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Basic Terminology

 Unconstrained Optimization Problem

 ௡ is convex
 always have a domain
 dom 𝑓 ൌ 𝐑௡, dom 𝑓 ⊂ 𝐑௡

 is twice continuously differentiable
 dom 𝑓 is open, such as ሺ0, ∞ሻ

 The problem is solvable
 There exists an optimal point 𝑥∗

inf௫ 𝑓ሺ𝑥ሻ ൌ 𝑓 𝑥∗ ൌ 𝑝∗



Basic Terminology

 Unconstrained Optimization Problem

 ∗ is optimal if and only if

 Special cases: a closed-form solution
 General cases: an iterative algorithm
 A sequence of points 𝑥ሺ଴ሻ, 𝑥ሺଵሻ, … ∈ 𝐝𝐨𝐦 𝑓 with

 A minimizing sequence for the problem
 The algorithm is terminated when

∗

Equivalent 

𝑓 𝑥 ௞ → 𝑝∗ as 𝑘 → ∞

𝑓 𝑥 ௞ െ 𝑝∗ ൑ 𝜖



Requirements of Iterative 
Algorithm

 Initial Point
 A suitable starting point

 Sublevel Set is Closed

 Satisfied for all ଴ if the function 
is closed

 Continuous functions with dom 𝑓 ൌ 𝐑௡

 Continuous functions with open domains 
and 𝑓 𝑥 → ∞ as 𝑥 → bd dom 𝑓

ሺ଴ሻ

଴
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Examples

 Convex Quadratic Minimization 
Problem

 ା
௡ ௡

 Optimality Condition

∗ ିଵ (unique solution)
2. If is singular and , any solution 

of ∗ is optimal
3. If , no solution, unbound below

ୃ ୃ  

∗



Examples

 Convex Quadratic Minimization 
Problem

 ା
௡ ௡

3. If , no solution, unbound below
 𝑞 ൌ 𝑎 ൅ 𝑏, 𝑎 ∈ ℛ 𝑃 , 𝑏 ⊥ ℛሺ𝑃ሻ
 Let 𝑥 ൌ 𝑡𝑏

ୃ ୃ  

ୃ ୃ

ୃ

ଶ
ଶ



Examples

 Least-Squares Problem

 ௠ൈ௡ ௠ are problem data

 Optimality Condition

 Normal Equations

ଶ
ଶ ୃ ୃ ୃ ୃ  

∗ ୃ ∗ ୃ

ୃ ∗ ୃ



Examples

 Unconstrained Geometric 
Programming

 Optimality Condition

 No analytical solution
 An Iterative Algorithm
 dom 𝑓 ൌ 𝐑௡, any point can be chosen as 𝑥ሺ଴ሻ

௜
ୃ

௜
௠

௜ୀଵ

∗ ௜
ୃ ∗

௜ ௜
௠
௜ୀଵ

௜
ୃ ∗

௜
௠
௜ୀଵ



Examples

 Analytic Center of Linear Inequalities

 ௜
ୃ

௜

 is called as the logarithmic barrier for 
the inequalities ௜

ୃ
௜

 The solution of this problem is called the 
analytic center of the inequalities

 An Iterative Algorithm
 𝑥ሺ଴ሻ must satisfy 𝑎௜

ୃ𝑥ሺ଴ሻ ൏ 𝑏௜

௜ ௜
ୃ

௠

௜ୀଵ
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Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound


𝑓 𝑦 ൌ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
1
2 𝑦 െ 𝑥 ୃ𝛻ଶ𝑓ሺ𝑧ሻሺ𝑦 െ 𝑥ሻ

