## Applications (II)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju. edu. cn/zlj


## Outline

$\square$ Experiment Design

- The Relaxed Problem
- Scalarization
$\square$ Projection
- Projection on a Set
- Projection on a Convex Set


## Statistical Estimation

$\square$ Estimate a Vector

$$
y_{i}=a_{i}^{\top} x+w_{i}, i=1, \ldots, m
$$

- $w_{i}$ is independent Gaussian random variables with zero mean and unit variance
- $a_{1}, \ldots, a_{m}$ span $\mathbf{R}^{n}$
$\square$ Maximum Likelihood Estimate
- Least-Squares Approximation

$$
\min \|A x-y\|_{2}^{2}=\sum_{i=1}^{m}\left(a_{i}^{\top} x-y_{i}\right)^{2}
$$

## Statistical Estimation

$\square$ Estimate a Vector

$$
y_{i}=a_{i}^{\top} x+w_{i}, i=1, \ldots, m
$$

■ $w_{i}$ is independent Gaussian random variables with zero mean and unit variance

- $a_{1}, \ldots, a_{m}$ span $\mathbf{R}^{n}$
$\square$ Maximum Likelihood Estimate
- Least-Squares Approximation

$$
\hat{x}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{\top}\right)^{-1} \sum_{i=1}^{m} y_{i} a_{i}
$$

## Statistical Estimation

- 

$\square$ Estimation Error

$$
e=\hat{x}-x
$$

- Zero mean, covariance matrix

$$
E=\mathbf{E} e e^{\top}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{\top}\right)^{-1}
$$

- $E$ characterizes the accuracy of the estimation
- $\alpha$-confidence level ellipsoid for $x$

$$
\mathcal{E}=\left\{z \mid(z-\hat{x})^{\top} E^{-1}(z-\hat{x}) \leq \beta\right\}
$$

$\checkmark \beta$ is a constant that depends on $n$ and $\alpha$

## Experiment Design

$\square$ Setting

- We are allowed to choose $a_{1}, \ldots, a_{m}$
$\square$ Goal
- Choose $a_{1}, \ldots, a_{m}$ such that
is small $E=\mathbf{E} e e^{\top}=\left(\sum_{i=1}^{m} a_{i} a_{i}^{\top}\right)^{-1}$
$\square$ A Special Case of Active Learning


## Experiment Design

$\square$ The Basic Problem

- The menu of possible choices for experiments $v_{1}, \ldots, v_{p}$
■ The total number $m$ of experiments to be carried out
- Let $m_{j}$ denote the number of experiments that $v_{j}$ was choose

$$
\begin{gathered}
m_{1}+\cdots+m_{p}=m \\
E=\left(\sum_{i=1}^{m} a_{i} a_{i}^{\top}\right)^{-1}=\left(\sum_{j=1}^{p} m_{j} v_{j} v_{j}^{\top}\right)^{-1}
\end{gathered}
$$

## Experiment Design

$\square$ The Basic Problem

- The menu of possible choices for experiments $v_{1}, \ldots, v_{p}$
■ The total number $m$ of experiments to be carried out
- Let $m_{j}$ denote the number of experiments that $v_{j}$ was choose
- Decide the value of $m_{j}$ to make the error covariance $E$ small


## Experiment Design

$\square$ The Basic Problem

$$
\begin{array}{cl}
\min \left(\text { w.r.t. } \mathbf{S}_{+}^{\mathrm{n}}\right) & E=\left(\sum_{j=1}^{p} m_{j} v_{j} v_{j}^{\top}\right)^{-1} \\
\text { s.t. } & m_{i} \geq 0, m_{1}+\cdots+m_{p}=m \\
& m_{i} \in \mathbf{Z}
\end{array}
$$

- Variable are integers $m_{1}, \ldots, m_{p}$
- A vector optimization problem over the positive semidefinite cone
- A hard combinatorial problem


## Outline

$\square$ Experiment Design

- The Relaxed Problem
- Scalarization
$\square$ Projection
- Projection on a Set
- Projection on a Convex Set


