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Basic Terminology

 Unconstrained Optimization Problem

 is convex
 always have a domain
 dom 𝑓 𝐑 , dom 𝑓 ⊂ 𝐑

 is twice continuously differentiable
 dom 𝑓 is open, such as 0, ∞

 The problem is solvable
 There exists an optimal point 𝑥∗

inf 𝑓 𝑥 𝑓 𝑥∗ 𝑝∗



Basic Terminology

 Unconstrained Optimization Problem

 ∗ is optimal if and only if

 Special cases: a closed-form solution
 General cases: an iterative algorithm
 A sequence of points 𝑥 , 𝑥 , … ∈ 𝐝𝐨𝐦 𝑓 with

 A minimizing sequence for the problem
 The algorithm is terminated when

∗

Equivalent 

𝑓 𝑥 → 𝑝∗ as 𝑘 → ∞

𝑓 𝑥 𝑝∗ 𝜖



Requirements of Iterative 
Algorithm

 Initial Point
 A suitable starting point

 Sublevel Set is Closed

 Satisfied for all if the function 
is closed

 Continuous functions with dom 𝑓 𝐑
 Continuous functions with open domains 

and 𝑓 𝑥 → ∞ as 𝑥 → bd dom 𝑓
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Examples

 Convex Quadratic Minimization 
Problem



 Optimality Condition

∗ (unique solution)
2. If is singular and , any solution 

of ∗ is optimal
3. If , no solution, unbound below

 

∗



Examples

 Convex Quadratic Minimization 
Problem



3. If , no solution, unbound below
 𝑞 𝑎 𝑏, 𝑎 ∈ ℛ 𝑃 , 𝑏 ⊥ ℛ 𝑃
 Let 𝑥 𝑡𝑏

 



Examples

 Least-Squares Problem

 are problem data

 Optimality Condition

 Normal Equations

 

∗ ∗

∗



Examples

 Unconstrained Geometric 
Programming

 Optimality Condition

 No analytical solution
 An Iterative Algorithm
 dom 𝑓 𝐑 , any point can be chosen as 𝑥

∗
∗

∗



Examples

 Analytic Center of Linear Inequalities



 is called as the logarithmic barrier for 
the inequalities 

 The solution of this problem is called the 
analytic center of the inequalities

 An Iterative Algorithm
 𝑥 must satisfy 𝑎 𝑥 𝑏
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Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound


𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
1
2 𝑦 𝑥 𝛻 𝑓 𝑧 𝑦 𝑥

𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑚
2 𝑦 𝑥



Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound

 When , reduce to the first-order 
condition of convex functions

𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑚
2 𝑦 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆



Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound

2. A Condition for Suboptimality

𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑚
2 𝑦 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆

𝑓 𝑦 min 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑚
2 𝑦 𝑥

𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑚
2 𝑦 𝑥 , 𝑦 𝑥

1
𝑚 𝛻𝑓 𝑥

𝑓 𝑥
1

2𝑚 𝛻𝑓 𝑥



Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound

2. A Condition for Suboptimality

 If the gradient is small at 𝑥, then it is nearly 
optimal

𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑚
2 𝑦 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆

