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General Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Determine a descent direction Δ𝑥.

2. Line search: Choose a step size 𝑡  0.
3. Update: 𝑥 ൌ 𝑥  𝑡∆𝑥.

until stopping criterion is satisfied.

 Descent Direction
𝛻𝑓 𝑥  ୃ

Δ𝑥ሺሻ ൏ 0



Gradient Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Δ𝑥 ≔ െ𝛻𝑓ሺ𝑥ሻ.
2. Line search: Choose step size 𝑡 via exact or 

backtracking line search.
3. Update: 𝑥 ≔ 𝑥  𝑡∆𝑥. 

until stopping criterion is satisfied.

 Stopping Criterion
ଶ
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Preliminary

 ሺାଵሻ ሺሻ ሺሻ ሺሻ ା



 is both strongly convex and 
smooth

 Define as

 A quadratic upper bound on 

ଶ

ଶ
ଶ

ଶ

ଶ
ଶ



Analysis for Exact Line Search

1. Minimize Both Sides of

 Left side: ୣ୶ୟୡ୲ , where ୣ୶ୟୡ୲ is the step 
length that minimizes 

 Right side: is the solution

2. Subtracting ∗ from Both Sides

ଶ
ଶ

ଶ

ଶ
ଶ

ା
ୣ୶ୟୡ୲ ଶ

ଶ

ା ∗ ∗
ଶ
ଶ



Analysis for Exact Line Search

is strongly convex on 

4. Combining

5. Applying it Recursively



 ሺሻ coverges to ∗ as 

⇒ 𝛻𝑓 𝑥 ଶ
ଶ 2𝑚 𝑓 𝑥 െ 𝑝∗

ଶ

ା ∗ ∗

ሺሻ ∗  ሺሻ ∗



Discussions

 Iteration Complexity
  ∗ after at most

 ሺሻ ∗ indicates that 
initialization is important

 is a function of the condition 
number 

 When is large

ሺሻ ∗
iterations

log 1/𝑐 ൌ െ logሺ1 െ 𝑚/𝑀ሻ ൎ 𝑚/𝑀
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Discussions

 Iteration Complexity
  ∗ after at most

 ሺሻ ∗ indicates that 
initialization is important

 is a function of the condition 
number 

 Linear Convergence
 Error lies below a line on a log-linear plot of 

error versus iteration number

ሺሻ ∗
iterations



Analysis for Backtracking Line 
Search

 Backtracking Line Search
given a descent direction ∆𝑥 for 𝑓 at 𝑥 ∈ 𝐝𝐨𝐦 𝑓, 𝛼 ∈
0, 0.5 , 𝛽 ∈ 0, 1
𝑡 ≔ 1

while 𝑓 𝑥  𝑡Δ𝑥  𝑓 𝑥  𝛼𝑡𝛻𝑓 𝑥 ୃ∆𝑥, 𝑡 ≔ 𝛽𝑡

ଶ
ଶ for all 

0  𝑡 
1
𝑀 ⇒ െ𝑡 

𝑀𝑡ଶ

2  െ
𝑡
2

𝑓ሚ 𝑡  𝑓 𝑥 െ 𝑡 𝛻𝑓 𝑥 ଶ
ଶ 

𝑀𝑡ଶ

2 𝛻𝑓 𝑥 ଶ
ଶ



Analysis for Backtracking Line 
Search

 Backtracking Line Search
given a descent direction ∆𝑥 for 𝑓 at 𝑥 ∈ 𝐝𝐨𝐦 𝑓, 𝛼 ∈
0, 0.5 , 𝛽 ∈ 0, 1
𝑡 ≔ 1

