Convex optimization
problems (I1)

Lijun Zhang
z1 j@n ju. edu. cn
http://cs.nju. edu. cn/zlj




Outline

Linear Optimization Problems

Quadratic Optimization Problems

Geometric Programming

Generalized Inequality Constraints

Vector Optimization




Linear Optimization Problems

Linear Program (LP)
min c'x +d
s.t. Gx<h
Ax =D
B G eR™" and A € RP*"
B It is common to omit the constant d

B Maximization problem with affine objective
and constraint functions is also an LP

B The feasible set of LP iIs a polyhedron P




Linear Optimization Problems

Geometric Interpretation of an LP

B The objective c'x is linear, so its level
curves are hyperplanes orthogonal to c

B x* Is as far as possible in the direction —c



Two Special Cases of LP

Standard Form LP

T

min c¢'Xx
s.tt Ax=5b
x =0

B The only inequalities are x > 0

Inequality Form LP
min c¢'x
s.t. Ax<Db

B No equality constraint



Converting to Standard Form

Cconversion

min c'x+d min c¢'x
s.t. Gx<h = s.t. Ax=b
Ax =Db x=0

B To use an algorithm for standard LP

Introduce Slack Variables s

min c'x+d

s.tt Gx+s=~h
= Ax =D
s=0

min c¢c'x+d
s.t. Gx<h
Ax =0>b



Converting to Standard Form

Decompose x

x=xT—x", xT,x" =0

Standard Form LP

min c'x+d min c¢'xt—c'x" +d
s.tt Gx+s=~nh = s.t. GxT—Gx +s=h
Ax = b Axt —Ax~ = b

s#0 xt>0,x"%0,s>0



Example

Diet Problem

Choose nonnegative quantities xq, ..., x,, of n foods
One unit of food j contains amount a;; of nutrient
i, and costs ¢;

Healthy diet requires nutrient i in guantities at
least b;

Determine the cheapest diet that satisfies the
nutritional requirements.

min c¢"x

s.t. Ax =D
x =0



Example

Chebyshev Center of a Polyhedron

B Find the largest Euclidean ball that lies In
the polyhedron

P={x€eRYa/x<b,i=1,..,m)
B The center of the optimal ball is called the
Chebyshev center of the polyhedron
Represent the ball as B = {x. + ull||lull, < r}

B x. € R" and r are variables, and we wish to
maximize r subject to B € P

B VxeEBa/x<bhoa (x,+uw)<b,|lull, <re
aj xc +rllall; < b;




Example

Chebyshev Center of a Polyhedron

B Find the largest Euclidean ball that lies In
the polyhedron

P={x€eRYa/x<b,i=1,..,m)
B The center of the optimal ball is called the
Chebyshev center of the polyhedron
Represent the ball as B = {x. + ull||lull, < r}

B x. € R" and r are variables, and we wish to
maximize r subject to B € P

max r
s.t. ajx.+riall, <b, i

I
=
3



Example

Chebyshev Inequalities
B x is a random variable on {uq,...,u,} € R
B p =prob(x=w;),p>0,1"p=1
B Ef=)". pf(y)is alinear function of p
B Prior knowledge Is given as

a;<a/p<p, i=1,.,m

B To find a lower bound of Efy(x) = ajp

min ayp
s.t. px0,1Tp=



Example

Piecewise-linear Minimization
B Consider the (unconstrained) problem

f(x) = max (a/x + b;)
1=1,...m

B The epigraph problem
min ¢
s.t.  max (ajx+b) <t
= ., m

1=1,..
B An LP problem

min ¢
s.t. a/x+b; <t, i=1,..m



Linear-fractional Programming &

Linear-fractional Program

min  fy(x)
s.tt. Gx<h
Ax =D

B The objective function is a ratio of affine
functions cTx +d

fo(x) = eTx + f
B The domain is
dom fy, = {x|e"x + f > 0}
B A guasiconvex optimization problem




