Convex Functions (II)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu. cn/zlj

Outline

\square The Conjugate Function
\square Quasiconvex Functions
\square Log-concave and Log-convex Functions
\square Convexity with Respect to Generalized Inequalities
\square Summary

Outline

\square The Conjugate Function
\square Quasiconvex Functions
\square Log-concave and Log-convex Functions
\square Convexity with Respect to Generalized Inequalities
\square Summary

Conjugate Function

$\square f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. Its conjugate function is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{\top} x-f(x)\right)
$$

- $\operatorname{dom} f^{*}=\left\{y \mid f^{*}(y)<\infty\right\}$

■ f^{*} is always convex

Conjugate Function

$\square f: \mathbf{R}^{n} \rightarrow \mathbf{R}$. Its conjugate function is

$$
f^{*}(y)=\sup _{x \in \operatorname{dom} f}\left(y^{\top} x-f(x)\right)
$$

Conjugate examples

\square Affine function

- $f(x)=a x+b$
- $f^{*}(y)=\sup (y x-a x-b)$
- $\operatorname{dom} f^{*}=\{a\}, f^{*}(a)=-b$
\square Negative logarithm
- $f(x)=-\log x$

■ $f^{*}(y)=\sup _{x \in \mathbf{R}_{++}}(y x+\log x)$
■ $\operatorname{dom} f^{*}=-\mathbf{R}_{++}, f^{*}(y)=-\log (-y)-1$

Conjugate examples

\square Exponential

- $f(x)=e^{x}$
- $f^{*}(y)=\sup \left(x y-e^{x}\right)$

■ $\operatorname{dom} f^{*}=\mathbf{R}_{+}, f^{*}(y)=y \log y-y$
\square Negative entropy

- $f(x)=x \log x$

■ $f^{*}(y)=\sup _{x \in \mathbf{R}_{+}}(y x-x \log x)$
■ $\operatorname{dom} f^{*}=\mathbf{R}, f^{*}(y)=e^{y-1}$

Conjugate examples

\square Inverse

- $f(x)=1 / x$
- $f^{*}(y)=\sup _{x \in \mathbf{R}_{++}}(x y-1 / x)$
$\square \operatorname{dom} f^{*}=-\mathbf{R}_{+}, f^{*}(y)=-2(-y)^{1 / 2}$
\square Strictly convex quadratic function
- $f(x)=\frac{1}{2} x^{\top} Q x, Q \in \mathbf{S}_{++}^{n}$
- $f^{*}(y)=\sup _{x \in \mathbf{R}^{n}}\left(y^{\top} x-\frac{1}{2} x^{\top} Q x\right)$
$\square \operatorname{dom} f^{*}=\mathbf{R}^{n}, f^{*}(y)=\frac{1}{2} y^{\top} Q^{-1} y$

Conjugate examples

\square Log-determinant

- $f(X)=\log \operatorname{det} X^{-1}, X \in \mathbf{S}_{++}^{n}$
- $f^{*}(Y)=\sup _{X \in S_{++}^{n}}(\operatorname{tr}(X Y)+\log \operatorname{det} X)$

■ $\operatorname{dom} f^{*}=-\mathbf{S}_{++}^{n}, f^{*}(Y)=\log \operatorname{det}(-Y)^{-1}-n$
\square Indicator function

- $I_{S}(x)=0, \operatorname{dom} I_{S}=S, S \subseteq \mathbf{R}^{n}$ is not necessarily convex
- $I_{S}^{*}(y)=\sup _{x \in S} y^{\top} x$
- $I_{S}^{*}(y)$ is the support function of the set S

Conjugate examples

\square Norm
■ $f(x)=\|x\|, x \in \mathbf{R}^{n}$, with dual norm $\|\cdot\|_{*}$
■ $f^{*}(y)=\sup _{x \in \mathbf{R}^{n}}\left(x^{\top} y-\|x\|\right)$
$\square \operatorname{dom} f^{*}=\left\{y \mid\|y\|_{*} \leq 1\right\}, f^{*}(y)=0$
\square Norm squared
■ $f(x)=\frac{1}{2}\|x\|^{2}, x \in \mathbf{R}^{n}$, with dual norm $\|\cdot\|_{*}$
■ $f^{*}(y)=\sup _{x \in \mathbf{R}^{n}}\left(x^{\top} y-\frac{1}{2}\|x\|^{2}\right)$
$\square \operatorname{dom} f^{*}=\mathbf{R}^{n}, f^{*}(y)=\frac{1}{2}\|y\|_{*}^{2}$