𝑝∗ 𝑓 𝑥
1

2𝑚 𝛻𝑓 𝑥 𝑓 𝑥 𝑝∗
1

2𝑚 𝛻𝑓 𝑥

𝛻𝑓 𝑥 2𝑚𝜖 ⇒ 𝑓 𝑥 𝑝∗ 𝜖



Strong Convexity

 is strongly convex on , if 

3. An Upper Bound of ∗

𝑝∗ 𝑓 𝑥∗

𝑓 𝑥 𝛻𝑓 𝑥 𝑥∗ 𝑥
𝑚
2 𝑥∗ 𝑥

𝑝∗ 𝛻𝑓 𝑥 𝑥∗ 𝑥
𝑚
2 𝑥∗ 𝑥

𝑓 𝑥 𝛻𝑓 𝑥 𝑥∗ 𝑥
𝑚
2 𝑥∗ 𝑥



Strong Convexity

 is strongly convex on , if 

3. An Upper Bound of ∗

 ∗, as 0
 The optimal point ∗ is unique

𝑚
2 𝑥∗ 𝑥 𝛻𝑓 𝑥 𝑥∗ 𝑥

𝑥∗ 𝑥
2
𝑚 𝛻𝑓 𝑥
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Smoothness

 is smooth on , if 

1. A Quadratic Upper Bound


𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
1
2 𝑦 𝑥 𝛻 𝑓 𝑧 𝑦 𝑥

𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑀
2 𝑦 𝑥



Smoothness

 is smooth on , if 

1. A Quadratic Upper Bound

2. An Upper Bound of Gradients
𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥

𝑀
2 𝑦 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆

𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑀
2 𝑦 𝑥 , 𝑦 𝑥

1
𝑀 𝛻𝑓 𝑥

𝑓 𝑥
1

2𝑀 𝛻𝑓 𝑥

min 𝑓 𝑦 min 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥
𝑀
2 𝑦 𝑥



Smoothness

 is smooth on , if 

1. A Quadratic Upper Bound

2. An Upper Bound of Gradients
𝑓 𝑦 𝑓 𝑥 𝛻𝑓 𝑥 𝑦 𝑥

𝑀
2 𝑦 𝑥 , ∀𝑥, 𝑦 ∈ 𝑆

𝑝∗ 𝑓 𝑥
1

2𝑀 𝛻𝑓 𝑥

1
2𝑀 𝛻𝑓 𝑥 𝑓 𝑥 𝑝∗



Condition Number

 Condition Number of a Matrix 

 is both strongly convex and smooth

 Condition number of 

 Has a strong effect on the efficiency of 
optimization methods

𝜅
𝑀
𝑚

𝜅 𝛻 𝑓 𝑥



Condition Number

 Geometric Interpretations
 Width of a convex set , in the 

direction where 

 Minimum width and maximum width of

 Condition number of 
 cond 𝐶 is small implies 

𝐶 it is nearly spherical

𝑊 𝐶, 𝑞 sup
∈

𝑞 𝑧 inf
∈

𝑞 𝑧

𝑊 inf 𝑊 𝐶, 𝑞 ,  𝑊 sup
 

𝑊 𝐶, 𝑞

cond 𝐶
𝑊
𝑊



Condition Number

 Geometric Interpretations
 -sublevel set of 

 is both strongly convex and smooth

 Condition number of 

𝐶 𝑥 𝑓 𝑥 𝛼 , 𝑝∗ 𝛼 𝑓 𝑥  

cond 𝐶 𝜅
𝑀
𝑚

𝐵 ⊆ 𝐶 ⊆ 𝐵

𝐵 𝑦 𝑦 𝑥∗ 2 𝛼 𝑝∗

𝑀

/

 𝐵 𝑦 𝑦 𝑥∗ 2 𝛼 𝑝∗

𝑚

/



Discussions 

 Parameters and 
 Known only in rare cases
 Unknown in general

 They are conceptually useful
 The convergence behavior of 

optimization algorithms depend on them
 Characterize the convergence rate

 In Practice
 Estimate their values 
 Design parameter-free algorithms
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Iterative Methods

 A Minimizing Sequence

 is the the iteration number
 is the output of iterative methods
 is the step or search direction
 is the step size or step length

 Shorthand



Descent Methods

 Descent Methods

 Except when is optimal
  
 The search direction makes an acute 

angle with the negative gradient
𝛻𝑓 𝑥 Δ𝑥 0

𝑓 𝑥 𝑓 𝑥 𝛻𝑓 𝑥 𝑥 𝑥

𝛻𝑓 𝑥 Δ𝑥 0 ⇒ 𝛻𝑓 𝑥 𝑥 𝑥 0 
⇒ 𝑓 𝑥 𝑓 𝑥



Descent Methods

 Descent Methods

 Except when is optimal
  
 The search direction makes an acute 

angle with the negative gradient

 is called as descent direction

𝛻𝑓 𝑥 Δ𝑥 0



General Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Determine a descent direction Δ𝑥.

2. Line search: Choose a step size 𝑡 0.
3. Update: 𝑥 ≔ 𝑥 𝑡∆𝑥.

until stopping criterion is satisfied.

 Line Search
 Determine the next iterate along the line



General Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Determine a descent direction Δ𝑥.

2. Line search: Choose a step size 𝑡 0.
3. Update: 𝑥 ≔ 𝑥 𝑡∆𝑥.

until stopping criterion is satisfied.

 Stopping Criterion
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Exact Line Search

 Minimize along the Ray

 The cost of the minimization problem 
with one variable is low

 The minimizer along the ray can be 
found analytically
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Backtracking Line Search

 Most line searches used in practice 
are inexact
 Approximately minimize along the ray
 Just reduce ‘enough’

 Backtracking Line Search
given a descent direction ∆𝑥 for 𝑓 at 𝑥 ∈
𝐝𝐨𝐦 𝑓, 𝛼 ∈ 0, 0.5 , 𝛽 ∈ 0, 1
𝑡 ≔ 1

while 𝑓 𝑥 𝑡Δ𝑥 𝑓 𝑥 𝛼𝑡𝛻𝑓 𝑥 ∆𝑥, 𝑡 ≔ 𝛽𝑡



Backtracking Line Search

 The line search is called backtracking
 It starts with unit step size and then 

reduces it by the factor 

 It eventually terminates
 is a descent direction, i.e., 
 For small enough 

 𝛼 is the fraction of the decrease in 𝑓 predicted 
by linear extrapolation that we will accept

𝑡 ≔ 1 , 𝑡 ≔ 𝛽𝑡

𝑓 𝑥 𝑡Δ𝑥 𝑓 𝑥 𝑡𝛻𝑓 𝑥 ∆𝑥 𝑓 𝑥 𝛼𝑡𝛻𝑓 𝑥 ∆𝑥



Backtracking Line Search

 Graph Interpretation
The backtracking exit inequality
𝑓 𝑥 𝑡Δ𝑥 𝑓 𝑥 𝛼𝑡𝛻𝑓 𝑥 Δ𝑥
holds for 𝑡 ∈ 0, 𝑡



Backtracking Line Search

 Graph Interpretation
The backtracking line search stops
with a step length 𝑡 that satisfies

𝑡 1, or  𝑡 ∈ 𝛽𝑡 , 𝑡



Backtracking Line Search

 Graph Interpretation
The backtracking line search stops
with a step length 𝑡 that satisfies

𝑡 min 1, 𝛽𝑡



Backtracking Line Search



 Require 

 A Practical Implementation
1. Multiply by until 
2. Check whether the above inequality 

holds
 is typically chosen between and 
 is often chosen between and 



Summary
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