Linear-fractional Programming

Transforming to a linear program

cTx+d min c¢'y +dz
min fo(x) = —= s.tt. Gy—hz<0
e'x+f
s. t. Gx < h =) Ay —bz=0
Ax = b eTy +fZ =1
z=0
B Proof
x is feasible in LFP = y = eT;f, z= eT;+f is feasible

in LP, c'y + dz = f,(x) = the optimal value of LFP is
greater than or equal to the optimal value of LP



Linear-fractional Programming

Transforming to a linear program

| cTx +d min c¢'y +dz
min fo(x) = —= s.tt. Gy—hz<0
e xtf —> Ay —bz =0
s. t. Gx < h -
Ax = b €y+fZ=1
z=0
B Proof

(y,z) is feasible in LP and z # 0 = x = y/z is feasible
in LFP, f,(x) = ¢y + dz = the optimal value of FLP is
less than or equal to the optimal value of LP

(y,z) Is feasible in LP, z = 0 and x, Is feasible In
LFP = x = x, + ty Is feasible in LFP for all ¢ = 0,
lim fo (xo +ty) = c'y+dz



Generalized Linear-fractional
Programming

Generalized Linear-fractional Program

-
c; x +d;

X) = Imnax
fO( ) i=1,..r el.Tx + fl

B domf,={xle;x+f;>0,i=1,..,71}
B A gquasiconvex optimization problem
1 Von Neumann Growth Problem

: +
max min x; /x;
1=1,...n

s.t. xT=0
Bxt < Ax



Generalized Linear-fractional
Programming

Von Neumann Growth Problem

: +
max  min Xx; /x;
1=1,..,.n

s.t. xt =0
Bx* < Ax
B x,x* € R": activity levels of n sectors, in
current and next period

B (Ax);, (Bx*);: produced and consumed
amounts of good i

B Bx' < Ax: goods consumed in the next
period cannot exceed the goods produced In
the current period

B x;/x; growth rate of sector i
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Quadratic Optimization
Problems

Quadratic Program (QP)

min (1/2)x"Px+q'x+r
s.t. Gx<h
Ax =0b

B PeS!GeR™™and A € RP*"

B The objective function is (convex)
quadratic

B The constraint functions are affine
B When P =0, QP becomes LP



Quadratic Optimization
Problems

Geometric lllustration of QP

~Vfo(a*)

j - \-\\

\\\

B The feasible set P is a polyhedron

B The contour lines of the objective function
are shown as dashed curves.



Quadratic Optimization
Problems

Quadratically Constrained Quadratic
Program (QCQP)
min (1/2)xTPyx + g x + 19
s.t.  (1/2)x"Px+qglx+1, <0, i=1,..,m
Ax =Db
m peSli=0,..,m
B The inequality constraint functions are
(convex) quadratic

B The feasible set is the intersection of ellipsoids
(when P; > 0) and an affine set

B Include QP as a special case



Examples

Least-squares and Regression
min ||[Ax — b||5=xTATAx —2bTAx + bTb

B Analytical solution: x = ATb

B Can add linear constraints, e.g., [ < x

Distance Between Polyhedra
min  [lx; — x,]|3
S. t. A1X1 bl' AzXz bz

A
<

B Find the distance between the polyhedra
:P1 — {x|A1X < bl} and :Pz = {XlAzx < bz}

dist(Py, P,) = inf{||x; — x2||2|x1 € Py, x, € Py}



Example

Bounding Variance
B x is a random variable on {uq,...,u,} € R
B p, =prob(x=1u;),p>0,1p=1

B The variance of a random variable f(x)
n n 2
2 _ 2 _ 2.0, _ D).
Bf2 = (Bf)* = ) fip, (pr)

B Maximize the variance

max  fi'pi - (Z fipi)
=1 =1

s. t. p=01"p=1
a;<a/p<B,i=1,.,m



Second-order Cone
Programming

Second-order Cone Program (SOCP)

min f'x
s.t. |[4;x + bill, < ¢ x + d;, i=1,..,m
Fx =g

B A; € Rm*" F € RP*"?

