Convex Sets

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju. edu. cn/zlj

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Line

\square Lines

$$
\begin{aligned}
& y=\theta x_{1}+(1-\theta) x_{2} \\
& y=x_{2}+\theta\left(x_{1}-x_{2}\right)
\end{aligned}
$$

■ $\theta \in \mathbf{R}$

- $x_{1} \neq x_{2}$
\square Line segments
■ $\theta \in[0,1]$

■ $x_{1} \neq x_{2}$

Affine Sets (1)

\square Definition
■ $C \in \mathbf{R}^{n}$ is affine, if

$$
\theta x_{1}+(1-\theta) x_{2} \in C
$$

for any $x_{1}, x_{2} \in C$ and $\theta \in \mathbf{R}$
\square Generalized form

- Affine Combination

$$
\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k} \in C
$$

- $\theta_{1}+\theta_{2}+\cdots+\theta_{k}=1$

Affine Sets (2)

\square Subspace

$$
V=C-x_{0}=\left\{x-x_{0} \mid x \in C\right\}
$$

- $C \in \mathbf{R}^{n}$ is an affine set, $x_{0} \in C$
- Subspace is closed under sums and scalar multiplication

$$
\alpha v_{1}+\beta v_{2} \in V, \quad \forall v_{1}, v_{2} \in V
$$

- C can be expressed as a subspace plus an offset $x_{0} \in C$

$$
C=V+x_{0}
$$

■ Dimension of C : dimension of V

Affine Sets (3)

\square Solution set of linear equations is affine

$$
C=\{x \mid A x=b\}
$$

■ Suppose $x_{1}, x_{2} \in C$

$$
\begin{aligned}
A\left(\theta x_{1}+(1-\theta) x_{2}\right) & =\theta A x_{1}+(1-\theta) A x_{2} \\
& =\theta b+(1-\theta) b \\
& =b
\end{aligned}
$$

\square Every affine set can be expressed as the solution set of a system of linear equations.

Affine Sets (4)

\square Affine hull of set C

$$
\operatorname{aff} C=\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k} \mid x_{1}, \cdots, x_{k} \in C, \theta_{1}+\cdots+\theta_{k}=1\right\}
$$

■ Affine hull is the smallest affine set that contains C
\square Affine dimension

- Affine dimension of a set C as the dimension of its affine hull aff C
- Consider the unit circle $B=\left\{x \in \mathbf{R}^{2} \mid x_{1}^{2}+\right.$ $\left.x_{2}^{2}=1\right\}$, aff B is \mathbf{R}^{2}. So affine dimension is 2.

Affine Sets (5)

\square Relative interior
relint $C=\{x \in C \mid B(x, r) \cap$ aff $C \subseteq C$ for some $r>0\}$
■ $B(x, r)=\{y \mid\|y-x\| \leq r\}$, the ball of radius r and center x in the norm $\|\cdot\|$.
\square Relative boundary cl $C \backslash$ relint C

- $\mathrm{cl} C$ is the closure of C

Affine Sets (5)

\square A square in (x_{1}, x_{2})-plane in \mathbf{R}^{3}

$$
C=\left\{x \in \mathbf{R}^{3} \mid-1 \leq x_{1} \leq 1,-1 \leq x_{2} \leq 1, x_{3}=0\right\}
$$

- Interior is empty
- Boundary is itself
- Affine hull is the (x_{1}, x_{2})-plane
- Relative interior
relint $C=\left\{x \in \mathbf{R}^{3} \mid-1<x_{1}<1,-1<x_{2}<1, x_{3}=0\right\}$
- Relative boundary

$$
\left\{x \in \mathbf{R}^{3} \mid \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}=1, x_{3}=0\right\}
$$

Convex Sets (1)

\square Convex sets

- A set C is convex if for any $x_{1}, x_{2} \in C$, any $\theta \in[0,1]$, we have

$$
\theta x_{1}+(1-\theta) x_{2} \in C
$$

\square Generalized form
■ Convex combination

$$
\begin{gathered}
\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k} \in C \\
\theta_{1}+\theta_{2}+\cdots+\theta_{k}=1, \theta_{i} \geq 0, i=1, \cdots, k
\end{gathered}
$$

