Unconstrained Minimization (I)

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Basic Terminology

□ Unconstrained Optimization Problem min f(x)

- f(x): $\mathbf{R}^n \to \mathbf{R}$ is convex
- f(x) always have a domain dom f

 $\checkmark \operatorname{dom} f = \mathbf{R}^n, \operatorname{dom} f \subset \mathbf{R}^n$

• f(x) is twice continuously differentiable

✓ dom f is open, such as $(0, \infty)$

- The problem is solvable
 - There exists an optimal point x^*

 $\inf_x f(x) = f(x^*) = p^*$

Basic Terminology

- Unconstrained Optimization Problem $\min f(x)$
 - x^* is optimal if and only if Equivalent $\nabla f(x^*) = 0$
 - Special cases: a closed-form solution
 - General cases: an iterative algorithm
 - ✓ A sequence of points $x^{(0)}, x^{(1)}, ... \in \text{dom } f$ with $f(x^{(k)}) \to p^*$ as $k \to \infty$
 - ✓ A minimizing sequence for the problem
 - The algorithm is terminated when

$$f(x^{(k)}) - p^* \leq \epsilon$$

Requirements of Iterative Algorithm

Initial Point

- A suitable starting point
 - $x^{(0)} \in \operatorname{dom} f$
- Sublevel Set is Closed

 $S = \{x \in \text{dom } f \mid f(x) \le f(x^{(0)})\}$

- Satisfied for all $x^{(0)} \in \text{dom } f$ if the function f is closed
 - ✓ Continuous functions with dom $f = \mathbf{R}^n$
 - ✓ Continuous functions with open domains and $f(x) \rightarrow \infty$ as $x \rightarrow$ bd dom f

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Convex Quadratic Minimization Problem $\min_{x \to 1} \frac{1}{2} x^{T} P x + q^{T} x + r$

 $P \in \mathbf{S}^n_+, q \in \mathbf{R}^n, r \in \mathbf{R}$

Optimality Condition

$$Px^* + q = 0$$

- 1. $P > 0 \Rightarrow x^* = -P^{-1}q$ (unique solution)
- 2. If *P* is singular and $q \in \mathcal{R}(P)$, any solution of $Px^* + q = 0$ is optimal
- **3**. If $q \notin \mathcal{R}(P)$, no solution, unbound below

Convex Quadratic Minimization Problem $\min \frac{1}{2}x^{T}Px + q^{T}x + r$ $P \in S^{n}_{+}, q \in \mathbb{R}^{n}, r \in \mathbb{R}$

3. If
$$q \notin \mathcal{R}(P)$$
, no solution, unbound below
 $\checkmark q = a + b$, $a \in \mathcal{R}(P)$, $b \perp \mathcal{R}(P)$
 \checkmark Let $x = tb$
 $\frac{1}{2}x^{\top}Px + q^{\top}x + r$
 $= t(a + b)^{\top}b + r$
 $= t||b||_2^2 + r$

 □ Least-Squares Problem min ||Ax - b||₂² = x^TA^TAx - 2b^TAx + b^Tb
 ■ A ∈ ℝ^{m×n}, b ∈ ℝ^m are problem data

• Optimality Condition $\nabla f(x^*) = 2A^T A x^* - 2A^T b = 0$

Normal Equations $A^{T}Ax^{*} = A^{T}b$

Unconstrained Geometric Programming

min
$$f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^{\mathsf{T}}x + b_i)\right)$$

Optimality Condition

$$\nabla f(x^*) = \frac{\sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x^* + b_i) a_i}{\sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x^* + b_i)} = 0$$

✓ No analytical solution

An Iterative Algorithm

✓ dom $f = \mathbf{R}^n$, any point can be chosen as $x^{(0)}$

□ Analytic Center of Linear Inequalities

min
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^{\mathsf{T}} x)$$

dom
$$f = \{x | a_i^{\mathsf{T}} x < b_i, i = 1, 2, ..., m\}$$

- *f* is called as the logarithmic barrier for the inequalities $a_i^T x < b_i$
- The solution of this problem is called the analytic center of the inequalities
- An Iterative Algorithm
 - ✓ $x^{(0)}$ must satisfy $a_i^T x^{(0)} < b_i$