Basic properties

\square Fenchel's inequality

$$
\begin{aligned}
& \forall x \in \operatorname{dom} f, y \in \operatorname{dom} f^{*}, f(x)+f^{*}(y) \geq x^{\top} y \\
& f^{*}(y)=\sup _{x \in \mathbf{R}^{n}}\left(x^{\top} y-f(x)\right) \\
& f(x)=\frac{1}{2} x^{\top} Q x, Q \in \mathbf{S}_{++}^{n} \\
& \Rightarrow x^{\top} y \leq \frac{1}{2} x^{\top} Q x+\frac{1}{2} y^{\top} Q^{-1} y
\end{aligned}
$$

\square Conjugate of the conjugate

- f is convex and closed $\Rightarrow f^{* *}=f$

Basic properties

\square Differentiable functions
■ f is convex and differentiable, $\operatorname{dom} f=\mathbf{R}^{n}$

$$
■ f^{*}(y)=\sup _{x \in \mathbf{R}^{n}}\left(x^{\top} y-f(x)\right)
$$

■ $x^{*}=\operatorname{argmax}\left(x^{\top} y-f(x)\right) \Rightarrow \nabla f\left(x^{*}\right)=y$

$$
\begin{aligned}
& f^{*}(y)=x^{* \top} \nabla f\left(x^{*}\right)-f\left(x^{*}\right)=x^{* \top} y-f\left(x^{*}\right) \\
& \checkmark x^{*}=\nabla^{-1} f(y)
\end{aligned}
$$

Basic properties

\square Scaling with affine transformation
$\square a>0, b \in \mathbf{R}, g(x)=a f(x)+b$

$$
\Rightarrow g^{*}(y)=a f^{*}\left(\frac{y}{a}\right)-b
$$

■ $A \in \mathbf{R}^{n \times n}$ is nonsingular, $b \in \mathbf{R}^{n}, g(x)=$

$$
\begin{aligned}
& f(A x+b) \Rightarrow g^{*}(y)=f^{*}\left(A^{-\top} y\right)- \\
& b^{\top} A^{-\top} y, \operatorname{dom} g^{*}=A^{\top} \operatorname{dom} f^{*}
\end{aligned}
$$

\square Sums of independent functions
■ $f(u, v)=f_{1}(u)+f_{2}(v), f_{1}, f_{2}$ are convex \Rightarrow $f^{*}(w, z)=f_{1}^{*}(w)+f_{2}^{*}(z)$

Outline

\square The Conjugate Function
\square Quasiconvex Functions
\square Log-concave and Log-convex Functions
\square Convexity with Respect to Generalized Inequalities
\square Summary

Quasiconvex functions

\square Quasiconvex

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- $S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}, \forall \alpha \in \mathbf{R}$ is convex

Quasiconvex functions

\square Quasiconvex

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$
- $S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}, \forall \alpha \in \mathbf{R}$ is convex
\square Quasiconcave
■ $-f$ is quasiconvex $\Rightarrow f$ is quasiconcave
\square Quasilinear
- f is quasiconvex and quasiconcave $\Rightarrow f$ is quasilinear

Examples

\square Some example on \mathbf{R}

- Logarithm: $\log x$ on \mathbf{R}_{++}
- Ceiling function: $\operatorname{ceil}(x)=\inf \{z \in \mathbf{Z} \mid z \geq x\}$
\square Linear-fractional function
- $f(x)=\frac{a^{\top} x+b}{c^{\top} x+d}, \operatorname{dom} f=\left\{x \mid c^{\top} x+d>0\right\}$

■ $\left\{x \mid c^{\top} x+d>0, \frac{a^{\top} x+b}{c^{\top} x+d} \geq \alpha\right\}$ and $\begin{aligned} & \text { and } \\ & \left\{x \mid c^{\top} x+d>0, \frac{a^{\top} x+b}{c^{\top} x+d} \leq \alpha\right\} \text { is convex }\end{aligned}$
$\Rightarrow f$ is Quasilinear

Basic properties

\square Jensen's inequality for quasiconvex functions

- f is quasiconvex $\Leftrightarrow \operatorname{dom} f$ is convex and $\forall x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

$$
f(\theta x+(1-\theta) y) \leq \max \{f(x), f(y)\}
$$

$$
(x, f(x))
$$

Basic properties

\square Condition

- f is quasiconvex \Leftrightarrow its restriction to any line intersecting its domain is quasiconvex
\square Quasiconvex functions on \mathbf{R}
- A continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ is quasiconvex \Leftrightarrow one of the following conditions holds
- f is nondecreasing
- f is nonincreasing
- $\exists c \in \operatorname{dom} f, \forall t \in \operatorname{dom} f, t \leq c, f$ is nonincreasing, and $t \geq c, f$ is nondecreasing

