Duality (II)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju. edu. cn/zlj

Outline

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Outline

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

More Symmetric Form

\square Assume no equality constraint

$$
\begin{aligned}
\sup _{\lambda \succcurlyeq 0} L(x, \lambda) & =\sup _{\lambda \geqslant 0}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)\right) \\
& = \begin{cases}f_{0}(x) & f_{i}(x) \leq 0, \\
\infty & i=1, \ldots, m \\
\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

■ Suppose $f_{i}(x)>0$ for some i. Then, $\sup _{\lambda \geqslant 0} L(x, \lambda)=\infty$ by $\lambda_{j}=0, j \neq i$ and $\lambda_{i} \rightarrow \infty$

- If $f_{i}(x) \leq 0, i=1, \ldots, m$, then the optimal choice of λ is $\lambda=0$ and $\sup _{\lambda \geqslant 0} L(x, \lambda)=f_{0}(x)$

More Symmetric Form

\square Optimal Value of Primal Problem

$$
p^{\star}=\inf _{x} \sup _{\lambda \geqslant 0} L(x, \lambda)
$$

\square Optimal Value of Dual Problem

$$
d^{\star}=\sup _{\lambda \geqslant 0} \inf _{x} L(x, \lambda)
$$

\square Weak Duality

$$
\sup _{\lambda \geqslant 0} \inf _{x} L(x, \lambda) \leq \inf _{x} \sup _{\lambda \geqslant 0} L(x, \lambda)
$$

\square Strong Duality

$$
\sup _{\lambda \geqslant 0} \inf _{x} L(x, \lambda)=\inf _{x} \sup _{\lambda \geqslant 0} L(x, \lambda)
$$

■ Min and Max can be switched

A More General Form

\square Max-min Inequality

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) \leq \inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

■ For any $f: \mathbf{R}^{n} \times \mathbf{R}^{m} \rightarrow \mathbf{R}$ and any $W \subseteq$ $\mathbf{R}^{n}, Z \subseteq \mathbf{R}^{m}$
\square Strong Max-min Property

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z)=\inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

- Hold only in special cases

Outline

\square Saddle-point Interpretation

- Max-min Characterization of Weak and Strong Duality
- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Saddle-point I nterpretation

$\square \widetilde{w} \in W, \tilde{z} \in Z$ is a saddle point for f

$$
f(\widetilde{w}, z) \leq f(\widetilde{w}, \tilde{z}) \leq f(w, \tilde{z}), \quad \forall w \in W, z \in Z
$$

- \widetilde{w} minimizes $f(w, \tilde{z}), \tilde{z}$ maximizes $f(\widetilde{w}, z)$

$$
f(\widetilde{w}, \tilde{z})=\inf _{w \in W} f(w, \tilde{z}), \quad f(\widetilde{w}, \tilde{z})=\sup _{z \in Z} f(\widetilde{w}, z)
$$

Saddle-point Interpretation

$\square \widetilde{w} \in W, \tilde{z} \in Z$ is a saddle point for f

$$
f(\widetilde{w}, z) \leq f(\widetilde{w}, \tilde{z}) \leq f(w, \tilde{z}), \quad \forall \widetilde{w} \in W, \tilde{z} \in Z
$$

- \widetilde{w} minimizes $f(w, \tilde{z})$, \tilde{z} maximizes $f(\widetilde{w}, z)$

$$
f(\widetilde{w}, \tilde{z})=\inf _{w \in W} f(w, \tilde{z}), \quad f(\widetilde{w}, \tilde{z})=\sup _{z \in Z} f(\widetilde{w}, z)
$$

\square Imply the strong max-min property

$$
\left.\begin{array}{r}
\sup _{z \in Z} \inf _{w \in W} f(w, z) \geq \inf _{w \in W} f(w, \tilde{z})=f(\widetilde{w}, \tilde{z}) \\
f(\widetilde{w}, \tilde{Z})=\sup _{z \in Z} f(\widetilde{w}, z) \geq \inf _{w \in W} \sup _{z \in Z} f(w, z)
\end{array}\right\}
$$

Saddle-point I nterpretation

$\square \widetilde{w} \in W, \tilde{z} \in Z$ is a saddle point for f

$$
f(\widetilde{w}, z) \leq f(\widetilde{w}, \tilde{z}) \leq f(w, \tilde{z}), \quad \forall \widetilde{w} \in W, \tilde{z} \in Z
$$