while 𝑓 𝑥  𝑡Δ𝑥  𝑓 𝑥  𝛼𝑡𝛻𝑓 𝑥 ୃ∆𝑥, 𝑡 ≔ 𝛽𝑡

ଶ
ଶ for all 



𝑓ሚ 𝑡  𝑓 𝑥 െ ሺ𝑡/2ሻ 𝛻𝑓 𝑥 ଶ
ଶ

 𝑓 𝑥 െ 𝛼𝑡 𝛻𝑓 𝑥 ଶ
ଶ



Analysis for Backtracking Line 
Search

2. Backtracking Line Search Terminates
 Either with 

 Or with a value 

 So,

3. Subtracting ∗ from Both Sides

ା
ଶ
ଶ

ା
ଶ
ଶ

ା
ଶ
ଶ

ା ∗ ∗
ଶ
ଶ



Analysis for Backtracking Line 
Search

4. Combining with Strong Convexity

5. Applying it Recursively


ଶఉఈ

ெ

 ሺሻ converges to ∗ with an exponent 
that depends on the condition number 

 Linear Convergence

ା ∗ ∗

ሺሻ ∗  ሺሻ ∗
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A Quadratic Problem in 

 A Quadratic Objective Function

 The optimal point ∗

 The optimal value is 
 The Hessian of is constant and has 

eigenvalues and 
 minሼ1, 𝛾ሽ , 𝑀 ൌ maxሼ1, 𝛾ሽ
 Condition number

ଵ
ଶ

ଶ
ଶ



A Quadratic Problem in 

 A Quadratic Objective Function

 Gradient Descent Method
 Exact line search starting at ሺሻ

 Reduced by the factor ଶ

ଵ
ଶ

ଶ
ଶ

𝑥ଵ
ሺሻ ൌ 𝛾

𝛾 െ 1
𝛾  1



, 𝑥ଶ
ሺሻ ൌ 𝛾 െ

𝛾 െ 1
𝛾  1



𝑓 𝑥  ൌ
𝛾 𝛾  1

2
𝛾 െ 1
𝛾  1

ଶ

ൌ
𝛾 െ 1
𝛾  1

ଶ

𝑓ሺ𝑥ሺሻሻ

Convergence is
exactly linear



A Quadratic Problem in 

 Comparisons


 From our general analysis, the error is 
reduced by

 From the closed-form solution, the error 
is reduced by

 When is large, the iteration 
complexity differs by a factor of 

𝛾 െ 1
𝛾  1

ଶ

ൌ
1 െ 𝑚/𝑀
1  𝑚/𝑀

ଶ

ൌ 1 െ
2𝑚/𝑀

1  𝑚/𝑀

ଶ

1 െ
𝑚
𝑀



A Quadratic Problem in 

 Experiments
 For not far from one, convergence is rapid



A Non-Quadratic Problem in 

 The Objective Function

 Gradient descent method with 
backtracking line search
 𝛼 ൌ 0.1, 𝛽 ൌ 0.7

ଵ ଶ
௫భାଷ௫మି.ଵ ௫భିଷ௫మି.ଵ ି௫భି.ଵ



A Non-Quadratic Problem in 

 The Objective Function

 Gradient descent method with exact line 
search

ଵ ଶ
௫భାଷ௫మି.ଵ ௫భିଷ௫మି.ଵ ି௫భି.ଵ



A Non-Quadratic Problem in 

 Comparisons
 Both are linear, and exact l.s. is faster



A Problem in 

 A Larger Problem

 and 

 Gradient descent method with 
backtracking line search
 𝛼 ൌ 0.1, 𝛽 ൌ 0.5

 Gradient descent method with exact line 
search

ୃ
 

ୃ


ୀଵ



A Problem in 

 Comparisons
 Both are linear, and exact l.s. is only a 

bit faster



Gradient Method and Condition 
Number

 A Larger Problem

 Replace by 

 A Family of Optimization Problems

 Indexed by 

ୃ
 

ୃ


ୀଵ

ଵ/ ଶ/ ሺିଵሻ/

ୃ
 

ୃ


ୀଵ



Gradient Method and Condition 
Number

 Number of iterations required to 
obtain  ∗ ିହ

Backtracking line search
with 𝛼 ൌ 0.3 and 𝛽 ൌ 0.7



Gradient Method and Condition 
Number

 The condition number of the Hessian 
ଶ ∗ at the optimum

The larger the condition
number, the larger the
number of iterations



Conclusions
1. The gradient method often exhibits 

approximately linear convergence.
2. The convergence rate depends greatly on 

the condition number of the Hessian, or the 
sublevel sets.