Convex Sets (2)

\square Convex hull

$$
\operatorname{conv} C=\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}\right\}
$$

$$
\left.x_{i} \in C, \theta_{1}+\theta_{2}+\cdots+\theta_{k}=1, \theta_{i} \geq 0, i=1, \cdots, k\right\}
$$

\square Infinite sums, integrals

Cone (1)

\square Cone
■ Cone is a set that

$$
x \in C, \theta \geq 0 \Rightarrow \theta x \in C
$$

\square Convex cone

- For any $x_{1}, x_{2} \in C, \theta_{1}, \theta_{2} \geq 0$

$$
\theta_{1} x_{1}+\theta_{2} x_{2} \in C
$$

\square Conic combination
■ $\theta_{1} x_{1}+\cdots+\theta_{k} x_{k}, \theta_{i} \geq 0, i=1, \cdots, k$

Cone (2)

\square Conic hull
$\left\{\theta_{1} x_{1}+\cdots+\theta_{k} x_{k} \mid x_{i} \in C, \theta_{i} \geq 0, i=1, \cdots, k\right\}$

Some Examples

\square The empty set \varnothing, any single point $\left\{x_{0}\right\}$, and the whole space \mathbf{R}^{n} are affine (hence, convex) subsets of \mathbf{R}^{n}
\square Any line is affine. If it passes through zero, it is a subspace, hence also a convex cone.
\square A line segment is convex, but not affine (unless it reduces to a point).
\square A ray, which has the form $\left\{x_{0}+\theta v \mid \theta \geq\right.$ $0\}$, where $v \neq 0$, is convex, but not affine. It is a convex cone if its base x_{0} is 0 .
\square Any subspace is affine, and a convex cone (hence convex).

Hyperplanes

$$
\left\{x \mid a^{\top} x=b\right\}
$$

■ $a \in \mathbf{R}^{n}, a \neq 0$ and $b \in R$
\square Other Forms

$$
\left\{x \mid a^{\top}\left(x-x_{0}\right)=0\right\}
$$

■ x_{0} is any point such that $a^{\top} x_{0}=b$

Hyperplanes

$$
\left\{x \mid a^{\top} x=b\right\}
$$

- $a \in \mathbf{R}^{n}, a \neq 0$ and $b \in R$
\square Other Forms

$$
\left\{x \mid a^{\top}\left(x-x_{0}\right)=0\right\}
$$

- x_{0} is any point such that $a^{\top} x_{0}=b$

$$
\begin{aligned}
& \quad\left\{x \mid a^{\top}\left(x-x_{0}\right)=0\right\}=x_{0}+a^{\perp} \\
& \square
\end{aligned}
$$

Halfspaces

$\left\{x \mid a^{\top} x \leq b\right\}$
■ $a \in \mathbf{R}^{n}, a \neq 0$ and $b \in R$
\square Other Forms

$$
\left\{x \mid a^{\top}\left(x-x_{0}\right) \leq 0\right\}
$$

■ x_{0} is any point such that $a^{\top} x_{0}=b$

- Convex
- Not affine

Balls

\square Definition

$$
\begin{aligned}
B\left(x_{c}, r\right) & =\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\} \\
& =\left\{x \mid\left(x-x_{c}\right)^{\top}\left(x-x_{c}\right) \leq r^{2}\right\} \\
& =\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
\end{aligned}
$$

■ $r>0$, and $\|\cdot\|_{2}$ denotes the Euclidean norm

- Convex

Ellipsoids

\square Definition

$$
\begin{aligned}
\varepsilon & =\left\{x \mid\left(x-x_{c}\right)^{\top} P^{-1}\left(x-x_{c}\right) \leq 1\right\} \\
& =\left\{x_{c}+A u \mid\|u\|_{2} \leq 1\right\}
\end{aligned}
$$

■ $P \in \mathbf{S}_{++}^{n}$ determines how far the ellipsoid extends in every direction from x_{c};
■ Lengths of semi-axes are $\sqrt{\lambda_{i}}$
■ Convex