B Second-order Cone (SOC) constraint:
|Ax + b||, < cTx + d where 4 € R¥*", is same
as requiring (Ax + b,c"x + d) € SOC in R¥*?

SOC = {(x,t) € R**1|||x]|, < t}

CENET 2] <oe=0)



Second-order Cone
Programming

Second-order Cone Program (SOCP)

min f'x
s.t. |[4;x + bill, < ¢ x + d;, i=1,..,m
Fx =g

B A; € Rm*" F € RP*"?

B Second-order Cone (SOC) constraint:
|Ax + b||, < cTx + d where 4 € R¥*", is same
as requiring (Ax + b,c"x + d) € SOC in R¥*?

B Ifc;=0i=1,..,m, it reduces to QCQP by
squaring each inequality constraint

B More general than QCQP and LP



Example

Robust Linear Programming

min c¢'x

s.t. aj x < b, i=1,..,m
There can be uncertainty in q;
Assume a; are known to lie in ellipsoids
a; € €, ={a; + Pull||lu|l, <1}, P, € R
The constraints must hold for all a; € &;

min c¢'x
s.t. ajx < b;foralla; €&, i=1,..,m
min c¢'x

s. t. sup{aiTx‘ai € 51'} < b;, i=1,..,m



Example

B Note that
sup{aiTx|ai € 8i} =a, x + sup{u' P x|||lull, < 1}
=a;x + ||P x|,
B Robust linear constraint
a x + ||Pl-Tx||2 < b;
B QCQP

min c¢'x
S. t. c_ll-Tx + ||Pl-Tx||2 < by, (=1,....m



Example

Linear Programming with Random
Constraints

B Suppose that a; Is iIndependent
Gaussian random vectors with mean
a; and covariance %;

B Require each constraint a/ x < b; holds
with probability exceeding n = 0.5

min c¢'x
S. t. prob(aiTx < bl-) =1, i=1,..m



Example

Linear Programming with Random
Constraints

min c¢'x

s.t.  a;x+ o 1(n) HZil/ZxHZ < b, i=1,..,m

B Analysis
prob(a/x < b;) = prob (ﬁif/_zjlx < ”I;‘;/C;iﬁ ) >n <
L 2 L 2
bi—a_grx

7] = ®~1(n) = alx + d () Hz}/ZxHZ < b,
L 2

where ®(z) = (1/+2r) f_Zooe‘tz/Zdt
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Definitions

Monomial Function
f(x) = cxflxgz X"
B fR">R,domf=R},,c>0anda; ER
B Closed under multiplication, division, and
nonnegative scaling.

Posynomial Function
K

f(x) = 2 crxy xs e L x,
k=1
B Closed under addition, multiplication,
and nonnegative scaling




Geometric Programming (GP)

The Problem
min  fo(x)
s.t. fi(x) <1, i=1,..m
h;(x) =1, i=1,..,p
| f, .., f, are posynomials
W hy,..,h, are monomials

B Domain of the problem
D =RY,
B Implicit constraint: x > 0



Extensions of GP

f 1s a posynomial and h iIs a monomial

f(x)
f()_h()ﬁh()_l

h, and h, are nonzero monomials

_ hq(x)
() = ha(x) & 3105

Maximize a nonzero monomial objective

=1

function by minimizing Its inverse

max x/y min x~'y
s.t. 2<x<3 s.t. 2x1<1,(1/3)x<1
x?+3y/z < VY < ny—l/Z + yl/ZZ—l <1

x/y = z* xy 1lz72 =1



GP In Convex Form

1 Change of Variables y; = log x;

B f Is the monomial function

f(x) = cx;txy? o x,, x; = e’

