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Basic Terminology

Unconstrained Optimization Problem
min f(x)

B f(x):R™ > R is convex

B f(x) always have a domain dom f
v dom f = R", dom f c R"

B f(x) is twice continuously differentiable
v' dom f is open, such as (0, x)

B The problem is solvable
v" There exists an optimal point x*

infy f(x) = f(x*) =p°




Basic Terminology

min f(x) ~— O

B x* Is optimal if and only If

Unconstrained Optimization Problem

~——— Equivalent

Vf(x*) =0 —
B Special cases: a closed-for

m solution

B General cases: an iterative algorithm

v A sequence of points x(®, x(
f(x®) > p* as k -

D ...e dom f with

00)

v A minimizing sequence for the problem
v' The algorithm is terminated when

f(x®)—p* <e¢



Reguirements of lterative
Algorithm

Initial Point
B A suitable starting point
x(® € dom f
Sublevel Set is Closed
S={xedomf|f(x)<f(x®)}

B Satisfied for all x(°) € dom f if the function
f Is closed
v" Continuous functions with dom f = R"

v Continuous functions with open domains
and f(x) » o as x » bddom f
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Examples

Convex Quadratic Minimization

Problem = 1 _ .
min Ex Px+q x+r

B PeStgeRYreR
B Optimality Condition
Px*+q=0
1. P>0=x*=—-P 1g (unique solution)

2. If P is singular and g € R(P), any solution
of Px* 4+ g = 0 Is optimal
3. If g € R(P), no solution, unbound below



Examples

Convex Quadratic Minimization

Problem = 1 _ .
min Ex Px+q x+r

M PeSlgeRY,reR

3. If g € R(P), no solution, unbound below
v g=a+b,a€eR(P),blR(P)

v Letx=tb 1

ExTPx +q'x+r

=tla+b)'b+r
= t||b|l5 +r



Examples

Least-Squares Problem
min ||Ax —b||5 =xTATAx — 2bTAx + bTb
B A€ R™" peR™ are problem data

B Optimality Condition
Vf(x*) = 2ATAx* —2A"h =0

B Normal Equations
ATAx* =A"b



Examples

Unconstrained Geometric
Programming

min f(x) = log (zm exp(aiTx + bi)>

=1

B Optimality Condition

m Ty* + b )a:
Vf(x*) = l;r}e’(p(al i )ai _
m exp(a]x* + b;)

v" No analytical solution

B An Iterative Algorithm
v dom f = R", any point can be chosen as x(0)



Examples

Analytic Center of Linear Inequalities
min f(x) = —Z

=

log(b; — aiTx)
1

B domf ={x|la/x<b;,i=12,..,m

B f Is called as the logarithmic barrier for
the inequalities a; x < b;

B The solution of this problem is called the
analytic center of the inequalities

B An lterative Algorithm
v x(© must satisfy a/ x(® < b,
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Strong Convexity

f () Is strongly convexon S, if3m >0
V2f(x) = ml, Vx €S

1. A Quadratic Lower Bound

B Vx,yeS 3z € [x,y]

1
O =f)+Vf)' (=) +50 =0V f(2)( —x)

> () + 7F ()T = ) + 5 Iy — 113



Strong Convexity

f () Is strongly convexon S, if3m >0
V2f(x) = ml, Vx €S
1. A Quadratic Lower Bound

FO) 2 fE+Vf@T -0+ lly—xl3  vxyes

B When m = 0, reduce to the first-order
condition of convex functions



Strong Convexity

f () Is strongly convexon S, if3m >0
V2f(x) = ml, Vx €S
1. A Quadratic Lower Bound
FO) 2 fO+Vf@TG -0+ ly-xl3,  vryes
2. A Condition for Suboptimality
FO) = min fG) + TF Tl =)+ lly = 11

1
= FO + VTG -0+ lly — 2l 7 =x~—VfQ)

1
= F() =5 IVF (I



Strong Convexity

f () Is strongly convexon S, if3m >0
V2f(x) = ml, Vx €S

1. A Quadratic Lower Bound

FO) 2 fE+Vf@T -0+ lly—xl3  vxyes
2. A Condition for Suboptimality

> f(0) = = VIR = £CO) = p. < = IVF GOl

Px = 2m 2 P« =om 2
B If the gradient is small at x, then it is nearly

optimal 1
IVF)ll; < 2me)z = f(x) —p* <€




Strong Convexity

f () Is strongly convexon S, if3m >0
V2f(x) = ml, Vx €S

3. An Upper Bound of [[x* — x||,

= f(x*)

> F() + VAT G =00 + = [l = xll3

= fx) = [IVFCOllllx™ —xl2 + —IIx — x5

P — IVFCOll2llx™ = x||2 + —IIx — x|I3



Strong Convexity

f () Is strongly convexon S, if3m >0
V2f(x) = ml, Vx €S
3. An Upper Bound of ||x* — x]||,

m
> llx™ = x|I5 < W) lx* = x|,

2
=l = xll, < = I7F Gl

B x->x",as Vf(x) -0
B The optimal point x™ is unique
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Smoothness

f()issmoothon S, ifaIM>0
V2f(x) < M, Vx €S

1. A Quadratic Upper Bound
B Vx,yeS 3z € [x,y]

1
O =f)+Vf)' (=) +50 =0V f(2)( —x)

M
<Sf@+VFETG —x)+ = lly - x5



Smoothness

f()Issmoothon S, ifaM>0
V2f(x) K MI, Vx€S

1. A Quadratic Upper Bound

M
fONSfEO+VfE' -0+ lly—xlz,  vxy€S
2. An Upper Bound of Gradients

i . M 2
mjlln fly) < mj}nf(x) +Vf()T(y—x) + ) ly — xl|3

1
= )+ VF ()T~ ) + 5 17— 2l13, T =% =3, VF ()

1
= F() =5 I7F I3



Smoothness

f()issmoothon S, ifaIM>0
V2f(x) < M, Vx €S

1. A Quadratic Upper Bound

M
fONSfEO+VfE' -0+ lly—xlz,  vxy€S
2. An Upper Bound of Gradients

1
p* < FCO) = IVF I

1
— WllVf(x)ll% < f(x) —p.