Norm Balls and Norm Cones

\square Norm balls

$$
C=\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}
$$

■ \|•\| is any norm on \mathbf{R}^{n}, x_{c} is the center
\square Norm cones

$$
C=\{(x, t) \mid\|x\| \leq t\} \subseteq \mathbf{R}^{n+1}
$$

- Second-order Cone

$$
\begin{aligned}
C & =\left\{(x, t) \in \mathbf{R}^{n+1} \mid\|x\|_{2} \leq t\right\} \\
& =\left\{\left[\begin{array}{l}
x \\
t
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
x \\
t
\end{array}\right]^{\top}\left[\begin{array}{cc}
I & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
t
\end{array}\right] \leq 0\right., t \geq 0\right\}
\end{aligned}
$$

Norm Balls and Norm Cones

\square Norm balls

$$
C=\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}
$$

■ $\|\cdot\|$ is any norm on \mathbf{R}^{n}, x_{c} is the center
\square Norm cones

Polyhedra (1)

\square Polyhedron

$$
\mathcal{P}=\left\{x \mid a_{j}^{\top} x \leq b_{j}, j=1, \cdots, m, c_{j}^{\top} x=d_{j}, j=1, \cdots, p\right\}
$$

■ Solution set of a finite number of linear equalities and inequalities

- Intersection of a finite number of halfspaces and hyperplanes
■ Affine sets (e.g., subspaces, hyperplanes, lines), rays, line segments, and halfspaces are all polyhedra

Polyhedra (2)

\square Polyhedron

$$
\mathcal{P}=\left\{x \mid a_{j}^{\top} x \leq b_{j}, j=1, \cdots, m, c_{j}^{\top} x=d_{j}, j=1, \cdots, p\right\}
$$

Polyhedra (2)

\square Polyhedron

$$
\mathcal{P}=\left\{x \mid a_{j}^{\top} x \leq b_{j}, j=1, \cdots, m, c_{j}^{\top} x=d_{j}, j=1, \cdots, p\right\}
$$

- Matrix Form

$$
\begin{gathered}
\mathcal{P}=\{x \mid A x \leqslant b, C x=d\} \\
A=\left[\begin{array}{c}
c_{1}^{\top} \\
\cdots \\
a_{m}^{\top}
\end{array}\right], C=\left[\begin{array}{c}
c_{1}^{\top} \\
\cdots \\
c_{p}^{\top}
\end{array}\right]
\end{gathered}
$$

$u \leqslant v$ means $u_{i} \leq v_{i}$ for all i

Simplexes

Polyhedron?

\square An important family of polyhedra $C=\operatorname{conv}\left\{v_{0}, \cdots, v_{k}\right\}=\left\{\theta_{0} v_{0}+\cdots+\theta_{k} v_{k} \mid \theta \geqslant 0,1^{\top} \theta=1\right\}$

■ $k+1$ points v_{0}, \cdots, v_{k} are affinely independent

- The affine dimension of this simplex is k
\square 1-dimensional simplex: line segment
\square 2-dimensional simplex: triangle
\square Unit simplex: $x \geqslant 0,1^{\top} x \leq 1$
- n-dimensional
\square Probability simplex: $x \geqslant 0,1^{\top} x=1$
- ($n-1$)-dimensional

The positive semidefinite cone

$\square \mathbf{S}^{n}=\left\{X \in \mathbf{R}^{n \times n} \mid X=X^{\top}\right\}$ is the set of symmetric $n \times n$ matrices

- Vector space with dimension $n(n+1) / 2$
$\square \mathbf{S}_{+}^{n}=\left\{X \in \mathbf{S}^{n} \mid X \succcurlyeq 0\right\}$ is the set of symmetric positive semidefinite matrices
■ Convex cone
$\square \mathbf{S}_{++}^{n}=\left\{X \in \mathbf{S}^{n} \mid X>0\right\}$ is the set of symmetric positive definite

The positive semidefinite cone

\square PSD Cone in \mathbf{S}^{2}

$$
X=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right] \in \mathbf{S}_{+}^{2} \Leftrightarrow x \geq 0, z \geq 0, x z \geq y^{2}
$$

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Intersection

\square If S_{1} and S_{2} are convex, then $S_{1} \cap S_{2}$ is convex.
\square A polyhedron is the intersection of halfspaces and hyperplanes
\square if S_{α} is convex for every $\alpha \in \mathcal{A}$, then $\mathrm{n}_{\alpha \in \mathcal{A}} S_{\alpha}$ is convex.

