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Line

Lines
y=0x;+(1—-0)x,
y =x;+0(x1 — x3)
B /eER
B x, *x,

Line segments
B 9e[01]
B x, #x




Affine Sets (1)

Definition

B ( eR" iIs affine, If
Ox;+(1—-0)x, €C

for any x;,x, € C and 6 e R

Generalized form
B Affine Combination

0,x1 +0,x, +--+ 0, x, €EC
[] 01+92++9k:1




Affine Sets (2)

Subspace
V=C—xy={x—xy|x €C}
B (C eR" iIs an affine set, x, € C

B Subspace is closed under sums and
scalar multiplication

av, + pv, €V, Vv, v, EV

B C can be expressed as a subspace plus
an offset x, € C
C=V+ X0

B Dimension of ¢: dimension of Vv



Affine Sets (3)

Solution set of linear equations is affine
C = {x|Ax = b}
B Suppose x4,x, €EC

AOxi+ (1 —-0)x,) =0Ax;+ (1 —-0)Ax,
=60b+(1—-0)b
=b

Every affine set can be expressed as the
solution set of a system of linear
equations.




Affine Sets (4)

Affine hull of set C

aff C ={0,x1 + -+ Opxy |xq,, %, €EC,0, + -+ 0, =1}

B Affine hull is the smallest affine set that
contains C

Affine dimension

B Affine dimension of a set C as the
dimension of its affine hull aff C

B Consider the unit circle B = {x € R?|x? +

x% = 1}, aff B is R%. So affine dimension is
2.




Affine Sets (5)

Relative interior
relint C = {x € C|B(x,r) Nnaff C < C for some r > 0}

B B(x,v) ={y|lly — x|| <r}, the ball of radius r
and center x In the norm |-||.

Relative boundary

cl C \ relint C
B clC is the closure of C



Affine Sets (5)

A square in (xq,x,)-plane in R?

C={xeR’|—-1<x,<1,-1<x,<1,x3 =0}

B Interior is empty
B Boundary is itself

B Affine hull is the (x4, x,)-plane
B Relative interior

relintC ={x eR3}|—-1<x,<1,-1<x, <1,x3 =0}
B Relative boundary

{x € R3| maX{lxlli |x2|} — 1,X3 — O}



Convex Sets (1)

Convex sets

B A set C iIs convex If for any x,,x, € C, any
6 € [0,1], we have

Ox;+(1—0)x, €C

O

Generalized form
B Convex combination

0,x1 +0,x, + -+ 0, x, €EC
91+02++6k — 1,9,: ZO,l — 1,'“,k




Convex Sets (2)

Convex hull

conv C = {0,x1 + -+ O x|
Xi € C,Hl +02 ++0k — 1,9i = O,l — 1,,k}

Infinite sums, Integrals




Cone (1)

Cone
B Cone iIs a set that

xe€(C,0=20=0xeC

4

Convex cone yi

/

B For any x;,x, € C, 6,6, >0 ya |
O1x1 + 6, €EC

0

Conic combination
B Ox ++6ixy, 0, 20,i=1,--,k




Cone (2)

Conic hull

{011+ -+ 0 x|lx; €C, 6; 20,i =1, -, k}
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Some Examples

The empty set @, any single point {x,}, and the
whole space R" are affine (hence, convex)
subsets of R"

Any line is affine. If it passes through zero, it
IS a subspace, hence also a convex cone.

A line segment is convex, but not affine
(unless it reduces to a point).

A ray, which has the form {x, + 6v |6 >

0}, where v # 0, Is convex, but not affine. It is
a convex cone If its base x, Is O.

Any subspace Is affine, and a convex cone

(hence convex).



Hyperplanes

{x|la"x = b}
B ageR",a+0and beR
Other Forms
{x|a"(x —x0) = 0}
B x, is any point such that a"x, = b

a‘Tt=~>b



Hyperplanes

{x|a"x = b}
B ageR", a0and b eR
Other Forms
{x|a"(x —x0) = 0}
B x, is any point such that a’x, = b

{xla"(x —xy) = 0} = x5 + a

B gt ={vla"v =0}



Halfspaces

{x|la"x < b}
B agceR* a+0and b eR
Other Forms
{x|a"(x —x0) < 0}

B x, is any point such that a"x, = b

B Convex
B Not affine




Balls

Definition

B(xc,m) = {xl|llx — x|l <7}
= {x]|(x — XC)T(X — X¢) < rz}
= {x¢ + rulllull; = 1}
® r>0, and |-, denotes the Euclidean norm
B Convex