Condition Number

Condition Number of a Matrix A
Amax(4)
Amin (4)
f () I1s both strongly convex and smooth
ml < V?f(x) < M, Vx €S
B Condition number of f

M
o= — > k(V2f(x))

K(A) =

B Has a strong effect on the efficiency of
optimization methods



Condition Number

Geometric Interpretations

B Width of a convex set C € R", In the
direction g where ||q||, =1

W(C,q) =supq'z—infq'z
zeC

zelC

B Minimum width and maximum width of C
Wmin = inf W(C: CI): Wmax = Sup W(C, CI)

lgllz=1 lgll, =1
B Condition number of C 5
v' cond(C) is small implies cond(C) = Wrrzlax

C it is nearly spherical min



Condition Number

Geometric Interpretations
B a-sublevel set of f

Ce =txlf(X) =a}, p"<a=sf(x)
B f(-) Is both strongly convex and smooth
Binner < Ca < Bouter

* /2 £\ 1/2
o (2@ =) o (2a=p")
Binner = {y ly —x*|| < < M ) Bouter =Y |lly —x7[| < m

B Condition number of C,

cond(C,) <k =—



Discussions

Parameters m and M
B Known only in rare cases
B Unknown in general

They are conceptually useful

B The convergence behavior of
optimization algorithms depend on them

B Characterize the convergence rate
In Practice

B Estimate their values
B Design parameter-free algorithms
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Iterative Methods

A Minimizing Sequence

x K+ = 5 () 4 (AR (K k=1,..
B kis the the iteration number
B x®) js the output of iterative methods

B Ax®) is the step or search direction
B () >0 is the step size or step length

Shorthand

X = x + tAx



Descent Methods

Descent Methods
P < F()
B Except when x® is optimal
B vk x®eS={xedomf]|fx)<fxO)

B The search direction makes an acute
angle with the negative gradient

vf(x®) Ax® <0

+ )Y (k+1 _
f(kal) > f(xk) + Vf(x k 1)_ (xk 1 xk) N f(xk“) > f(xk)
VF(x®) Ax® > 0= Vf(x®) (xk1 —xF) >0



Descent Methods

Descent Methods
P < F()
B Except when x® is optimal
B vk x®eS={xedomf]|fx)<fxO)

B The search direction makes an acute
angle with the negative gradient

vf(x®) Ax® <0

B Ax®) js called as descent direction



General Descent Method

The Algorithm

Given a starting point x € dom f

Repeat
1. Determine a descent direction Ax.
2. Line search: Choose a step size t > 0.
3. Update: x := x + tAx.

until stopping criterion is satisfied.

Line Search
B Determine the next iterate along the line
{x + tAx|t € R}




General Descent Method

The Algorithm

Given a starting point x € dom f

Repeat
1. Determine a descent direction Ax.
2. Line search: Choose a step size t > 0.
3. Update: x := x + tAx.

until stopping criterion is satisfied.

Stopping Criterion

IVl <7
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Exact Line Search

1 Minimize f along the Ray
t = argmingsof (x + s4dx)

B The cost of the minimization problem
with one variable is low

min f(x + s4x)

s=0

B The minimizer along the ray can be
found analytically
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Backtracking Line Search

1 Most line searches used In practice
are inexact

B Approximately minimize f along the ray
B Just reduce f ‘enough’

Backtracking Line Search

given a descent direction Ax for f at x €
dom f,a € (0,0.5),5 € (0,1)

t:=1
while f(x + tAx) > f(x) + atVf(x)"Ax, t := Bt




Backtracking Line Search

The line search is called backtracking

B |t starts with unit step size and then
reduces It by the factor

t==1, t = [t
1 It eventually terminates
B Axis a descent direction, i.e., Vf(x)" Ax <0
B For small enough t
flx+tAx) = f(x) +tVf(x)TAx < f(x) + atVf(x)"Ax

v a is the fraction of the decrease in f predicted
by linear extrapolation that we will accept




Backtracking Line Search

Graph Interpretation

The backtracking exit inequality
flx + tAx) < f(x) + atVf(x) " Ax
holds for t € (0, t,]

f(z +tAzx)




Backtracking Line Search

Graph Interpretation

The backtracking line search stops
with a step length t that satisfies

t =1,or t € (Bty, to]

f(z +tAzx)




Backtracking Line Search

Graph Interpretation

The backtracking line search stops
with a step length t that satisfies

t = min(1, fty)

f(z +tAzx)




Backtracking Line Search

dom f # R"

flx +thAx) < f(x) + aVf(x)TAx
B Require x + tAx € dom f

1 A Practical Implementation
1. Multiply t by g until x + tAx € dom f

2. Check whether the above inequality
holds

B ¢ Is typically chosen between 0.01 and 0.3
B f Is often chosen between 0.1 and 0.8
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