F(x) = f(e”1, ..., e¥n) = c(e¥1)% ... (¢¥n)an

— pM V1t tanyptloge — eaTy+b

B f is the posynomial function

K
f(x) = Ek_lckxflkxgz" XK

K T
f(x) = 2 eaky+bk
k=1



GP In Convex Form

New Form _

.
min E e %oy +Pok
k=1

Toah. .
edi Y+thi = 1 i=1,..,p

1 Taking the Logarithm
min fo(}I)=log(2Ko ea(-)rkY+bok)

k=1
~ Ki T
s.t. fi(y) =log (2 eaiky"'bik) <0, i=1,..,m
k=1
Fll(y)=gl-ry+hl=0, i=1,...,p




Example

Frobenius Norm Diagonal Scaling
B Given a matrix M € R

O Choose a diagonal matrix D such that
DMD~1 is small

|DMD~ 1|| = tr((DMD~1)T(DMD™1)) = Z(DMD D

[,j=1
ZM d?/d?

N Unconstrained GP

n
> Mid?/d?

ij=1
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Generalized Inequality
Constraints

1 Convex Optimization Problem with
Generalized Inequality Constraints

min  fo(x)
s.t.  fi(x) <k; 0, i=1,..,m
Ax =D

B f,:R" - R Is convex;
B K; c R* are proper cones

B f:R" - R¥ is K;-convex w.r.t. proper
cone K; € RF



Generalized Inequality
Constraints

1 Convex Optimization Problem with
Generalized Inequality Constraints

min  fo(x)
s.t.  fi(x) <k; 0, i=1,..,m
Ax =D

B The feasible set, any sublevel set, and
the optimal set are convex

B Any locally optimal is globally optimal

B The optimality condition for
differentiable f, holds without change



Conic Form Problems

Conic Form Problems

min c¢'x
s.t. Fx+g=<g0
Ax =b

B A linear objective

B One ineguality constraint function
which is affine

B A generalization of linear programs



Conic Form Problems

Conic Form Problems

min c¢'x
s.t. Fx+g=<g0
Ax =b
Standard Form
min c'x
S. t. X >K 0
Ax =Db
Inequality Form
min c¢'x

S. L. Fx+g 41{0



Semidefinite Programming

Semidefinite Program (SDP)

min c¢'x
S.t. x1F1+“'+ann+G %O
Ax =b
K = Sk

G,Fy, .., E, €S* and A € RPX"
Linear matrix inequality (LMI)

If G,F,, ..., E, are all diagonal, LMI Is
equivalent to a set of n linear
Inequalities, and SDP reduces to LP



Semidefinite Programming

Standard From SDP

min tr(CX)
S. t. tr(AlX) — bi' [ =1, ey P
X>0

B X €S"is the variable and C,4,,...,4, € §"
B p linear equality constraints
B A nonnegativity constraint
Inequality Form SDP
min c¢'x
s.t. x4+ -+x,4, <B

B B, A,.. A€ Sk and no equality constraint



Semidefinite Programming

Multiple LMIs and Linear Inequalities
min c¢'x

st. FO@) =xFP 4+ x,FP + 6D <0,i=1,...K
Gx < h, Ax =b

B It s referred as SDP as well
Be transformed as

min c¢'x
s.t. diag (Gx —h FO(x),..., F& (x)) <0
Ax =Db

B A standard SDP



Examples

Second-order Cone Programming

min c¢'x
s.t. |l[4;x + bill, < ¢ x + d;, i=1,..,m
Fx =g
B A conic form problem
min c¢'x
s.t.  —(Aix+b,clx+d) =g, 0, i=1,..,m
Fx =g
In which