Differentiable quasiconvex functions

\square First-order conditions

- f is differentiable
- f is quasiconvex $\Leftrightarrow \operatorname{dom} f$ is convex, $\forall x, y \in$ $\operatorname{dom} f, f(y) \leq f(x) \Rightarrow \nabla f(x)^{\top}(y-x) \leq 0$

■ It is possible that $\nabla f(x)=0$, but x is not a global minimizer of f.
\square Second-order conditions

- f is twice differentiable

■ $\forall x \in \operatorname{dom} f, \forall y \in \mathbf{R}^{n}, y^{\top} \nabla f(x)=0 \Rightarrow y^{\top} \nabla^{2} f(x) y>$ $0 \Rightarrow f$ is quasiconvex

Operations that preserve quasiconvexity

\square Nonnegative weighted maximum
■ f_{i} is quasicovex, $w_{i} \geq 0 \Rightarrow f=$ $\max \left\{w_{1} f_{1}, \ldots, w_{n} f_{n}\right\}$ is quasiconvex

- $g(x, y)$ is quasiconvex in x for each $y, w(y) \geq 0 \Rightarrow f(x)=\sup _{y \in C}(w(y) f(x, y))$ is quasiconvex

Operations that preserve quasiconvexity

\square Composition
■ $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex, $h: \mathbf{R} \rightarrow \mathbf{R}$ is nondecreasing $\Rightarrow f=h \circ g$ is quasiconvex

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex $\Rightarrow g(x)=f(A x+b)$ is quasiconvex
■ $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is quasiconvex $\Rightarrow g(x)=f\left(\frac{A x+b}{c^{\top} x+d}\right)$ is quasiconvex, dom $g=\left\{x \mid c^{\top} x+d>0,(A x+\right.$
b) $\left./\left(c^{\top} x+d\right) \in \operatorname{dom} f\right\}$
\square Minimization
- $f(x, y)$ is quasicovex in x and y, C is a convex set $\Rightarrow g(x)=\inf _{y \in C} f(x, y)$ is quasiconvex

Outline

\square The Conjugate Function
\square Quasiconvex Functions
\square Log-concave and Log-convex Functions
\square Convexity with Respect to Generalized Inequalities
\square Summary

Log-concave and log-convex functions

\square Definition

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(x)>0, \forall x \in \operatorname{dom} f, \log f(x)$ is concave (convex) $\Rightarrow f$ is log-concave (convex)
\square Condition
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, f(x)>0, \forall x \in \operatorname{dom} f, f$ is logconcave $\Leftrightarrow \forall x, y \in \operatorname{dom} f, 0 \leq \theta \leq 1$

$$
f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta}
$$

Examples

$\square f(x)=a^{\top} x+b, \operatorname{dom} f=\left\{x \mid a^{\top} x+b>0\right\}$ is log-concave
$\square f(x)=x^{a}, \operatorname{dom} f=\mathbf{R}_{++}, a \leq 0 \Rightarrow f$ is logconvex, $a \geq 0 \Rightarrow f$ is log-concave
$\square \phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u$ is log-concave
$\square \Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u$ is log-convex for $x \geq 1$
$\square \operatorname{det} X$ and $\frac{\operatorname{det} X}{\operatorname{tr} X}$ are log-concave on \mathbf{S}_{++}^{n}

Properties

\square Twice differentiable log convex/concave functions

- f is twice differentiable, $\operatorname{dom} f$ is convex
- $\nabla^{2} \log f(x)=\frac{1}{f(x)} \nabla^{2} f(x)-\frac{1}{f(x)^{2}} \nabla f(x) \nabla f(x)^{\top}$
- f is log convex $\Leftrightarrow f(x) \nabla^{2} f(x) \geqslant \nabla f(x) \nabla f(x)^{\top}$

■ f is log concave $\Leftrightarrow f(x) \nabla^{2} f(x) \leqslant \nabla f(x) \nabla f(x)^{\top}$

Outline

\square The Conjugate Function
\square Quasiconvex Functions
\square Log-concave and Log-convex Functions
\square Convexity with Respect to Generalized Inequalities
\square Summary