- Positive semidefinite cone

$$
\mathbf{S}_{+}^{n}=\bigcap_{z \neq 0}\left\{X \in \mathbf{S}^{n} \mid z^{\top} X z \geq 0\right\}
$$

A Complicated Example (1)

$S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1\right.$ for $\left.|t| \leq \frac{\pi}{3}\right\}$

- $p(t)=\sum_{k=1}^{m} x_{k} \cos k t$

A Complicated Example (2)

$$
\begin{aligned}
& \quad S=\left\{x \in \mathbf{R}^{m}| | p(t) \mid \leq 1 \text { for }|t| \leq \frac{\pi}{3}\right\} \\
& -p(t)=\sum_{k=1}^{m} x_{k} \cos k t
\end{aligned}
$$

$$
S=\bigcap_{|t| \leq \pi / 3} S_{t}
$$

$$
\square S_{t}=\left\{x \mid-1 \leq(\cos t, \ldots, \cos m t)^{\top} x \leq 1\right\}
$$

A Complicated Example (3)

$S=\bigcap_{|t| \leq \pi / 3} S_{t}=\bigcap_{|t| \leq \pi / 3}\left\{x \mid-1 \leq(\cos t, \ldots, \cos m t)^{\top} x \leq 1\right\}$

Affine Functions

\square Affine function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$

$$
f(x)=A x+b, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}
$$

$\square S \subseteq \mathbf{R}^{n}$ is convex
\square Then, the image of S under f

$$
f(S)=\{f(x) \mid x \in S\}
$$

and the inverse image of S under f

$$
f^{-1}(S)=\{x \mid f(x) \in S\}
$$

are convex

Examples (1)

\square Scaling

$$
\alpha S=\{\alpha x \mid x \in S\}
$$

\square Translation

$$
S+a=\{x+a \mid x \in S\}
$$

\square Projection of a convex set onto some of its coordinates

$$
T=\left\{x_{1} \in \mathbf{R}^{m} \mid\left(x_{1}, x_{2}\right) \in S \text { for some } x_{2} \in \mathbf{R}^{n}\right\}
$$

■ $S \subseteq \mathbf{R}^{m} \times \mathbf{R}^{n}$ is convex

Examples (2)

\square Sum of two sets

$$
S_{1}+S_{2}=\left\{x+y \mid x \in S_{1}, y \in S_{2}\right\}
$$

- Cartesian product: $S_{1} \times S_{2}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in\right.$ $\left.S_{1}, x_{2} \in S_{2}\right\}$
- Linear function: $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$
\square Partial sum of $S_{1}, S_{2} \in \mathbf{R}^{n} \times \mathbf{R}^{m}$
$S=\left\{\left(x, y_{1}+y_{2}\right) \mid\left(x, y_{1}\right) \in S_{1},\left(x, y_{2}\right) \in S_{2}\right\}$
- $m=0$, intersection of S_{1} and S_{2}
- $n=0$, set addition

Examples (3)

\square Polyhedron

$$
\begin{aligned}
& \{x \mid A x \leqslant b, C x=d\}=\left\{x \mid f(x) \in \mathbf{R}_{+}^{m} \times\{0\}\right\} \\
& \quad f(x)=(b-A x, d-C x)
\end{aligned}
$$

\square Linear Matrix Inequality

$$
A(x)=x_{1} A_{1}+\cdots+x_{n} A_{n} \preccurlyeq B
$$

- The solution set $\{x \mid A(x) \preccurlyeq B\}$

$$
\{x \mid A(x) \preccurlyeq B\}=\left\{x \mid B-A(x) \in \mathbf{S}_{+}^{m}\right\}
$$

Perspective Functions (1)

