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 Estimate a Vector

 is independent Gaussian random 
variables with zero mean and unit variance
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Statistical Estimation

 Estimation Error 

 Zero mean, covariance matrix 

 characterizes the accuracy of the 
estimation 

 -confidence level ellipsoid for 

 𝛽 is a constant that depends on 𝑛 and 𝛼

𝑒 𝑥 𝑥

ℰ 𝑧 𝑧 𝑥 𝐸 𝑧 𝑥 𝛽

𝐸 𝐄𝑒𝑒 𝑎 𝑎



Experiment Design

 Setting
 We are allowed to choose

 Goal
 Choose such that

is small

 A Special Case of Active Learning

𝐸 𝐄𝑒𝑒 𝑎 𝑎



Experiment Design

 The Basic Problem 
 The menu of possible choices for 

experiments 
 The total number of experiments to be 

carried out
 Let denote the number of 

experiments that was choose
𝑚 ⋯ 𝑚 𝑚

𝐸 𝑎 𝑎 𝑚 𝑣 𝑣



Experiment Design

 The Basic Problem 
 The menu of possible choices for 

experiments 
 The total number of experiments to be 

carried out
 Let denote the number of 

experiments that was choose

 Decide the value of to make the error 
covariance small



Experiment Design

 The Basic Problem

 Variable are integers 
 A vector optimization problem over the 

positive semidefinite cone
 A hard combinatorial problem

min w. r. t.  𝐒 𝐸 𝑚 𝑣 𝑣          

s. t. 𝑚 0, 𝑚 ⋯ 𝑚 𝑚
𝑚 ∈ 𝐙                                    
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The Relaxed Problem

 Introduce 

min w. r. t.  𝐒 𝐸
1
𝑚 𝜆 𝑣 𝑣    

s. t. 𝜆 0, 𝜆 ⋯ 𝜆 1

𝜆
𝑚
𝑚 , 𝑚 ∈ 𝐙               

min w. r. t.  𝐒 𝐸 𝑚 𝑣 𝑣          

s. t. 𝑚 0, 𝑚 ⋯ 𝑚 𝑚
𝑚 ∈ 𝐙                                    



The Relaxed Problem

 When is large, a good approximate 
solution can be found by relaxing 

 The relaxed experiment design problem
 A convex optimization problem
 Provide a lower bound on the optimal 

value of the combinatorial one

min w. r. t.  𝐒 𝐸
1
𝑚 𝜆 𝑣 𝑣    

s. t. 𝜆 0, 𝜆 ⋯ 𝜆 1



The Relaxed Problem

 Let be the solution of the relaxed 
problem

 We can find a approximation solution 
by

 Correspond to this choice of 
is the vector

 When is large

𝑚 round 𝑚𝜆 , 𝑖 1, … , 𝑝

𝜆
1
𝑚 round 𝑚𝜆 , 𝑖 1, … , 𝑝

𝜆 𝜆, since 𝜆 𝜆
1

2𝑚 , 𝑖 1, … , 𝑝
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Scalarization

 -optimal Design
 Minimize the determinant of the error 

covariance matrix 

 Minimize the volume of the resulting 
confidence ellipsoid

 A convex optimization problem

min log det 𝜆 𝑣 𝑣

s. t. 𝜆 ≽ 0,1 𝜆 1            



Scalarization

 -optimal Design
 Minimize the norm of the error covariance 

matrix, i.e., the maximum eigenvalue of 

 Minimize the diameter of the confidence 
ellipsoid 

 A convex optimization problem

min 𝜆 𝑣 𝑣

s. t. 𝜆 ≽ 0,1 𝜆 1       



Scalarization

 -optimal Design
 Minimize the norm of the error covariance 

matrix, i.e., the maximum eigenvalue of 

 Minimize the diameter of the confidence 
ellipsoid 

 A convex optimization problem

min 𝜆 𝑣 𝑣

s. t. 𝜆 ≽ 0,1 𝜆 1       

SDP
max 𝑡                               

s. t. 𝜆 𝑣 𝑣 ≽ 𝑡𝐼

𝜆 ≽ 0,1 𝜆 1    



Scalarization

 -optimal Design
 Minimize the trace of the error 

covariance matrix 

 Minimize the dimensions of the enclosing 
box around the confidence ellipsoid

 A convex optimization problem

min tr 𝜆 𝑣 𝑣

s. t. 𝜆 ≽ 0,1 𝜆 1      



Scalarization

 -optimal Design
 Minimize the trace of the error 

covariance matrix 
 SDP

 Minimize the dimensions of the enclosing 
box around the confidence ellipsoid

 A convex optimization problem

min 1 𝑢                                                             

s. t.
𝜆 𝑣 𝑣 𝑒

𝑒 𝑢
≽ 0, 𝑘 1, … , 𝑛

𝜆 ≽ 0,1 𝜆 1                          



Optimal Experiment Design and 
Duality 

 The Dual of -optimal Design

 and domain 
 ∗ determines the minimum volume 

ellipsoid ∗ that contains 
 Complementary Slackness

 The optimal design only uses the 
experiments which lie on the surface of 
the minimum volume ellipsoid