3. An exact line search sometimes improves 
the convergence of the gradient method, 
but the effect is not large.

4. The choice of backtracking parameters 
has a noticeable but not dramatic effect 

on the convergence.
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General Convex Functions

 is convex
 is Lipschitz continuous

 Gradient Descent Method
Given a starting point 𝑥ሺଵሻ ∈ dom 𝑓
For 𝑘 ൌ 1,2, … , 𝐾 do

Update: 𝑥ሺାଵሻ ൌ 𝑥ሺሻ െ 𝑡ሺሻ𝛻𝑓ሺ𝑥ሺሻሻ
End for
Return ଵ


ሺሻ

ୀଵ

𝛻𝑓 𝑥 ଶ  𝐺



Analysis

 Define ଵ ∗
ଶ

 Let ሺሻ

𝑓 𝑥ሺሻ െ 𝑓 𝑥∗

 𝛻𝑓 𝑥ሺሻ ୃ 𝑥ሺሻ െ 𝑥∗

ൌ
1
𝜂 𝑥ሺሻ െ 𝑥ሺାଵሻ ୃ 𝑥ሺሻ െ 𝑥∗
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2𝜂 𝑥  െ 𝑥∗
ଶ
ଶ

െ 𝑥 ାଵ െ 𝑥∗
ଶ
ଶ

 𝑥  െ 𝑥 ାଵ
ଶ
ଶ



Analysis

 Define ଵ ∗
ଶ

 Let ሺሻ

𝑓 𝑥ሺሻ െ 𝑓 𝑥∗

 𝛻𝑓 𝑥ሺሻ ୃ 𝑥ሺሻ െ 𝑥∗

ൌ
1
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ଶ
ଶ
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ଶ
ଶ


𝜂
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𝜂 𝑥ሺሻ െ 𝑥ሺାଵሻ ୃ 𝑥ሺሻ െ 𝑥∗



Analysis

 So,

 Summing over 

 Dividing both sides by 

𝑓 𝑥ሺሻ െ 𝑓 𝑥∗ 
1

2𝜂 𝑥  െ 𝑥∗
ଶ
ଶ

െ 𝑥 ାଵ െ 𝑥∗
ଶ
ଶ


𝜂
2 𝐺ଶ

 𝑓 𝑥ሺሻ െ 𝐾𝑓 𝑥∗


ୀଵ


1
2𝜂 𝐷ଶ 

𝜂𝐾
2 𝐺ଶ

1
𝐾  𝑓 𝑥ሺሻ െ 𝑓 𝑥∗



ୀଵ


1
𝐾

1
2𝜂 𝐷ଶ 

𝜂𝐾
2 𝐺ଶ

ൌ
𝐷ଶ

2𝜂𝐾 
𝜂
2 𝐺ଶ



Analysis

 By Jensen’s Inequality




ீ 

𝑓 𝑥 െ 𝑓 𝑥∗ ൌ 𝑓
1
𝐾  𝑥 



ୀଵ
െ 𝑓 𝑥∗


1
𝐾  𝑓 𝑥  െ 𝑓 𝑥∗

்

௧ୀଵ


𝐷ଶ

2𝜂𝐾 
𝜂
2 𝐺ଶ

ൌ
𝐺𝐷

𝐾



Discussions

 How to Ensure ଶ ?
 Add a Domain Constraint 

 Can model any constrained convex 
optimization problem

 Gradient Descent with Projection

 Property of Euclidean Projection

min 𝑓ሺ𝑥ሻ 
s. t. 𝑥 ∈ 𝑋

ሺାଵሻ ሺሻ   ାଵ


ሺାଵሻ

𝑥ሺାଵሻ െ 𝑥∗
ଶ ൌ 𝑃 𝑥ොሺାଵሻ െ 𝑃 𝑥∗

ଶ
 𝑥ොሺାଵሻ െ 𝑥∗

ଶ



Gradient Descent with 
Projection

 The Problem

 The Algorithm
Given a starting point 𝑥ሺଵሻ ∈ dom 𝑓

For 𝑘 ൌ 1,2, … , 𝐾 do
Update: 𝑥ොሺାଵሻ ൌ 𝑥ሺሻ െ 𝑡  𝛻𝑓 𝑥 

Projection: 𝑥 ାଵ ൌ 𝑃ሺ𝑥ොሺାଵሻሻ
End for
Return ଵ


ሺሻ

ୀଵ

 Assumptions 𝛻𝑓 𝑥 ଶ  𝐺, ∀𝑥 ∈ 𝑋

 