\square Perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$

$$
P(z, t)=\frac{z}{t}, \operatorname{dom} P=\mathbf{R}^{n} \times \mathbf{R}_{++}
$$

Perspective Functions (2)

\square Perspective function $P: \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n}$

$$
P(z, t)=\frac{z}{t}, \operatorname{dom} P=\mathbf{R}^{n} \times \mathbf{R}_{++}
$$

\square If $C \in \operatorname{dom} P$ is convex, then its image

$$
P(C)=\{P(x) \mid x \in C\}
$$

is convex
\square If $C \in R^{n}$ is convex, the inverse image

$$
P^{-1}(C)=\left\{(x, t) \in \mathbf{R}^{n+1} \left\lvert\, \frac{x}{t} \in C\right., t \geq 0\right\}
$$

is convex

Linear-fractional Functions (1)

\square Suppose $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m+1}$ is affine

$$
g(x)=\left[\begin{array}{l}
A \\
c^{\top}
\end{array}\right] x+\left[\begin{array}{l}
b \\
d
\end{array}\right]=\left[\begin{array}{c}
A x+b \\
c^{\top} x+d
\end{array}\right]
$$

\square The function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ given by $P \circ g$

$$
f(x)=\frac{A x+b}{c^{\top} x+d}, \operatorname{dom} f=\left\{c^{\top} x+d>0\right\}
$$

Linear-fractional Functions (2)

\square If C is convex and $\left\{c^{\top} x+d>0\right.$ for $x \in$ $C\}$, then

$$
f(C)=\left\{\left.\frac{A x+b}{c^{\top} x+d} \right\rvert\, x \in C\right\}
$$

is convex
\square If $C \in \mathbf{R}^{m}$ is convex, then the inverse image

$$
f^{-1}(C)=\left\{x \left\lvert\, \frac{A x+b}{c^{\top} x+d} \in C\right.\right\}
$$

is convex

Example

$$
f(x)=\frac{1}{x_{1}+x_{2}+1} x, \operatorname{dom} f=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}+x_{2}+1>0\right\}
$$

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Proper Cones

\square A cone $K \subseteq \mathbf{R}^{n}$ is called a proper cone if it satisfies the following

- K is convex.

■ K is closed.
■ K is solid, which means it has nonempty interior.
■ K is pointed, which means that it contains no line ($x \in K,-x \in K \Rightarrow x=0$).
\square A proper cone K can be used to define a generalized inequality

Generalized Inequalities

\square We associate with the proper cone K the partial ordering on \mathbf{R}^{n} defined by

$$
x \preccurlyeq_{K} y \Leftrightarrow y-x \in K
$$

\square We define an associated strict partial ordering by

$$
x \prec_{K} y \Leftrightarrow y-x \in \operatorname{int} K
$$

Examples

\square Nonnegative Orthant and Componentwise I nequality

- $K=\mathbf{R}_{+}^{n}$

■ $x \preccurlyeq_{\kappa} y$ means that $x_{i} \leq y_{i}, i=1, \ldots, n$.
$\square x<_{K} y$ means that $x_{i}<y_{i}, i=1, \ldots, n$.
\square Positive Semidefinite Cone and Matrix I nequality

- $K=\mathbf{S}_{+}^{n}$
- $X \preccurlyeq_{K} Y$ means that $Y-X$ is PSD

■ $X \prec_{K} Y$ means that $Y-X$ is positive definite

Properties of Generalized Inequalities

$\square \preccurlyeq_{K}$ is preserved under addition: If $x \leqslant_{K} y$ and $u \preccurlyeq_{K} v$, then $x+u \preccurlyeq_{K} y+v$.
$\square \leqslant_{K}$ is transitive: if $x \leqslant_{K} y$ and $\mathrm{y} \preccurlyeq_{K} z$, then $x \preccurlyeq_{K} z$.
$\square \preccurlyeq_{K}$ is preserved under nonnegative scaling: if $x \preccurlyeq_{K} y$ and $\alpha \geq 0$ then $\alpha x \leqslant_{K} \alpha y$.
$\square \leqslant_{K}$ is reflexive: $x \leqslant_{K} x$.
$\square \preccurlyeq_{K}$ is antisymmetric: if $x \leqslant_{K} y$ and $\mathrm{y} \preccurlyeq_{K} x$, then $x=y$.
$\square \preccurlyeq_{K}$ is preserved under limits: if $x_{i} \preccurlyeq_{K} y_{i}$ for $i=$ $1,2, \ldots, x_{i} \rightarrow x$ and $y_{i} \rightarrow y$ as $i \rightarrow \infty$, then $x \preccurlyeq_{K} y$.