max log det 𝑊 𝑛 log 𝑛       
s. t. 𝑣 𝑊𝑣 1, 𝑖 1, … , 𝑝 

𝜆∗ 1 𝑣 𝑊∗𝑣 0, 𝑖 1, … , 𝑝



Optimal Experiment Design and 
Duality 

 The Dual of -optimal Design



 The Dual of -optimal Design

 and domain 

max tr 𝑊 /                         
s. t. 𝑣 𝑊𝑣 1, 𝑖 1, … , 𝑝 

max tr 𝑊                                    
s. t. 𝑣 𝑊𝑣 1, 𝑖 1, … , 𝑝 

𝑊 ≽ 0                                
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Projection on a Set

 The distance of a point to a 
closed set , in the norm 

 The infimum is always achieved

 Projection of on 
 Any point which is closest to 

 Can be more than one projection of on 
 If is closed and convex, and the norm is 

strictly convex, there is exactly one

dist 𝑥 , 𝐶 inf 𝑥 𝑥 |𝑥 ∈ 𝐶

𝑧 𝑥 dist 𝑥 , 𝐶



Projection on a Set

 The distance of a point to a 
closed set , in the norm 

 The infimum is always achieved
 to denote the projection 

of on 

 We refer to as projection on 

𝑃 𝑥 ∈ 𝐶, 𝑥 𝑃 𝑥 dist 𝑥 , 𝐶

𝑃 𝑥 argmin 𝑥 𝑥 |𝑥 ∈ 𝐶

dist 𝑥 , 𝐶 inf 𝑥 𝑥 |𝑥 ∈ 𝐶



Example

 Projection on the Unit Square in 
 Consider the boundary of the unit square 

in , i.e., , take 

 In the -norm, the four points ,
, , and are closest to 

, with distance , so we have 
in the -norm

 In the -norm, all points in lie at a 
distance 1 from , and 



Example

 Projection onto Rank- Matrices
 The set of matrices with rank less 

than or equal to 

with 
 The Projection of on in 
 SVD of 𝑋

𝐶 𝑋 ∈ 𝐑 |rank 𝑋 𝑘

𝑃 𝑥 𝜎 𝑢 𝑣
,

𝑋 𝜎 𝑢 𝑣
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Projection on a Convex Set

 is Convex
 Represent by a set of linear 

equalities and convex inequalities

 Projection of on 

 A convex optimization problem
 Feasible if and only if is nonempty

𝐴𝑥 𝑏, 𝑓 𝑥 0, 𝑖 1, … , 𝑚

min 𝑥 𝑥                          
s. t. 𝑓 𝑥 0, 𝑖 1, … , 𝑚

𝐴𝑥 𝑏                           



Example

 Euclidean Projection on a Polyhedron
 Projection of on

 Projection of on

 Projection of on

min 𝑥 𝑥
s. t. 𝐴𝑥 ≼ 𝑏  

𝑃 𝑥 𝑥
𝑏 𝑎 𝑥 𝑎

𝑎

𝑃 𝑥 𝑥
𝑏 𝑎 𝑥 𝑎

𝑎
, 𝑎 𝑥 𝑏

𝑥 ,                              𝑎 𝑥 𝑏



Example

 Euclidean Projection on a Polyhedron
 Projection of on

 Property of Euclidean Projection
 is Convex

for all , 

𝑃 𝑥
𝑙 , 𝑥 𝑙          

𝑥 , 𝑙 𝑥 𝑢
𝑢 , 𝑢 𝑥         

𝑃 𝑥 𝑃 𝑥 𝑥 𝑦



Example

 Euclidean Projection on a Proper Cone
 Projection of on a proper cone 

 KKT Conditions

 Introduce and 

 Decompose into two orthogonal elements
 One nonnegative with respect to 𝐾
 The other nonnegative with respect to 𝐾∗

min 𝑥 𝑥
s. t. 𝑥 ≽ 0    

𝑥 ≽ 0, 𝑥 𝑥 𝑧, 𝑧 ≽ ∗ 0, 𝑧 𝑥 0

𝑥 𝑥 𝑥 , 𝑥 ≽ 0,   𝑥 ≽ ∗ 0, 𝑥 𝑥 0



Example



 Replace each negative component with 


 The eigendecomposition of is 

 Drop terms associated with negative 
eigenvalues

𝑃 𝑥 max 𝑥 , 0

𝑃 𝑋 max 0, 𝜆 𝑣 𝑣
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