Convexity with respect to a generalized inequality

$\square K$-convex

- $K \subseteq \mathbf{R}^{m}$ is a proper cone with associated generalized inequality \preccurlyeq_{K}
- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is K-convex if $\forall x, y \in$ $\operatorname{dom} f, 0 \leq \theta \leq 1$

$$
f(\theta x+(1-\theta) y) \preccurlyeq_{K} \theta f(x)+(1-\theta) f(y)
$$

■ $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is stricly K-convex if $\forall x \neq y \in$ $\operatorname{dom} f, 0<\theta<1$

$$
f(\theta x+(1-\theta) y)<_{K} \theta f(x)+(1-\theta) f(y)
$$

Examples

\square Componentwise Inequality

- $K=\mathbf{R}_{+}^{m}$

■ $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is convex with respect to componentwise inequality $\Leftrightarrow \forall x, y \in$ $\operatorname{dom} f, 0 \leq \theta \leq 1$, $f(\theta x+(1-\theta) y) \leqslant \theta f(x)+(1-\theta) f(y)$

■ Each f_{i} is a convex function

Examples

\square Matrix Convexity
$\square f: \mathbf{R}^{n} \rightarrow \mathbf{S}^{m}$ is convex with respect to matrix inequality $\Leftrightarrow \forall x, y \in \operatorname{dom} f, 0 \leq$ $\theta \leq 1$
$f(\theta x+(1-\theta) y) \leqslant \theta f(x)+(1-\theta) f(y)$

- $f(X)=X X^{\top}, X \in \mathbf{R}^{m \times n}$ is matrix convex
- X^{p} is matrix convex on \mathbf{S}_{++}^{n} for $1 \leq p \leq$

2 or $-1 \leq p \leq 0$, and matrix concave for $0 \leq p \leq 1$

Convexity with respect to generalized inequalities

\square Dual characterization of K-convexity

- A function f is (strictly) K-convex \Leftrightarrow For every $w \succcurlyeq_{K^{*}} 0$, the real-valued function $w^{\top} f$ is (strictly) convex in the ordinary sense.
\square Differentiable K-convex functions
- A differentiable function f is K-convex $\Leftrightarrow \operatorname{dom} f$ is convex, $\forall x, y \in \operatorname{dom} f$,

$$
f(y) \succcurlyeq_{K} f(x)+D f(x)(y-x)
$$

■ A differentiable function f is strictly K-convex
$\Leftrightarrow \operatorname{dom} f$ is convex, $\forall x, y \in \operatorname{dom} f, x \neq y$,

$$
f(y) \succ_{K} f(x)+D f(x)(y-x)
$$

Convexity with respect to generalized inequalities

\square Composition theorem
$\square g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{p}$ is K-convex, $h: \mathbf{R}^{p} \rightarrow \mathbf{R}$ is convex, and \tilde{h} (the extended-value extension of h) is K nondecreasing $\Rightarrow h \circ g$ is convex.
\square Example

- $g: \mathbf{R}^{m \times n} \rightarrow \mathbf{S}^{n}, g(X)=X^{\top} A X+B^{\top} X+X^{\top} B+C$ is convex, where $A \succcurlyeq 0, B \in \mathbf{R}^{m \times n}$ and $C \in \mathbf{S}^{n}$
- $h: \mathbf{S}^{n} \rightarrow \mathbf{R}, h(Y)=-\log \operatorname{det}(-Y)$ is convex and increasing on dom $h=-\mathbf{S}_{++}^{n}$
■ $f(X)=-\log \operatorname{det}\left(-\left(X^{\top} A X+B^{\top} X+X^{\top} B+C\right)\right)$ is convex on $\operatorname{dom} f=\left\{X \in \mathbf{R}^{m \times n} \mid X^{\top} A X+B^{\top} X+\right.$ $\left.X^{\top} B+C \prec 0\right\}$

Monotonicity with respect to a generalized inequality

$\square K \subseteq \mathbf{R}^{n}$ is a proper cone with associated generalized inequality \preccurlyeq_{K}
■ $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is K-nondecreasing if

$$
x \preccurlyeq_{\kappa} y \Rightarrow f(x) \leq f(y)
$$

■ $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is K-increasing if

$$
x \preccurlyeq_{K} y, x \neq y \Rightarrow f(x)<f(y)
$$

Summary

\square The Conjugate Function

- Definitions, Basic properties
\square Quasiconvex Functions
\square Log-concave and Log-convex Functions
\square Convexity with Respect to Generalized Inequalities