Ellipsoids

Definition
E={x|(x—x)"P 7 (x—x,) <1}
= {x. + Aul|lu]l, < 1}

B P e S, determines how far the ellipsoid
extends Iin every direction from x_;

B Lengths of semi-axes are \/4;

B Convex e
\

_
\/Q



Norm Balls and Norm Cones

Norm balls
C = {xlllx— x|l =7}
B ||-]l is any norm on R", x. is the center

Norm cones
C = {(xt)]|lx|l <t} € R**!
B Second-order Cone

C ={(xt) e R""||x]l, <t}

=[N o S <oe=0



Norm Balls and Norm Cones

Norm balls
C = {x|llx — x| =7}
® ||| iIs any norm on R", x.Is the center

Norm cones
Uy

1 . A,,,,__,,,____, _— _—~
-~ 7 1
( ] ___A.,,_,,./A.,,_,_,.,.,__(,Ei)
\<,,... e

L2 -1 -1




Polyhedra (1)

Polyhedron

P = {xlaij < b-,j =1,---,m, c]-Tx — dj,j = 1,---,p}

B Solution set of a finite number of linear
equalities and ineqgualities

B Intersection of a finite number of
halfspaces and hyperplanes

B Affine sets (e.g., subspaces, hyperplanes,
lines), rays, line segments, and halfspaces
are all polyhedra



Polyhedra (2)

Polyhedron

T

P = {xla]-_rx < b]’] — 1,'“,m,Cj X = d]’] — 1’...’p}




Polyhedra (2)

Polyhedron
P = {xla]TX < b’] — 1’...’m’ C].Tx — d]’] — ’...’p}

B Matrix Form
= {x|Ax < b,Cx = d}

a; c{

A — ) . C —
T T
Am | Cp

u<vmeans u; <v; forall i



: Polyhedron? )
Simplexes @ @

\V

An important family of polyhedra

C = conv{vy, -, Vg } = {BVg + -+ 0, v,|0 =0,170 = 1}
B k4 1 points vy, -, v, are affinely independent
B The affine dimension of this simplex is k
1-dimensional simplex: line segment
2-dimensional simplex: triangle

Unit simplex: x >0,1Tx <1

B n-dimensional

Probability simplex: x >0,1"x =1

B (n-1)-dimensional




The positive semidefinite cone &

"= {X € RW"|X = X"} is the set of
symmetric n X n matrices
B Vector space with dimension n(n+1)/2
P ={X € S*|X = 0} is the set of
symmetric positive semidefinite
matrices
B Convex cone

.o ={X € S*X > 0} is the set of
symmetric positive definite




The positive semidefinite cone &

1 PSD Cone in S?

X
X=[y }Z,]ESEr S x=0,z>0,xz > y?

0.5 |




Outline

Affine and Convex Sets

Operations That Preserve Convexity

Generalized Inequalities

Separating and Supporting Hyperplanes

Dual Cones and Generalized Inequalities

Summary




Intersection

If S; and S, are convex, then §; NS, Is
convex.

A polyhedron is the intersection of
halfspaces and hyperplanes

If S, Is convex for every a € A, then
Ngea Sq IS CONVEX.

B Positive semidefinite cone

H= ﬂ{X € S"|z"Xz = 0}

Z#+0



A Complicated Example (1)

A
5 = {x e R™||p(t)| < 1 for |t| < 5}




A Complicated Example (2)

T
5 = {x e R™||p(t)| < 1 for |¢| < 5}

B p(t) =)= x;coskt

S — ﬂ St
|t|<m/3

B S, ={x|—1<(cost,...,cosmt) x < 1}



A Complicated Example (3)

S — ﬂ St
|t|<m/3

{x| — 1 < (cost,...,cosmt)Tx < 1}




Affine Functions

Affine function f:R" - R™
f(x) =Ax+ b, A€ R™" heR
S € R"™ is convex

Then, the image of S under f

fG8) = U@lx €5;

and the inverse image of S under f

f718) = {xl f(x) € S}

are convex



Examples (1)

Scaling
aS = {ax|x € S}

Translation

S+a ={x+a|x € S}

Projection of a convex set onto some
of its coordinates

T ={x; € R"|(x4,x,) € S for some x, € R"}

B S C R™xR"I|Is convex



Examples (2)