Properties of Strict Generalize Inequalities

-If $x<_{\kappa} y$ then $x \preccurlyeq_{\kappa} y$.
-If $x<_{K} y$ and $u \preccurlyeq_{K} v$ then $x+$ $u \prec_{K} y+v$.
\square If $x<_{K} y$ and $\alpha>0$ then $\alpha x<_{K} \alpha y$.
$\square x \Varangle_{K} x$.

- If $x<_{K} y$, then for u and v small enough, $x+u<_{K} y+v$.

Minimum and Minimal Elements

$\square x \in S$ is the minimum element

- If for every $y \in S$, we have $x \preccurlyeq_{K} y$.
- $S \subseteq x+K$
- Minimum element is unique, if exists
$\square x \in S$ is a minimal element
- if $y \in S, \mathrm{y} \preccurlyeq_{K} x$ only if $y=x$
- $(x-K) \cap S=\{x\}$
- May have different minimal elements
\square Maximum, Maximal

Example

\square The Cone \mathbf{R}_{+}^{2}

- $x \leqslant y$ means y is above and to the right of x

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Separating Hyperplane Theorem

\square Suppose C and D are nonempty disjoint convex sets, i.e., $C \cap D=\varnothing$. Then, there exist $a \neq 0$ and b such that

Separating Hyperplane Theorem

\square Suppose C and D are nonempty disjoint convex sets, i.e., $C \cap D=\varnothing$. Then, there exist $a \neq 0$ and b such that $a^{\top} x \leq b$ for all $x \in C$ and $a^{\top} x \geq b$ for all $x \in D$.
$\square\left\{x \mid a^{\top} x=b\right\}$ is called a separating hyperplane for the sets C and D.

Strict Separation

$\square a^{\top} x<b$ for all $x \in C$ and $a^{\top} x>b$ for all $x \in D$.
\square May not be possible in general
\square A Point and a Closed Convex Set

\square A closed convex set is the intersection of all halfspaces that contain it

Converse separating hyperplane theorems

\square Suppose C and D are convex sets, with C open, and there exists an affine function f that is nonpositive on C and nonnegative on D. Then C and D are disjoint.
\square Any two convex sets C and D, at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Supporting Hyperplanes

\square Suppose $C \subseteq R^{n}$, and x_{0} is a point in its boundary bd C, i.e.,

$$
x_{0} \in \mathrm{bd} C=\operatorname{cl} C \backslash \operatorname{int} C
$$

\square if $a \neq 0$ satisfies $a^{\top} x \leq a^{\top} x_{0}$ for all $x \in C$. The hyperplane $\left\{x \mid a^{\top} x=a^{\top} x_{0}\right\}$ is called a supporting hyperplane to C at the point x_{0}

Two Theorems

\square Supporting Hyperplane Theorem

- For any nonempty convex set C, and any $x_{0} \in \mathrm{bd} C$, there exists a supporting hyperplane to C at x_{0}.
\square Converse Theorem
■ If a set is closed, has nonempty interior, and has a supporting hyperplane at every point in its boundary, then it is convex.