Analysis

 Define ଵ ∗
ଶ

∗
௫∈

 Let ሺሻ

𝑓 𝑥ሺሻ െ 𝑓 𝑥∗

 𝛻𝑓 𝑥ሺሻ ୃ 𝑥ሺሻ െ 𝑥∗
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2𝜂 𝑥  െ 𝑥∗
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ଶ
ଶ 

𝜂
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1
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1
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ଶ
ଶ
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ଶ


𝜂
2 𝐺ଶ

Property of Euclidean
Projection
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Motivation

 The First-order Taylor Approximation

 ୃ is the directional derivative of at 
in the direction 

 It gives the approximate change in for a 
small step 

 is a descent direction if ୃ is 
negative

 A Good Search Direction 
 Make ୃ as negative as possible

ୃ



Steepest Descent Method

 Normalized Steepest Descent Direction
 with respect to the norm 

 Equivalent to

 The direction in the unit ball of ⋅ that 
extends farthest in the direction െ𝛻𝑓ሺ𝑥ሻ

 Unnormalized Steepest Descent 
Direction 

୬ୱୢ
ୃ

୬ୱୢ
ୃ

ୱୢ ∗ ୬ୱୢ

ୃ
ୱୢ ∗

ୃ
୬ୱୢ ∗

ଶ



Steepest Descent Method

 The Algorithm
Given a starting point 𝑥 ∈ dom 𝑓
Repeat

1. Compute steepest descent direction Δ𝑥ୱୢ.
2. Line search: Choose 𝑡 via exact or 

backtracking line search. 
3. Update: 𝑥 ≔ 𝑥  𝑡Δ𝑥ୱୢ. 

until stopping criterion is satisfied.

 When exact line search is used, scale 
factors in the direction have no effect.
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Steepest Descent Method

 Steepest Descent for Euclidean Norm

 The steepest descent method coincides 
with the gradient descent method

ୱୢ ଶ ୬ୱୢ

୬ୱୢ
ୃ

ଶ

ଶ



Steepest Descent Method

 Steepest Descent for Quadratic Norm
 -quadratic norm, where ାା



 The dual norm ∗ షభ ିଵ/ଶ
ଶ

 Normalized Steepest Descent Direction

 Unnormalized Steepest Descent Direction 

୬ୱୢ
ୃ ିଵ ିଵ/ଶ ିଵ

ୱୢ ∗ ୬ୱୢ ൌ െ𝑃ିଵ𝛻𝑓 𝑥


ୃ ଵ/ଶ ଵ/ଶ

ଶ



Steepest Descent Method

 Steepest Descent for Quadratic Norm

 The ellipsoid is the unit ball of the norm

Δ𝑥୬ୱୢ extends as far as
possible in the direction െ𝛻𝑓 𝑥
while staying in the ellipsoid.



Steepest Descent Method

 Steepest Descent for Quadratic Norm
 Interpretation via Change of Coordinates
 Define ଵ/ଶ , so  ଶ

 An Equivalent Problem

 Gradient descent method

 Correspond to the direction

ିଵ/ଶ

ିଵ/ଶ ିଵ/ଶ ିଵ/ଶ

ିଵ/ଶ ିଵ/ଶ ିଵ
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Steepest Descent Method

 Steepest Descent for ଵ-norm
 Normalized Steepest Descent Direction

 𝑖 be any index for which 𝛻𝑓 𝑥 ஶ ൌ 𝛻𝑓ሺ𝑥ሻ 

 𝑒 is the 𝑖-th standard basis vector

 Unnormalized Steepest Descent Direction 

୬ୱୢ
ୃ

ଵ




ୱୢ ୬ୱୢ ஶ






Steepest Descent Method

 Steepest Descent for ଵ-norm

 The diamond is the unit ball of ℓଵ-norm

Δ𝑥୬ୱୢ can always be chosen in 
the direction of a standard 
basis vector (or a negative one).