ଶ

൒ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑚
2 𝑦 െ 𝑥 ଶ

ଶ



Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound

 When , reduce to the first-order 
condition of convex functions

ଶ

𝑓 𝑦 ൒ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑚
2 𝑦 െ 𝑥 ଶ

ଶ, ∀𝑥, 𝑦 ∈ 𝑆



Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound

2. A Condition for Suboptimality

ଶ

𝑓 𝑦 ൒ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑚
2 𝑦 െ 𝑥 ଶ

ଶ, ∀𝑥, 𝑦 ∈ 𝑆

𝑓 𝑦 ൒ min
௬

𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑚
2 𝑦 െ 𝑥 ଶ

ଶ

ൌ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦෤ െ 𝑥 ൅
𝑚
2 𝑦෤ െ 𝑥 ଶ

ଶ, 𝑦෤ ൌ 𝑥 െ
1
𝑚 𝛻𝑓 𝑥

ൌ 𝑓 𝑥 െ
1

2𝑚 𝛻𝑓 𝑥 ଶ
ଶ



Strong Convexity

 is strongly convex on , if 

1. A Quadratic Lower Bound

2. A Condition for Suboptimality

 If the gradient is small at 𝑥, then it is nearly 
optimal

ଶ

𝑓 𝑦 ൒ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑚
2 𝑦 െ 𝑥 ଶ

ଶ, ∀𝑥, 𝑦 ∈ 𝑆

𝑝∗ ൒ 𝑓 𝑥 െ
1

2𝑚 𝛻𝑓 𝑥 ଶ
ଶ 𝑓 𝑥 െ 𝑝∗ ൑

1
2𝑚 𝛻𝑓 𝑥 ଶ

ଶ

𝛻𝑓 𝑥 ଶ ൑ 2𝑚𝜖
ଵ
ଶ ⇒ 𝑓 𝑥 െ 𝑝∗ ൑ 𝜖



Strong Convexity

 is strongly convex on , if 

3. An Upper Bound of ∗
ଶ

ଶ

𝑝∗ ൌ 𝑓 𝑥∗

൒ 𝑓 𝑥 െ 𝛻𝑓 𝑥 ଶ 𝑥∗ െ 𝑥 ଶ ൅
𝑚
2 𝑥∗ െ 𝑥 ଶ

ଶ

൒ 𝑝∗ െ 𝛻𝑓 𝑥 ଶ 𝑥∗ െ 𝑥 ଶ ൅
𝑚
2 𝑥∗ െ 𝑥 ଶ

ଶ

൒ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑥∗ െ 𝑥 ൅
𝑚
2 𝑥∗ െ 𝑥 ଶ

ଶ



Strong Convexity

 is strongly convex on , if 

3. An Upper Bound of ∗
ଶ

 ∗, as 0
 The optimal point ∗ is unique

ଶ

𝑚
2 𝑥∗ െ 𝑥 ଶ

ଶ ൑ 𝛻𝑓 𝑥 ଶ 𝑥∗ െ 𝑥 ଶ

𝑥∗ െ 𝑥 ଶ ൑
2
𝑚 𝛻𝑓 𝑥 ଶ
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Smoothness

 is smooth on , if 

1. A Quadratic Upper Bound


𝑓 𝑦 ൌ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
1
2 𝑦 െ 𝑥 ୃ𝛻ଶ𝑓ሺ𝑧ሻሺ𝑦 െ 𝑥ሻ