Sum of two sets
Si;+S,={x+y|lxe€eS,y€S,}

B Cartesian product: S; XS, = {(xy,x5)|x; €
51, %3 € S}

B Linear function: f(xq,x,) = x; + x5
Partial sum of §;,5, € R" X R™

§=1{06y1 +y2)l(x,y1) € 51, (x,¥2) € 53}

B m =0, intersection of §; and S,
B n =0, set addition




Examples (3)

Polyhedron
x|Ax < b,Cx = d} = {x|f(x) € RT* x {0}}
B f(x)=(b—Ax,d —Cx)

Linear Matrix Inequality
A(x) = x4+ +x,A, <B

B The solution set {x|A(x) < B}
{x|A(x) < B} = {x|B — A(x) € S}'}



Perspective Functions (1)

Perspective function P:R"*1 - R"

VA
P(Z,t) =z,d0mp :RnXR++

5133:0

T3 = —1




Perspective Functions (2)

Perspective function P:R**! - R"

Z
P(Z,t) =Z,d0mp =RnXR++

If C € dom P Is convex, then its image
P(C) = {P(x)|x € C}

IS convex

If C € R™ Is convex, the inverse image

P~1(C) = {(x, t) € R*t1 %e C,t> O}
IS convex




Linear-fractional Functions (1) &

Suppose g:R" - R™*! js affine
14 4_b__Ax+b
9(x) = e T ld| T |eTx + d

The function f:R" - R™ given by Po g

Ax + Db

_ (T
HR+dJMmf—{cx+d>O}

fx) =



Linear-fractional Functions (2) &

If C is convex and {c"x+d >0forx €
C}, then

CRETAN

IS convex

If C € R™ Is convex, then the inverse
Image

Ax+ b EC}

fHO) = {x cTx +d

IS convex




Example

flx) = x,dom f = {(x1,x)|x; + x, + 1 > 0}

x1+x2+1
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Proper Cones

A cone K € R" is called a proper cone
If It satisfies the following

B K IS convexX.

B K is closed.

B K is solid, which means it has nonempty
Interior.

B K is pointed, which means that it contains
no line (x e K,—x € K = x = 0).

A proper cone K can be used to

define a generalized inequality




Generalized Inequalities

We associate with the proper cone K
the partial ordering on R™ defined by

X<k y ©Sy—x€eK

We define an associated strict partial
ordering by

XxX<gy ©y—x€intk



Examples

Nonnegative Orthant and
Componentwise Inequality

B K=R"}

B x<gymeansthat x; <vy;,i=1,..,n.

B x<gymeans that x; <vy;,i=1,..,n.
Positive Semidefinite Cone and Matrix
Inequality

B K=S"

B X<yYmeansthatY —X is PSD

B X <, Y means that Y — X Is positive definite




Properties of Generalized
Inequalities

<k IS preserved under addition: If x <, y and
usgv,thenx+us<ygy+v.

<g IS transitive: If x <y yand y <y z, then

X 41{ Z .

<y IS preserved under nonnegative scaling: Iif
x<gyand a = 0 then ax g ay .

<y IS reflexive: x <y x.

<k IS antisymmetric: if x <y yand y <y x, then
X =Y.

<k IS preserved under limits: if x; <, y;fori =
1,2,...,.x;, > >xand y; > yasi—> oo, then x <y y.




Properties of Strict Generalized'g
Inequalities $

OIf x <y then x <y y.

L If x <y and u <g v then x +
U<gy+v.

OIf x <y yand a > 0 then ax < ay .
L x <5 x.

O If x <,y , then for u and v small
enough, x+u <y y+v.



Minimum and Minimal Elements

1 x €5 1s the minimum element

B If for every y € S, we have x <y y.

B SCx+K

B Minimum element is unique, If exists
1x €5 1saminimal element
BifyeS, y<gxonlyify =x
B (x—K)nS ={x}
B May have different minimal elements
Maximum, Maximal




Example

The Cone R%

B x <y means y is above and to the right
of x

I1




Outline

Affine and Convex Sets

Operations That Preserve Convexity

Generalized Inequalities

Separating and Supporting Hyperplanes

Dual Cones and Generalized Inequalities

Summary




Separating Hyperplane
Theorem

Suppose C and D are nonempty
disjoint convex sets, I.e., CND = Q.
Then, there exist a # 0 and b such
that




Separating Hyperplane
Theorem

Suppose C and D are nonempty
disjoint convex sets, i.e., CND = 0.
Then, there exist a # 0 and b such
thata'x <bforallxeCanda'x>b
for all x € D.