K; = {(y,t) € R%*Y|ly|l, < t}



Example

Matrix Norm Minimization
min  [JACO)|l, = Amax(A(x)TA(x)))/?
B A(x) =4y +x;A; + -+ x,4, and A; € RP*4
B Fact: ||4], <s©o ATA < 5?1
1 A New Problem

min S min S

s.t. AQ)TA) <sI € st A()TA(x) —sI <0

B A(x)"A(x) — sl is matrix convex



Example

Matrix Norm Minimization

min  [JAG)Il, = Amax(A(x) TA(x)))1/?
B A(x) = Ay + x14; + -+ x,A, and A; € RPX4
B Fact:

||A||2St<:>ATA<t21<:>[tI A]M

S. L. [ t A(x) =0

ATt

B A single linear matrix inequality
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General and Convex Vector
Optimization Problems

General Vector Optimization Problem

min (w.r.t. K) fp(x)
s. t. fi(x) <0, i=1,..,m
h;(x) =0, i=1,..,p
B f,: R" - R%is a vector-valued objective
function

B K € R? is a proper cone, which is used to
compare objective values

B f:R" —> R are the inequality constraint
functions

B h;:R"™ - R are the equality constraint
functions




General and Convex Vector
Optimization Problems

Convex Vector Optimization Problem

min (w.r.t. K) fu(x)
s. t. fi(x) <0, i=1,..,m
hi(X) =0, 1 =1, ey P

B f,: R" - RYIs K-convex
m f,:R" - R are convex
B h;:R" - R are affine
1 x Is better than or equal to y

fo(x) <k fo(¥)
B Could be incomparable




Optimal Points and Values

Achievable Objective Values
0O={f(®)|IxeD,f;(x)<0,i=1,...,mh;(x) =0,i=1,..,p}
If O has a minimum element f,(x)

B x is optimal and f,(x) Is the optimal value

x* 1s optimal If and only If it Is feasible
and

0C fo(x*)+K



Optimal Points and Values

Achievable Objective Values
0O={fo(x)|Ix €D, fi(x) <0,i=1,...,mh;(x) =0,i=1,..,p}

If O has a minimum element f,(x)
B x is optimal and f,(x) is the optimal value

K = R%

0 < fox™)+K /




Example

Best Linear Unbiased Estimator

B Suppose that y = Ax + v, where v € R™
IS noise, y € R™ and x € R"

B Estimate x from A4 and y

B Assume that A has rank n, and Ev =
0,Evv' =1
B A linear estimator X = Fy

mIf FA=1, X =Fy Is an unbiased linear
estimator of x, I1.e., EXx = x



Example

Best Linear Unbiased Estimator

B The error covariance of an unbiased
estimator

E(X—x)(—x)" =EFvv'FT =FFT

Minimize the covariance

min (w.r.t. ST) FF'
S. t. FA =1

B Solution
F*=AT = (4TA)7 AT

F*F*' = (ATA)L



Pareto Optimal Points and
Values

Achievable Objective Values
0O={f(®)|IxeD,f;(x)<0,i=1,...,mh;(x) =0,i=1,..,p}

fo(x) 1s a minimal element of O
B x Is Pareto optimal
B f,(x)Is a Pareto optimal value

x 1s Pareto optimal if and only if it is
feasible and

(fo(x) = K)NO = {fo(x)}




Pareto Optimal Points and
Values

Achievable Objective Values
0O={fo(x)|Ix €D, fi(x) <0,i=1,...,mh;(x) =0,i=1,..,p}
fo(x) 1s a minimal element of O

B x Is Pareto optimal
B f,(x)Is a Pareto optimal value

K = R%

(fo(x) —K)NO = {fy(x)} fo\(l-l)“)




Pareto Optimal Points and
Values

Achievable Objective Values
0O={f(®)|IxeD,f;(x)<0,i=1,...,mh;(x) =0,i=1,..,p}
fo(x) I1s a minimal element of O
B x Is Pareto optimal
B f,(x)Is a Pareto optimal value
x 1s Pareto optimal if and only if it is
feasible and

(fo(x) —KINO = {fo(x)}
Let P be the set of Pareto optimal values

P € 0 Nbdo




Scalarization

A standard technique for finding
Pareto optimal (or optimal) points

Find Pareto optimal points for any
vector optimization problem by
solving the ordinary scalar
optimization problem

Characterization of minimum and
minimal points via dual generalized
Inequalities




Dual Characterization of
Minimal Elements (1)

If A >4+ 0, and x minimizes
Az over z € S, then x is minimal.