## The Relaxed Problem

$\square$ Introduce $\lambda_{i}=m_{i} / m$

$$
\begin{array}{cl}
\min \left(\text { w.r.t. } \mathbf{S}_{+}^{\mathrm{n}}\right) & E=\left(\sum_{j=1}^{p} m_{j} v_{j} v_{j}^{\top}\right)^{-1} \\
\text { s.t. } & m_{i} \geq 0, m_{1}+\cdots+m_{p}=m \\
& m_{i} \in \mathbf{Z}
\end{array}
$$

$$
\begin{aligned}
\min \left(\text { w.r.t. } \mathbf{S}_{+}^{\mathrm{n}}\right) & E=\frac{1}{m}\left(\sum_{j=1}^{p} \lambda_{j} v_{j} v_{j}^{\top}\right)^{-1} \\
\text { s.t. } & \lambda_{i} \geq 0, \lambda_{1}+\cdots+\lambda_{p}=1 \\
& \lambda_{i}=\frac{m_{i}}{m}, m_{i} \in \mathbf{Z}
\end{aligned}
$$

## The Relaxed Problem

$\square$ When $m$ is large, a good approximate solution can be found by relaxing $\lambda_{i}=$ $m_{i} / m$

$$
\begin{array}{cl}
\min \left(\text { w.r.t. } \mathbf{S}_{+}^{\mathrm{n}}\right) & E=\frac{1}{m}\left(\sum_{j=1}^{p} \lambda_{j} v_{j} v_{j}^{\top}\right)^{-1} \\
\text { s.t. } & \lambda_{i} \geq 0, \lambda_{1}+\cdots+\lambda_{p}=1
\end{array}
$$

- The relaxed experiment design problem

■ A convex optimization problem

- Provide a lower bound on the optimal value of the combinatorial one


## The Relaxed Problem

$\square$ Let $\lambda_{i}$ be the solution of the relaxed problem
$\square$ We can find a approximation solution by

$$
m_{i}=\operatorname{round}\left(m \lambda_{i}\right), \quad i=1, \ldots, p
$$

$\square$ Correspond to this choice of $m_{1}, \ldots, m_{p}$ is the vector

$$
\tilde{\lambda}_{i}=\frac{1}{m} \operatorname{round}\left(m \lambda_{i}\right), \quad i=1, \ldots, p
$$

$\square$ When $m$ is large

$$
\lambda \approx \tilde{\lambda}, \quad \text { since }\left|\lambda_{i}-\tilde{\lambda}_{i}\right| \leq \frac{1}{2 m}, i=1, \ldots, p
$$

## Outline

$\square$ Experiment Design

- The Relaxed Problem

■ Scalarization
$\square$ Projection

- Projection on a Set
- Projection on a Convex Set


## Scalarization

$\square D$-optimal Design

- Minimize the determinant of the error covariance matrix $E$

$$
\begin{array}{ll}
\text { min } & \log \operatorname{det}\left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\top}\right)^{-1} \\
\text { s.t. } & \lambda \geqslant 0,1^{\top} \lambda=1
\end{array}
$$

- Minimize the volume of the resulting confidence ellipsoid
- A convex optimization problem


## Scalarization

$\square E$-optimal Design

- Minimize the norm of the error covariance matrix, i.e., the maximum eigenvalue of $E$

$$
\begin{array}{ll}
\min & \left\|\left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\top}\right)^{-1}\right\| \\
\text { s.t. } & \lambda \geqslant 0,1^{\top} \lambda=1
\end{array}
$$

■ Minimize the diameter of the confidence ellipsoid

- A convex optimization problem


## Scalarization

$\square E$-optimal Design

- Minimize the norm of the error covariance matrix, i.e., the maximum eigenvalue of $E$
$\begin{array}{cl}\text { min } & \left\|\left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\top}\right)^{-1}\right\| \stackrel{\text { sDp }}{\Rightarrow} \text { max } \text { s.t. } \sum_{\lambda \geqslant 0,}^{t} \sum_{\lambda \geqslant 0,1^{\top} \lambda=1}^{p} \lambda_{i} v_{i} v_{i}^{\top} \geqslant t I \\ \text { s.t. } & \lambda \geqslant 0,1^{\top} \lambda=1\end{array}$
■ Minimize the diameter of the confidence ellipsoid
- A convex optimization problem