{x|a"x = b} is called a separating
hyperplane for the sets C and D.




Strict Separation

a'x<bforallx € Cand a'x > b for
all x € D.

May not be possible in general
A Point and a Closed Convex Set

A closed convex set Is the Iintersection
of all halfspaces that contain it




Converse separating
hyperplane theorems

Suppose C and D are convex sets,
with C open, and there exists an
affine function f that is nonpositive
on C and nonnegative on D. Then C
and D are disjoint.

Any two convex sets C and D, at least
one of which Is open, are disjoint if
and only If there exists a separating
hyperplane.



Supporting Hyperplanes

Suppose C € R™, and x, IS a point in its
boundary bd C, I.e.,
xXo€Ebd C=cl C\ intC

if a = 0 satisfies a'x <a'x, for all x € C. The
hyperplane {x|a'x = a'x,} is called a
supporting hyperplane to C at the point x,

N\

.\
\\ L\\\ \
N\
o :

‘ ‘ \‘\
F

a
g
\.

/.

=
\



Two Theorems

Supporting Hyperplane Theorem

B For any nonempty convex set C, and
any x, € bd C, there exists a
supporting hyperplane to C at x,.

Converse Theorem

B If a set Is closed, has nonempty
Interior, and has a supporting
hyperplane at every point In its
boundary, then it is convex.
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Dual Cone

Dual Cone of a Given Cone K

K*={y|x"y = 0forall x € K}
B K*Is conveXx, even when K IS not

B y e K" if and only if —y is the normal of a
hyperplane that supports K at the origin

/
/
/

/

f

I

/ B
/




Examples

Subspace
B The dual cone of a subspace IV € R"

Vi ={ylv'y =0forallv € V}

Nonnegative Orthant
B The cone R is its own dual
x'y>0forallx 0=y =0

Positive Semidefinite Cone
B S? is self-dual
tr(XY)=>0forallX >0 Y >0




Properties of Dual Cone

1 K*is closed and convex.

[ K; € K, implies K, € K{

L If K has nonempty interior, then K*
IS pointed.

1 If the closure of K I1s pointed then
K* has nonempty interior.

[1 K* Is the closure of the convex hull
of K. (Hence If K Is convex and
closed, K™ =K .)



Dual Generalized Inequalities

Suppose that the convex cone K Is
proper, so it induces a generalized
Inequality <.

Its dual cone K~ Is also proper. We refer
to the generalized inequality <g+ as the
dual of the generalized inequality <.

B x<yyifandonlyif ATx <ATyfor all 0 <4+ 1

B x<,yifand only if ATx < ATy for all 0 <y 1,
A #+0




Dual Characterization of
Minimum Element

x 1S the minimum element of §, with
respect to the generalized inequality
<k, If and only If for all A >+ 0, x Is the
unique minimizer of A’z over z € S.

That means, for any A >+ 0, the
hyperplane {z|AT(z — x) = 0} is a strict
supporting hyperplane to S at x.




Dual Characterization of
Minimum Element

x 1S the minimum element of §, with
respect to the generalized inequality
<k, if and only if for all 1 >+ 0, x Is the
unique minimizer of A'z over z € S.




Dual Characterization of
Minimal Elements (1)

If A >4+ 0, and x minimizes
Az over z € S, then x is minimal.




Dual Characterization of
Minimal Elements (1)

Any minimizer of ATz over z € S, with
A =g+ 0, 1S minimal.

x, minimizes A"z over z € S, for 2 =(0,1) =0



Dual Characterization of
Minimal Elements (2)

If x 1S minimal, then x minimizes
ATz over z € SwithA >+ 0.

/

/




Dual Characterization of
Minimal Elements (2)

If S Is convex, for any minimal
element x there exists a nonzero

A =x+ 0 such that x minimizes A"z over
Z ES.

x; minimizes A"z over z € §; for A= (1,0) = 0



Pareto Optimal Production
Frontier

A product which requires n sources
A resource vector x € R"

fuel

labor
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Summary

1 Affine and convex
1 Operations that preserve convexity

[1 Generalized Inequalities

[1 Separating and supporting
hyperplanes

B Theorems

[1 Dual cones and generalized
Inequalities