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

□ $f(\cdot)$ is strongly convex on *S*, if $\exists m > 0$ $\nabla^2 f(x) \ge mI$, $\forall x \in S$ 1. A Quadratic Lower Bound ■ $\forall x, y \in S, \exists z \in [x, y]$ $f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$ $\ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$

- $\Box f(\cdot) \text{ is strongly convex on } S, \text{ if } \exists m > 0$ $\nabla^2 f(x) \ge mI, \quad \forall x \in S$
- 1. A Quadratic Lower Bound $f(y) \ge f(x) + \nabla f(x)^{\top}(y-x) + \frac{m}{2} \|y-x\|_2^2, \quad \forall x, y \in S$
 - When m = 0, reduce to the first-order condition of convex functions

 $\Box f(\cdot)$ is strongly convex on *S*, if $\exists m > 0$ $\nabla^2 f(x) \ge mI, \quad \forall x \in S$ 1. A Quadratic Lower Bound $f(y) \ge f(x) + \nabla f(x)^{\top} (y - x) + \frac{m}{2} ||y - x||_{2}^{2}, \quad \forall x, y \in S$ 2. A Condition for Suboptimality $f(y) \ge \min_{y} f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{m}{2} \|y-x\|_{2}^{2}$ $= f(x) + \nabla f(x)^{\mathsf{T}}(\tilde{y} - x) + \frac{m}{2} \|\tilde{y} - x\|_{2}^{2}, \ \tilde{y} = x - \frac{1}{m} \nabla f(x)$ $= f(x) - \frac{1}{2m} \|\nabla f(x)\|_{2}^{2}$

 $\Box f(\cdot) \text{ is strongly convex on } S, \text{ if } \exists m > 0$ $\nabla^2 f(x) \ge mI, \quad \forall x \in S$ 1. A Quadratic Lower Bound $f(y) \ge f(x) + \nabla f(x)^{\top}(y-x) + \frac{m}{2} \|y-x\|_2^2, \quad \forall x, y \in S$ 2. A Condition for Suboptimality $p_* \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|_2^2 \implies f(x) - p_* \le \frac{1}{2m} \|\nabla f(x)\|_2^2$

If the gradient is small at x, then it is nearly optimal $\|\nabla f(x)\|_2 \leq (2m\epsilon)^{\frac{1}{2}} \Rightarrow f(x) - p^* \leq \epsilon$

 $\Box f(\cdot)$ is strongly convex on S, if $\exists m > 0$ $\nabla^2 f(x) \ge mI, \quad \forall x \in S$ **3**. An Upper Bound of $||x^* - x||_2$ $p_{*} = f(x^{*})$ $\geq f(x) + \nabla f(x)^{\top} (x^* - x) + \frac{m}{2} \|x^* - x\|_2^2$ $\geq f(x) - \|\nabla f(x)\|_2 \|x^* - x\|_2 + \frac{m}{2} \|x^* - x\|_2^2$ $\geq p_* - \|\nabla f(x)\|_2 \|x^* - x\|_2 + \frac{m}{2} \|x^* - x\|_2^2$

 $\Box f(\cdot)$ is strongly convex on *S*, if $\exists m > 0$ $\nabla^2 f(x) \ge mI, \quad \forall x \in S$ 3. An Upper Bound of $||x^* - x||_2$ $\frac{m}{2} \|x^* - x\|_2^2 \le \|\nabla f(x)\|_2 \|x^* - x\|_2$ $\implies ||x^* - x||_2 \le \frac{2}{m} ||\nabla f(x)||_2$ • $x \to x^*$, as $\nabla f(x) \to 0$ • The optimal point x^* is unique

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Smoothness

□ $f(\cdot)$ is smooth on *S*, if $\exists M > 0$ $\nabla^2 f(x) \leq MI$, $\forall x \in S$ 1. A Quadratic Upper Bound ■ $\forall x, y \in S, \exists z \in [x, y]$ $f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(z) (y - x)$ $\leq f(x) + \nabla f(x)^T (y - x) + \frac{M}{2} ||y - x||_2^2$