## Scalarization

$\square$ A-optimal Design

- Minimize the trace of the error covariance matrix $E$

$$
\begin{array}{ll}
\min & \operatorname{tr}\left(\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\top}\right)^{-1} \\
\text { s.t. } & \lambda \geqslant 0,1^{\top} \lambda=1
\end{array}
$$

- Minimize the dimensions of the enclosing box around the confidence ellipsoid
- A convex optimization problem


## Scalarization

$\square A$-optimal Design

- Minimize the trace of the error covariance matrix $E$
$\checkmark$ SDP

$$
\begin{array}{ll}
\min & 1^{\top} u \\
\text { s.t. } & {\left[\begin{array}{ll}
\sum_{i=1}^{p} \lambda_{i} v_{i} v_{i}^{\top} & e_{k} \\
e_{k}^{\top} & u_{k}
\end{array}\right] \succcurlyeq 0, k=1, \ldots, n} \\
& \lambda \succcurlyeq 0,1^{\top} \lambda=1
\end{array}
$$

- Minimize the dimensions of the enclosing box around the confidence ellipsoid
- A convex optimization problem


## Optimal Experiment Design andin Duality

$\square$ The Dual of $D$-optimal Design

$$
\begin{array}{cl}
\max & \log \operatorname{det} W+n \log n \\
\text { s.t. } & v_{i}^{\top} W v_{i} \leq 1, i=1, \ldots, p
\end{array}
$$

■ $W \in \mathbf{S}^{n}$ and domain $\mathbf{S}_{++}^{n}$
■ $W^{*}$ determines the minimum volume ellipsoid $\left\{x \mid x^{\top} W^{*} x \leq 1\right\}$ that contains $v_{1}, \ldots, v_{p}$

- Complementary Slackness

$$
\lambda_{i}^{*}\left(1-v_{i}^{\top} W^{*} v_{i}\right)=0, i=1, \ldots, p
$$

- The optimal design only uses the experiments $v_{i}$ which lie on the surface of the minimum volume ellipsoid


## Optimal Experiment Design and Duality

$\square$ The Dual of $E$-optimal Design

$$
\begin{array}{cl}
\max & \operatorname{tr} W \\
\text { s.t. } & v_{i}^{\top} W v_{i} \leq 1, i=1, \ldots, p \\
& W \succcurlyeq 0
\end{array}
$$

■ $W \in \mathbf{S}^{n}$
$\square$ The Dual of $A$-optimal Design

$$
\begin{array}{cl}
\max & \left(\operatorname{tr} W^{1 / 2}\right)^{2} \\
\text { s.t. } & v_{i}^{\top} W v_{i} \leq 1, i=1, \ldots, p
\end{array}
$$

- $W \in \mathbf{S}^{n}$ and domain $\mathbf{S}_{+}^{n}$


## Example

## $\square$ A Problem with $x \in \mathbf{R}^{2}$, and $p=20$



Figure 7.9 Experiment design example. The 20 candidate measurement vectors are indicated with circles. The $D$-optimal design uses the two measurement vectors indicated with solid circles, and puts an equal weight $\lambda_{i}=0.5$ on each of them. The ellipsoid is the minimum volume ellipsoid centered at the origin, that contains the points $v_{i}$.

## Example

## $\square$ A Problem with $x \in \mathbf{R}^{2}$, and $p=20$



Figure 7.10 The $E$-optimal design uses two measurement vectors. The dashed lines are (part of) the boundary of the ellipsoid $\left\{x \mid x^{T} W^{\star} x \leq 1\right\}$ where $W^{\star}$ is the solution of the dual problem (7.30).

