|| | x \in C\}$

• We refer to P_c as projection on C

\Box Projection on the Unit Square in \mathbf{R}^2

- Consider the boundary of the unit square in \mathbb{R}^2 , i.e., $C = \{x \in \mathbb{R}^2 | ||x||_{\infty} = 1\}$, take $x_0 = 0$
- In the ℓ_1 -norm, the four points (1,0), (0,-1), (-1,0), and (0,1) are closest to $x_0 = 0$, with distance 1, so we have dist(x_0, C) = 1 in the ℓ_1 -norm
- In the ℓ_{∞} -norm, all points in *C* lie at a distance 1 from x_0 , and dist $(x_0, C) = 1$

 \checkmark

Projection onto Rank-k Matrices

The set of m × n matrices with rank less than or equal to k

$$C = \{X \in \mathbf{R}^{m \times n} | \operatorname{rank} X \le k\}$$

with $k \leq \min\{m, n\}$

The Projection of $X_0 \in \mathbf{R}^{m \times n}$ on C in $\|\cdot\|_2$

SVD of
$$X_0$$

 $X_0 = \sum_{i=1}^r \sigma_i u_i v_i^{\mathsf{T}}$

$$P_C(x_0) = \sum_{i=1}^{\min\{k,r\}} \sigma_i u_i v_i^{\mathsf{T}}$$

Outline

Experiment Design

- The Relaxed Problem
- Scalarization

□ Projection

- Projection on a Set
- Projection on a Convex Set

Projection on a Convex Set

C is Convex

Represent C by a set of linear equalities and convex inequalities

Ax = b, $f_i(x) \le 0, i = 1, ..., m$

$\square Projection of x_0 on C$

$$\begin{array}{ll} \min & \|x - x_0\| \\ \text{s.t.} & f_i(x) \leq 0, i = 1, \dots, m \\ & Ax = b \end{array}$$

A convex optimization problem
Feasible if and only if *C* is nonempty

Euclidean Projection on a Polyhedron Projection of x_0 on $C = \{x | Ax \leq b\}$ min $||x - x_0||_2$ s.t. $Ax \leq b$ Projection of x_0 on $C = \{x | a^T x = b\}$ $P_C(x_0) = x_0 + \frac{(b - a^{\top} x_0)a}{\|a\|_2^2}$ Projection of x_0 on $C = \{x | a^T x \leq b\}$ $P_{C}(x_{0}) = \begin{cases} x_{0} + \frac{(b - a' x_{0})a}{\|a\|_{2}^{2}}, a^{\mathsf{T}}x_{0} > b\\ x_{0}, & a^{\mathsf{T}}x_{0} \le b \end{cases}$

■ Euclidean Projection on a Polyhedron ■ Projection of x_0 on $C = \{x | l \leq x \leq u\}$

$$P_{C}(x_{0})_{k} = \begin{cases} l_{k}, & x_{0k} \leq l_{k} \\ x_{0k}, & l_{k} \leq x_{0k} \leq u_{k} \\ u_{k}, & u_{k} \leq x_{0k} \end{cases}$$

Property of Euclidean Projection
 C is Convex

 $\|P_{C}(x) - P_{C}(x)\|_{2} \le \|x - y\|_{2}$ for all x, y

Euclidean Projection on a Proper Cone
 Projection of x₀ on a proper cone K

 $\begin{array}{ll} \min & \|x - x_0\|_2 \\ \text{s.t.} & x \geq_K 0 \end{array}$

KKT Conditions

 $x \ge_K 0, \quad x - x_0 = z, \quad z \ge_{K^*} 0, \quad z^\top x = 0$ Introduce $x_+ = x$ and $x_- = z$

 $x_0 = x_+ - x_-, \qquad x_+ \geq_K 0, \qquad x_- \geq_{K^*} 0, \qquad x_+^\top x_- = 0$

- Decompose x_0 into two orthogonal elements
 - ✓ One nonnegative with respect to K
 - ✓ The other nonnegative with respect to K^*

 $\square K = \mathbf{R}^n_+$

$$P_K(x_0)_k = \max\{x_{0k}, 0\}$$

Replace each negative component with 0

$$\square K = \mathbf{S}_{+}^{n}$$

$$P_{K}(X_{0}) = \sum_{i=1}^{n} \max\{0, \lambda_{i}\} v_{i} v_{i}^{\top}$$

- The eigendecomposition of X_0 is $X_0 = \sum_{i=1}^n \lambda_i v_i v_i^{\mathsf{T}}$
- Drop terms associated with negative eigenvalues

Summary

Experiment Design

- The Relaxed Problem
- Scalarization

Projection

- Projection on a Set
- Projection on a Convex Set