ଶ

൑ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑀
2 𝑦 െ 𝑥 ଶ

ଶ



Smoothness

 is smooth on , if 

1. A Quadratic Upper Bound

2. An Upper Bound of Gradients
𝑓 𝑦 ൑ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅

𝑀
2 𝑦 െ 𝑥 ଶ

ଶ, ∀𝑥, 𝑦 ∈ 𝑆

ൌ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦෤ െ 𝑥 ൅
𝑀
2 𝑦෤ െ 𝑥 ଶ

ଶ, 𝑦෤ ൌ 𝑥 െ
1
𝑀 𝛻𝑓 𝑥

ൌ 𝑓 𝑥 െ
1

2𝑀 𝛻𝑓 𝑥 ଶ
ଶ

min 
௬

𝑓 𝑦 ൑ min
௬

𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅
𝑀
2 𝑦 െ 𝑥 ଶ

ଶ

ଶ



Smoothness

 is smooth on , if 

1. A Quadratic Upper Bound

2. An Upper Bound of Gradients
𝑓 𝑦 ൑ 𝑓 𝑥 ൅ 𝛻𝑓 𝑥 ୃ 𝑦 െ 𝑥 ൅

𝑀
2 𝑦 െ 𝑥 ଶ

ଶ, ∀𝑥, 𝑦 ∈ 𝑆

𝑝∗ ൑ 𝑓 𝑥 െ
1

2𝑀 𝛻𝑓 𝑥 ଶ
ଶ

1
2𝑀 𝛻𝑓 𝑥 ଶ

ଶ ൑ 𝑓 𝑥 െ 𝑝∗

ଶ



Condition Number

 Condition Number of a Matrix 

 is both strongly convex and smooth

 Condition number of 

 Has a strong effect on the efficiency of 
optimization methods

୫ୟ୶

୫୧୬

ଶ

𝜅 ൌ
𝑀
𝑚

൒ 𝜅 𝛻ଶ𝑓 𝑥



Condition Number

 Geometric Interpretations
 Width of a convex set ௡, in the 

direction where ଶ

 Minimum width and maximum width of

 Condition number of 
 cond 𝐶 is small implies 

𝐶 it is nearly spherical

𝑊 𝐶, 𝑞 ൌ sup
௭∈஼

𝑞ୃ𝑧 െ inf
௭∈஼

𝑞ୃ𝑧

𝑊୫୧୬ ൌ inf
௤ మୀଵ

𝑊ሺ𝐶, 𝑞ሻ ,  𝑊୫ୟ୶ ൌ sup
௤ మ ୀଵ

𝑊ሺ𝐶, 𝑞ሻ

cond 𝐶 ൌ
𝑊୫ୟ୶

ଶ

𝑊୫୧୬
ଶ



Condition Number

 Geometric Interpretations
 -sublevel set of 

 is both strongly convex and smooth

 Condition number of ఈ

𝐶ఈ ൌ 𝑥 𝑓 𝑥 ൑ 𝛼ሽ, 𝑝∗ ൑ 𝛼 ൑ 𝑓ሺ𝑥଴ሻ 

cond 𝐶ఈ ൑ 𝜅 ൌ
𝑀
𝑚

𝐵୧୬୬ୣ୰ ⊆ 𝐶ఈ ⊆ 𝐵୭୳୲ୣ୰

𝐵୧୬୬ୣ୰ ൌ 𝑦 ቮ 𝑦 െ 𝑥∗ ൑
2 𝛼 െ 𝑝∗

𝑀

ଵ/ଶ

 𝐵୭୳୲ୣ୰ ൌ 𝑦 ቮ 𝑦 െ 𝑥∗ ൑
2 𝛼 െ 𝑝∗

𝑚

ଵ/ଶ



Discussions 

 Parameters and 
 Known only in rare cases
 Unknown in general

 They are conceptually useful
 The convergence behavior of 

optimization algorithms depend on them
 Characterize the convergence rate

 In Practice
 Estimate their values 
 Design parameter-free algorithms
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Iterative Methods

 A Minimizing Sequence

 is the the iteration number
 ሺ௞ሻ is the output of iterative methods
 ሺ௞ሻ is the step or search direction
 ሺ௞ሻ is the step size or step length