## Example

$\square$ A Problem with $x \in \mathbf{R}^{2}$, and $p=20$


Figure 7.11 The $A$-optimal design uses three measurement vectors. The dashed line shows the ellipsoid $\left\{x \mid x^{T} W^{\star} x \leq 1\right\}$ associated with the solution of the dual problem (7.31).

## Example

$\square$ A Problem with $x \in \mathbf{R}^{2}$, and $p=20$


Figure 7.12 Shape of the $90 \%$ confidence ellipsoids for $D$-optimal, $A$-optimal, $E$-optimal, and uniform designs.

## Outline

$\square$ Experiment Design

- The Relaxed Problem

■ Scalarization
$\square$ Projection

- Projection on a Set
- Projection on a Convex Set


## Projection on a Set

$\square$ The distance of a point $x_{0} \in \mathbf{R}^{n}$ to a closed set $C \subseteq \mathbf{R}^{n}$, in the norm $\|\cdot\|$

$$
\operatorname{dist}\left(x_{0}, C\right)=\inf \left\{\left\|x_{0}-x\right\| \mid x \in C\right\}
$$

- The infimum is always achieved
$\square$ Projection of $x_{0}$ on $C$
■ Any point $z \in C$ which is closest to $x_{0}$

$$
\left\|z-x_{0}\right\|=\operatorname{dist}\left(x_{0}, C\right)
$$

- Can be more than one projection of $x_{0}$ on $C$
- If $C$ is closed and convex, and the norm is strictly convex, there is exactly one


## Projection on a Set

$\square$ The distance of a point $x_{0} \in \mathbf{R}^{n}$ to a closed set $C \subseteq \mathbf{R}^{n}$, in the norm $\|\cdot\|$

$$
\operatorname{dist}\left(x_{0}, C\right)=\inf \left\{\left\|x_{0}-x\right\| \mid x \in C\right\}
$$

- The infimum is always achieved
$\square P_{C}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ to denote the projection of $x_{0}$ on $C$

$$
\begin{gathered}
P_{C}\left(x_{0}\right) \in C,\left\|x_{0}-P_{C}\left(x_{0}\right)\right\|=\operatorname{dist}\left(x_{0}, C\right) \\
P_{C}\left(x_{0}\right)=\operatorname{argmin}\left\{\left\|x-x_{0}\right\| \mid x \in C\right\}
\end{gathered}
$$

■ We refer to $P_{C}$ as projection on $C$

## Example

$\square$ Projection on the Unit Square in $\mathbf{R}^{2}$

- Consider the boundary of the unit square in $\mathbf{R}^{2}$, i.e., $C=\left\{x \in \mathbf{R}^{2} \mid\|x\|_{\infty}=1\right\}$, take $x_{0}=0$

■ In the $\ell_{1}$-norm, the four points ( 1,0 ), $(0,-1),(-1,0)$, and $(0,1)$ are closest to $x_{0}=$ 0 , with distance 1 , so we have $\operatorname{dist}\left(x_{0}, C\right)=$ 1 in the $\ell_{1}$-norm

- In the $\ell_{\infty}$-norm, all points in $C$ lie at a distance 1 from $x_{0}$, and $\operatorname{dist}\left(x_{0}, C\right)=1$


## Example

$\square$ Projection onto Rank- $k$ Matrices

- The set of $m \times n$ matrices with rank less than or equal to $k$

$$
C=\left\{X \in \mathbf{R}^{m \times n} \mid \operatorname{rank} X \leq k\right\}
$$

with $k \leq \min \{m, n\}$
■ The Projection of $X_{0} \in \mathbf{R}^{m \times n}$ on $C$ in $\|\cdot\|_{2}$
$\checkmark$ SVD of $X_{0}$

$$
\begin{gathered}
\text { of } X_{0} X_{0}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top} \\
P_{C}\left(x_{0}\right)=\sum_{i=1}^{\min \{k, r\}} \sigma_{i} u_{i} v_{i}^{\top}
\end{gathered}
$$