Steepest Descent Method

 Steepest Descent for ଵ-norm

 Coordinate-descent Algorithm
1. Select a component of with 

maximum absolute value
2. Decrease or increase the corresponding 

component of 

 Simplify, or even trivialize, the line 
search
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Convergence Analysis

1. Any norm can be bounded in terms of 
the Euclidean norm
 Exist 

is smooth, i.e, ଶ
ଶ ∗ ଶ

ୱୢ
ୃ

ୱୢ
ୱୢ ଶ

ଶ
ଶ

ୃ
ୱୢ

ୱୢ
ଶ

ଶ
ଶ

∗
ଶ

ଶ
ଶ

∗
ଶ



Convergence Analysis

3. Exit Condition for the Backtracking 
Line Search



ୱୢ
ୃ

ୱୢ
ଶ

0  𝑡 
𝛾ଶ

𝑀 ⇒ െ𝑡 
𝑀𝑡ଶ

2𝛾ଶ  െ
𝑡
2

ୱୢ ∗
ଶ

ଶ
ଶ

∗
ଶ

ୱୢ ∗
ଶ

ୱୢ
ୃ

ୱୢ



Convergence Analysis

3. Exit Condition for the Backtracking 
Line Search



 Backtracking line search terminates

 So

ୱୢ
ୃ

ୱୢ
ଶ

ଶ

𝑓 𝑥ା ൌ 𝑓 𝑥  𝑡Δ𝑥ୱୢ  𝑓 𝑥 െ 𝛼 min 1,
𝛽𝛾ଶ

𝑀 𝑓 𝑥 ∗
ଶ

 𝑓 𝑥 െ 𝛼 𝛾ଶmin 1,
𝛽𝛾ଶ

𝑀 𝑓 𝑥 ଶ
ଶ



Convergence Analysis

4. Subtracting ∗ from Both Sides

5. Combining with Strong Convexity

 ଶ ଶ

6. Applying it Recursively

 Linear convergence

ା ∗ ∗

𝑓 𝑥ା െ 𝑝∗  𝑓 𝑥 െ 𝑝∗ െ 𝛼 𝛾ଶmin 1,
𝛽𝛾ଶ

𝑀 𝑓 𝑥 ଶ
ଶ

ሺሻ ∗  ሺሻ ∗

Fail to illustrate
the advantage
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Choice of Norm for Steepest 
Descent

 Steepest Descent Method with 
Quadratic -norm
 Equivalent to gradient method after the 

change of coordinates
 Gradient Method Works Well 
 When the condition numbers of the 

sublevel sets (or Hessian) are moderate
 Steepest Descent Method will Work Well
 When the sublevel sets, after the change of 

coordinates, are moderately conditioned



Choice of Norm for Steepest 
Descent

 Choosing to make the sublevel sets 
of are well conditioned
 If an approximation of the Hessian at the 

optimal point ∗ were known
 A good choice of would be 
 The Hessian of at the optimum

 Choosing to make the ellipsoid 

approximate the the sublevel set of 

ିଵ/ଶ ଶ ∗ ିଵ/ଶ

ୃ



Example

 The Objective Function

 Steepest descent method
 Using the two quadratic norms

 Backtracking line search 
 𝛼 ൌ  0.1 and 𝛽 ൌ  0.7

ଵ ଶ
௫భାଷ௫మି.ଵ ௫భିଷ௫మି.ଵ ି௫భି.ଵ

ଵ ଶ
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Example

 Why ଵ is better than ଶ?
 Problems after the changes of coordinates

 The change of variables associated with 𝑃ଵ yields 
sublevel sets with modest condition number

ଵ

ଶ



Summary

 Gradient Descent Method
 Convergence Analysis
 General Convex Functions

 Steepest Descent Method
 Euclidean and Quadratic Norms
 ଵ-norm
 Convergence Analysis