Scalarization

Choose any A >+ 0

min AT f(x)
s.t. f;(x) <0, i=1,..m
hi(X) = 0, [ =1, ey P

B The optimal point x for this scalar
problem is Pareto optimal for the vector
optimization problem

B /1 is called the weight vector

B By varying 4 we obtain (possibly)
different Pareto optimal solutions



Scalarization

0K = R2

B Scalarization cannot find fy(x3)



Scalarization of Convex Vector gy
Optimization Problems

Choose any A >+ 0

min AT f(x)
s.t. f;(x) <0, i=1,..,m
h;(x) =0, i=1,..,p
A convex optimization problem
The optimal point x for this scalar

problem is Pareto optimal for the vector
optimization problem

A Is called the weight vector

By varying 1 we obtain (possibly)
different Pareto optimal solutions



Dual Characterization of
Minimal Elements (2)

If S Is convex, for any minimal
element x there exists a nonzero

A =x+ 0 such that x minimizes A"z over
Z€ES.




Scalarization of Convex Vector gy
Optimization Problems

For every Pareto optimal point x?°,
there Is some nonzero A =+ 0 such
that xP° Is a solution of the scalarized
problem
min AT f(x)
s.t. f;(x) <0, i=1,..,m
h;(x) =0, i=1,..,p

It Is not true that every solution of
the scalarized problem, with

Az 0and A # 0, Is a Pareto optimal
point for the vector problem



Scalarization of Convex Vector gy
Optimization Problems

1. Consider all A >+ 0

min AT f(x)
s.t. f;(x) <0, i=1,..m
hi(X) =0, i =1, ey P

B Solve the above problem

2. Consider all 1 =g+ 0, A0, A ¥, 0
B Solve the above problem
B Verify the solution



Example

Minimal Upper Bound on a Set of
Matrices

min (w.r.t. S%) X
S. L. X = Ai) l

I
3

mAeSi=1.,m

B The constraints mean that X is an upper
bound on A4, ..., A,

B A Pareto optimal solution is a minimal
upper bound on the matrices



Example

1 Scalarization

min tr(WX)

s.t. X =4, I=1....,m
mWeSt,
B An SDP

B If X Is Pareto optimal for the vector
problem then it is optimal for the SDP,
for some nonzero weight matrix W = 0.



Example

A Simple Geometric Interpretation

B Define an ellipsoid centered at the
origin as £, = {uju'A u < 1}
BA<SBSE C &y




Multicriterion Optimization

K = R%
fo(x) = (F1(x), ..., F; (x))
B f, consists of g different objectives F; and we
want to minimize all F;

B Itis convex if fi,.., f, are convex, hy, ..., h,
are affine, and F;, ..., F, are convex

B Feasible x™ is optimal if

y is feasible = f,(x*) < f,(y)
B Feasible xP° is Pareto optimal if

y is feasible, f,(y) < fo(xP°) = fo(xP°) = fo(¥)




Example

min (w. r.
B F(x)=|
B Ax)=|
B Our goa

Regularized Least-Squares

L. R2+) fo(x) = (F1(x), F;(x))

Ax — b||5 measures the misfit
x||5 measures the size

Is to find x that gives a good fit

and that is not large

Scalarization

AT fo(x) = 21 F1(x) + 2, F,(x)
=xT(MATA+ A,Dx —22,b"Ax + A,b"b



Example

Solution

X(,U,) — (A]_ATA + /121)_1/11141-19 — (ATA + ,UI)_lATb
B =21/ b

m1=(01), we

getx =0 -
B With 1 - (1,0),
we get x = ATh =

Fi(z) = || Az - b||3
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