Smoothness

 $\Box f(\cdot)$ is smooth on S, if $\exists M > 0$ $\nabla^2 f(x) \leq MI, \quad \forall x \in S$ 1. A Quadratic Upper Bound $f(y) \le f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{M}{2} ||y-x||_2^2,$ $\forall x, y \in S$ 2. An Upper Bound of Gradients $\min_{y} f(y) \le \min_{y} f(x) + \nabla f(x)^{\mathsf{T}}(y-x) + \frac{M}{2} \|y-x\|_{2}^{2}$ $= f(x) + \nabla f(x)^{\mathsf{T}}(\tilde{y} - x) + \frac{M}{2} \|\tilde{y} - x\|_{2}^{2}, \ \tilde{y} = x - \frac{1}{M} \nabla f(x)$ $= f(x) - \frac{1}{2M} \|\nabla f(x)\|_{2}^{2}$

Smoothness

 $\Box f(\cdot)$ is smooth on *S*, if $\exists M > 0$ $\nabla^2 f(x) \leq MI, \quad \forall x \in S$ 1. A Quadratic Upper Bound $f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{M}{2} \|y - x\|_2^2, \qquad \forall x, y \in S$ 2. An Upper Bound of Gradients $p^* \le f(x) - \frac{1}{2M} \|\nabla f(x)\|_2^2$

$$\implies \frac{1}{2M} \|\nabla f(x)\|_2^2 \le f(x) - p_*$$

Condition Number

Condition Number of a Matrix *A* $\kappa(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$

 $\Box f(\cdot) \text{ is both strongly convex and smooth}$ $mI \leq \nabla^2 f(x) \leq MI, \quad \forall x \in S$

Condition number of f

$$\kappa = \frac{M}{m} \ge \kappa \big(\nabla^2 f(x) \big)$$

Has a strong effect on the efficiency of optimization methods

Condition Number

- Geometric Interpretations
 - Width of a convex set $C \subseteq \mathbb{R}^n$, in the direction q where $||q||_2 = 1$

$$W(C,q) = \sup_{z \in C} q^{\mathsf{T}}z - \inf_{z \in C} q^{\mathsf{T}}z$$

Minimum width and maximum width of C $W_{i} = \inf_{x} W(C_{i} q) = W_{i} = \sup_{x} W(C_{i} q)$

$$W_{\min} = \inf_{\|q\|_2=1} W(C,q), \qquad W_{\max} = \sup_{\|q\|_2=1} W(C,q)$$

- Condition number of C
 - ✓ cond(*C*) is small implies $cond(C) = \frac{W_{max}^2}{W_{min}^2}$ *C* it is nearly spherical

Condition Number

Geometric Interpretations \square α -sublevel set of f $C_{\alpha} = \{x | f(x) \le \alpha\}, \qquad p^* \le \alpha \le f(x_0)$ $f(\cdot)$ is both strongly convex and smooth $B_{\text{inner}} \subseteq C_{\alpha} \subseteq B_{\text{outer}}$ $B_{\text{inner}} = \left\{ y \left\| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{M}\right)^{1/2} \right\} \quad B_{\text{outer}} = \left\{ y \left\| \|y - x^*\| \le \left(\frac{2(\alpha - p^*)}{m}\right)^{1/2} \right\} \right\}$ Condition number of C_{α} $\operatorname{cond}(C_{\alpha}) \leq \kappa = \frac{M}{-1}$

Discussions

Parameters m and M

- Known only in rare cases
- Unknown in general

□ They are conceptually useful

- The convergence behavior of optimization algorithms depend on them
- Characterize the convergence rate

In Practice

- Estimate their values
- Design parameter-free algorithms

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Iterative Methods

A Minimizing Sequence x^(k+1) = x^(k) + t^(k)Δx^(k), k = 1,... k is the the iteration number x^(k) is the output of iterative methods Δx^(k) is the step or search direction t^(k) ≥ 0 is the step size or step length

Shorthand

$$x \coloneqq x + t\Delta x$$

Descent Methods

Descent Methods $f(x^{k+1}) < f(x^k)$ Except when $x^{(k)}$ is optimal $\forall k, x^{(k)} \in S = \{x \in \text{dom } f \mid f(x) \leq f(x^{(0)})\}$