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Dual Cone

\square Dual Cone of a Given Cone K

$$
K^{*}=\left\{y \mid x^{\top} y \geq 0 \text { for all } x \in K\right\}
$$

■ K^{*} is convex, even when K is not
■ $y \in K^{*}$ if and only if $-y$ is the normal of a hyperplane that supports K at the origin

Examples

\square Subspace

- The dual cone of a subspace $V \in \mathbf{R}^{n}$

$$
V^{\perp}=\left\{y \mid v^{\top} y=0 \text { for all } v \in V\right\}
$$

\square Nonnegative Orthant
■ The cone \mathbf{R}_{+}^{n} is its own dual

$$
x^{\top} y \geq 0 \text { for all } x \geqslant 0 \Leftrightarrow y \geqslant 0
$$

\square Positive Semidefinite Cone

- \mathbf{S}_{+}^{n} is self-dual

$$
\operatorname{tr}(X Y) \geq 0 \text { for all } X \succcurlyeq 0 \Leftrightarrow Y \succcurlyeq 0
$$

Properties of Dual Cone

$\square K^{*}$ is closed and convex.
$\square K_{1} \subseteq K_{2}$ implies $K_{2}^{*} \subseteq K_{1}^{*}$

- If K has nonempty interior, then K^{*} is pointed.
-If the closure of K is pointed then K^{*} has nonempty interior.
$\square K^{* *}$ is the closure of the convex hull of K. (Hence if K is convex and closed, $K^{* *}=K$.)

Dual Generalized Inequalities

\square Suppose that the convex cone K is proper, so it induces a generalized inequality \preccurlyeq_{K}.
\square Its dual cone K^{*} is also proper. We refer to the generalized inequality $\preccurlyeq_{K^{*}}$ as the dual of the generalized inequality \preccurlyeq_{K}.
■ $x \leqslant_{K} y$ if and only if $\lambda^{\top} x \leq \lambda^{\top} y$ for all $0 \leqslant_{K^{*}} \lambda$

- $x{<_{K}} y$ if and only if $\lambda^{\top} x<\lambda^{\top} y$ for all $0 \preccurlyeq_{K^{*}} \lambda$, $\lambda \neq 0$

Dual Characterization of Minimum Element

$\square x$ is the minimum element of S, with respect to the generalized inequality \preccurlyeq_{K}, if and only if for all $\lambda>_{K^{*}} 0, x$ is the unique minimizer of $\lambda^{\top} z$ over $z \in S$.
\square That means, for any $\lambda>_{K^{*}} 0$, the hyperplane $\left\{z \mid \lambda^{\top}(z-x)=0\right\}$ is a strict supporting hyperplane to S at x.

Dual Characterization of Minimum Element

$\square x$ is the minimum element of S, with respect to the generalized inequality \preccurlyeq_{K}, if and only if for all $\lambda>_{K^{*}} 0, x$ is the unique minimizer of $\lambda^{\top} z$ over $z \in S$.

Dual Characterization of Minimal Elements (1)

\square If $\lambda>_{K^{*}} 0$, and x minimizes $\lambda^{\top} z$ over $z \in S$, then x is minimal.

Dual Characterization of Minimal Elements (1)

\square Any minimizer of $\lambda^{\top} z$ over $z \in S$, with $\lambda \succcurlyeq_{K^{*}} 0$, is minimal.

x_{2} minimizes $\lambda^{\top} z$ over $z \in S_{2}$ for $\lambda=(0,1) \geqslant 0$

Dual Characterization of Minimal Elements (2)

\square If x is minimal, then x minimizes
$\lambda^{\top} z$ over $z \in S$ with $\lambda>_{K^{*}} 0$.

Dual Characterization of Minimal Elements (2)

\square If S is convex, for any minimal element x there exists a nonzero $\lambda \succcurlyeq_{K^{*}} 0$ such that x minimizes $\lambda^{\top} z$ over $z \in S$.

x_{1} minimizes $\lambda^{\top} z$ over $z \in S_{1}$ for $\lambda=(1,0) \succcurlyeq 0$

Pareto Optimal Production Frontier

\square A product which requires n sources
\square A resource vector $x \in \mathbf{R}^{n}$

Outline

\square Affine and Convex Sets
\square Operations That Preserve Convexity
\square Generalized Inequalities
\square Separating and Supporting Hyperplanes
\square Dual Cones and Generalized Inequalities
\square Summary

Summary

\square Affine and convex
\square Operations that preserve convexity
\square Generalized Inequalities
\square Separating and supporting hyperplanes

- Theorems
\square Dual cones and generalized inequalities