 Shorthand

ሺ௞ାଵሻ ሺ௞ሻ ሺ௞ሻ ሺ௞ሻ



Descent Methods

 Descent Methods

 Except when ሺ௞ሻ is optimal
 ሺ௞ሻ ଴  
 The search direction makes an acute 

angle with the negative gradient

௞ାଵ ௞

𝛻𝑓 𝑥 ௞ ୃ
Δ𝑥ሺ௞ሻ ൏ 0

𝑓 𝑥௞ାଵ ൒ 𝑓 𝑥௞ ൅ 𝛻𝑓 𝑥 ௞ ୃ
ሺ𝑥௞ାଵ െ 𝑥௞ሻ

𝛻𝑓 𝑥 ௞ ୃ
Δ𝑥ሺ௞ሻ ൒ 0 ⇒ 𝛻𝑓 𝑥 ௞ ୃ

𝑥௞ାଵ െ 𝑥௞ ൒ 0 
ቑ ⇒ 𝑓 𝑥௞ାଵ ൒ 𝑓 𝑥௞



Descent Methods

 Descent Methods

 Except when ሺ௞ሻ is optimal
 ሺ௞ሻ ଴  
 The search direction makes an acute 

angle with the negative gradient

 ሺ௞ሻ is called as descent direction

௞ାଵ ௞

𝛻𝑓 𝑥 ௞ ୃ
Δ𝑥ሺ௞ሻ ൏ 0



General Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Determine a descent direction Δ𝑥.

2. Line search: Choose a step size 𝑡 ൒ 0.
3. Update: 𝑥 ≔ 𝑥 ൅ 𝑡∆𝑥.

until stopping criterion is satisfied.

 Line Search
 Determine the next iterate along the line

ା



General Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Determine a descent direction Δ𝑥.

2. Line search: Choose a step size 𝑡 ൒ 0.
3. Update: 𝑥 ≔ 𝑥 ൅ 𝑡∆𝑥.

until stopping criterion is satisfied.

 Stopping Criterion

ଶ
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Exact Line Search

 Minimize along the Ray

 The cost of the minimization problem 
with one variable is low

 The minimizer along the ray can be 
found analytically

௦ஹ଴

ୱஹ଴
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Backtracking Line Search

 Most line searches used in practice 
are inexact
 Approximately minimize along the ray
 Just reduce ‘enough’

 Backtracking Line Search
given a descent direction ∆𝑥 for 𝑓 at 𝑥 ∈
𝐝𝐨𝐦 𝑓, 𝛼 ∈ 0, 0.5 , 𝛽 ∈ 0, 1
𝑡 ≔ 1

while 𝑓 𝑥 ൅ 𝑡Δ𝑥 ൐ 𝑓 𝑥 ൅ 𝛼𝑡𝛻𝑓 𝑥 ୃ∆𝑥, 𝑡 ≔ 𝛽𝑡



Backtracking Line Search

 The line search is called backtracking
 It starts with unit step size and then 

reduces it by the factor 

 It eventually terminates
 is a descent direction, i.e., ୃ

 For small enough 

 𝛼 is the fraction of the decrease in 𝑓 predicted 
by linear extrapolation that we will accept

𝑡 ≔ 1 , 𝑡 ≔ 𝛽𝑡

𝑓 𝑥 ൅ 𝑡Δ𝑥 ൎ 𝑓 𝑥 ൅ 𝑡𝛻𝑓 𝑥 ୃ∆𝑥 ൏ 𝑓 𝑥 ൅ 𝛼𝑡𝛻𝑓 𝑥 ୃ∆𝑥



Backtracking Line Search

 Graph Interpretation
The backtracking exit inequality
𝑓ሺ𝑥 ൅ 𝑡Δ𝑥ሻ ൑ 𝑓ሺ𝑥ሻ ൅ 𝛼𝑡𝛻𝑓 𝑥 ୃΔ𝑥
holds for 𝑡 ∈ 0, 𝑡଴



Backtracking Line Search

 Graph Interpretation
The backtracking line search stops
with a step length 𝑡 that satisfies

𝑡 ൌ 1, or  𝑡 ∈ 𝛽𝑡଴, 𝑡଴



Backtracking Line Search

 Graph Interpretation
The backtracking line search stops
with a step length 𝑡 that satisfies

𝑡 ൒ minሺ1, 𝛽𝑡଴ሻ



Backtracking Line Search

 ௡

 Require 

 A Practical Implementation
1. Multiply by until 
2. Check whether the above inequality 

holds
 is typically chosen between and 
 is often chosen between and 

ୃ



Summary

 Unconstrained Minimization Problems
 First-order Optimality Condition
 Strong Convexity and Implications
 Smoothness and Implications

 Descent Methods
 General Descent Method
 Exact Line Search
 Backtracking Line Search 