## Outline

$\square$ Experiment Design

- The Relaxed Problem

■ Scalarization
$\square$ Projection

- Projection on a Set
- Projection on a Convex Set


## Projection on a Convex Set

$\square C$ is Convex

- Represent $C$ by a set of linear equalities and convex inequalities

$$
A x=b, \quad f_{i}(x) \leq 0, i=1, \ldots, m
$$

$\square$ Projection of $x_{0}$ on $C$

$$
\begin{array}{cl}
\min & \left\|x-x_{0}\right\| \\
\text { s.t. } & f_{i}(x) \leq 0, i=1, \ldots, m \\
& A x=b
\end{array}
$$

■ A convex optimization problem
■ Feasible if and only if $C$ is nonempty

## Example

$\square$ Euclidean Projection on a Polyhedron
■ Projection of $x_{0}$ on $C=\{x \mid A x \leqslant b\}$

$$
\begin{array}{cc}
\min & \left\|x-x_{0}\right\|_{2} \\
\text { s.t. } & A x \preccurlyeq b
\end{array}
$$

- Projection of $x_{0}$ on $C=\left\{x \mid a^{\top} x=b\right\}$

$$
P_{C}\left(x_{0}\right)=x_{0}+\frac{\left(b-a^{\top} x_{0}\right) a}{\|a\|_{2}^{2}}
$$

- Projection of $x_{0}$ on $C=\left\{x \mid a^{\top} x \leq b\right\}$

$$
P_{C}\left(x_{0}\right)= \begin{cases}x_{0}+\frac{\left(b-a^{\top} x_{0}\right) a}{\|a\|_{2}^{2}}, & a^{\top} x_{0}>b \\ x_{0}, & a^{\top} x_{0} \leq b\end{cases}
$$

## Example

$\square$ Euclidean Projection on a Polyhedron - Projection of $x_{0}$ on $C=\{x \mid l \preccurlyeq x \preccurlyeq u\}$

$$
P_{C}\left(x_{0}\right)_{k}=\left\{\begin{array}{cl}
l_{k}, & x_{0 k} \leq l_{k} \\
x_{0 k}, & l_{k} \leq x_{0 k} \leq u_{k} \\
u_{k}, & u_{k} \leq x_{0 k}
\end{array}\right.
$$

$\square$ Property of Euclidean Projection

- $C$ is Convex

$$
\left\|P_{C}(x)-P_{C}(x)\right\|_{2} \leq\|x-y\|_{2}
$$

for all $x, y$

## Example

$\square$ Euclidean Projection on a Proper Cone
■ Projection of $x_{0}$ on a proper cone $K$

$$
\begin{array}{cl}
\min & \left\|x-x_{0}\right\|_{2} \\
\text { s.t. } & x \succcurlyeq_{K} 0
\end{array}
$$

■ KKT Conditions

$$
x \succcurlyeq_{K} 0, \quad x-x_{0}=z, \quad z \succcurlyeq_{K^{*}} 0, \quad z^{\top} x=0
$$

■ Introduce $x_{+}=x$ and $x_{-}=z$

$$
x_{0}=x_{+}-x_{-}, \quad x_{+} \succcurlyeq_{K} 0, \quad x_{-} \succcurlyeq_{K^{*}} 0, \quad x_{+}^{\top} x_{-}=0
$$

- Decompose $x_{0}$ into two orthogonal elements
$\checkmark$ One nonnegative with respect to $K$
$\checkmark$ The other nonnegative with respect to $K^{*}$


## Example

$\square K=\mathbf{R}_{+}^{n}$

$$
P_{K}\left(x_{0}\right)_{k}=\max \left\{x_{0 k}, 0\right\}
$$

■ Replace each negative component with 0
$\square K=\mathbf{S}_{+}^{n}$

$$
P_{K}\left(X_{0}\right)=\sum_{i=1}^{n} \max \left\{0, \lambda_{i}\right\} v_{i} v_{i}^{\top}
$$

- The eigendecomposition of $X_{0}$ is $X_{0}=$ $\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{\top}$
- Drop terms associated with negative eigenvalues


## Summary

$\square$ Experiment Design

- The Relaxed Problem

■ Scalarization
$\square$ Projection

- Projection on a Set
- Projection on a Convex Set