The search direction makes an acute angle with the negative gradient

$$\nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} < 0$$

$$\begin{aligned} f(x^{k+1}) &\ge f(x^k) + \nabla f(x^{(k)})^{\mathsf{T}}(x^{k+1} - x^k) \\ \nabla f(x^{(k)})^{\mathsf{T}} \Delta x^{(k)} &\ge 0 \Rightarrow \nabla f(x^{(k)})^{\mathsf{T}}(x^{k+1} - x^k) \ge 0 \end{aligned} \right\} \Rightarrow f(x^{k+1}) \ge f(x^k) \end{aligned}$$

Descent Methods

Descent Methods
 f(*x*^{k+1}) < *f*(*x*^k)
 Except when *x*^(k) is optimal
 ∀*k*, *x*^(k) ∈ *S* = {*x* ∈ dom *f* | *f*(*x*) ≤ *f*(*x*⁽⁰⁾)}
 The search direction makes an acute angle with the negative gradient
 ∇f(*x*^(k))^T Δ*x*^(k) < 0

• $\Delta x^{(k)}$ is called as descent direction

General Descent Method

□ The Algorithm

Given a starting point $x \in \text{dom } f$

Repeat

- 1. Determine a descent direction Δx .
- **2**. Line search: Choose a step size $t \ge 0$.
- **3**. Update: $x \coloneqq x + t\Delta x$.

until stopping criterion is satisfied.

□ Line Search

Determine the next iterate along the line $\{x + t\Delta x | t \in \mathbf{R}_+\}$

General Descent Method

□ The Algorithm

Given a starting point $x \in \text{dom } f$

Repeat

- 1. Determine a descent direction Δx .
- **2**. Line search: Choose a step size $t \ge 0$.
- **3**. Update: $x \coloneqq x + t\Delta x$.

until stopping criterion is satisfied.

Stopping Criterion

 $\|\nabla f(x)\|_2 \le \eta$

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

Exact Line Search

 $\Box \text{ Minimize } f \text{ along the Ray}$ $t = \operatorname{argmin}_{s \ge 0} f(x + s \Delta x)$

The cost of the minimization problem with one variable is low

 $\min_{s\geq 0}f(x+s\varDelta x)$

The minimizer along the ray can be found analytically

Outline

- Basic Terminology
- Examples
- Strong Convexity
- Smoothness
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search

- Most line searches used in practice are inexact
 - Approximately minimize f along the ray
 - Just reduce f 'enough'
- □ Backtracking Line Search given a descent direction Δx for *f* at *x* ∈ dom *f*, *α* ∈ (0, 0.5), *β* ∈ (0, 1)

 $t \coloneqq 1$

while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^{\top} \Delta x$, $t \coloneqq \beta t$

- □ The line search is called backtracking
 - It starts with unit step size and then reduces it by the factor β

$$t\coloneqq 1$$
 , $t\coloneqq eta t$

- □ It eventually terminates
 - Δx is a descent direction, i.e., $\nabla f(x)^{\top} \Delta x < 0$

For small enough *t*

 $f(x + t\Delta x) \approx f(x) + t\nabla f(x)^{\mathsf{T}} \Delta x < f(x) + \alpha t\nabla f(x)^{\mathsf{T}} \Delta x$

 $\checkmark \alpha$ is the fraction of the decrease in *f* predicted by linear extrapolation that we will accept

Graph Interpretation

□ Graph Interpretation

Graph Interpretation

 $\Box \operatorname{dom} f \neq \mathbf{R}^n$

 $f(x + t\Delta x) \le f(x) + \alpha \nabla f(x)^{\top} \Delta x$ Require $x + t\Delta x \in \text{dom } f$

A Practical Implementation

- 1. Multiply t by β until $x + t\Delta x \in \text{dom } f$
- 2. Check whether the above inequality holds
- α is typically chosen between 0.01 and 0.3
- β is often chosen between 0.1 and 0.8

Summary

- First-order Optimality Condition
- Strong Convexity and Implications
- Smoothness and Implications
- Descent Methods
 - General Descent Method
 - Exact Line Search
 - Backtracking Line Search