■ \widetilde{w} minimizes $f(w, \tilde{z}), \tilde{z}$ maximizes $f(\widetilde{w}, z)$

$$
f(\widetilde{w}, \tilde{Z})=\inf _{w \in W} f(w, \tilde{Z}), \quad f(\widetilde{w}, \tilde{Z})=\sup _{z \in Z} f(\widetilde{w}, z)
$$

■ If $x^{\star}, \lambda^{\star}$ are primal and dual optimal points and strong duality holds, $x^{\star}, \lambda^{\star}$ form a saddle-point.

- If x, λ is saddle-point, then x is primal optimal, λ is dual optimal, and the duality gap is zero.

Outline

\square Saddle-point Interpretation

- Max-min Characterization of Weak and Strong Duality
- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Continuous Zero-sum Game

\square Two players
■ The 1st player chooses $w \in W$, and the 2nd player selects $z \in Z$

- Player 1 pays an amount $f(w, z)$ to player 2
\square Goals
■ Player 1 wants to minimize f
- Player 2 wants to maximize f
\square Continuous game
- The choices are vectors, and not discrete

Continuous Zero-sum Game

\square Player 1 makes his choice first
■ Player 2 wants to maximize payoff $f(w, z)$ and the resulting payoff is $\sup f(w, z)$ $Z \in Z$

- Player 1 knows that player 2 will follow this strategy, and so will choose $w \in W$ to make $\sup f(w, z)$ as small as possible $z \in Z$
■ Thus, player 1 chooses

■ The payoff

$$
\underset{w \in W}{\operatorname{argmin}} \sup _{z \in Z} f(w, z)
$$

$$
\inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

Continuous Zero-sum Game

\square Player 2 makes his choice first

- Player 1 wants to minimize payoff $f(w, z)$ and the resulting payoff is $\inf _{w \in W} f(w, z)$
- Player 2 knows that player 1 will follow this strategy, and so will choose $z \in Z$ to make $\inf _{w \in W} f(w, z)$ as large as possible
- Thus, player 2 chooses
- The payoff

$$
\underset{z \in Z}{\operatorname{argmax}} \inf _{w \in W} f(w, z)
$$

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z)
$$

Continuous Zero-sum Game

\square Max-min Inequality

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) \leq \inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

Player 2 plays first Player 1 plays first
■ Player 1 wants to minimize f

- Player 2 wants to maximize f

Continuous Zero-sum Game

\square Strong Max-min Property

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z)=\inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

Player 2 plays first Player 1 plays first

- Player 1 wants to minimize f
- Player 2 wants to maximize f

Continuous Zero-sum Game

\square Strong Max-min Property

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z)=\inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

Player 2 plays first Player 1 plays first
\square Saddle-point Property
■ If \widetilde{w}, \tilde{z} is a saddle-point for f (and W, Z), then it is called a solution of the game
$\checkmark \widetilde{w}$: the optimal strategy for player 1
$\checkmark \tilde{z}$: the optimal strategy for player 2
\checkmark No advantage to playing second

A Special Case

\square Payoff is the Lagrangian; $W=\mathbf{R}^{n}, Z=\mathbf{R}_{+}^{m}$
■ Player 1 chooses the primal variable x while player 2 chooses the dual variable $\lambda \geqslant 0$

- The optimal choice for player 2 , if she must choose first, is any dual optimal λ^{\star} \checkmark The resulting payoff: d^{\star}
■ Conversely, if player 1 chooses first, his optimal choice is any primal optimal x^{\star}
\checkmark The resulting payoff: p^{\star}
■ Duality gap: advantage of going second

Outline

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Certificate of Suboptimality

\square Dual Feasible (λ, v)

- A lower bound on the optimal value of the primal problem

$$
p^{\star} \geq g(\lambda, v)
$$

■ Provides a proof or certificate

- Bound how suboptimal a given feasible point x is, without knowing the value of p^{\star}

$$
f_{0}(x)-p^{\star} \leq f_{0}(x)-g(\lambda, v)=\epsilon
$$

$\checkmark x$ is ϵ-suboptimal for primal problem
$\checkmark(\lambda, v)$ is ϵ-suboptimal for dual

Certificate of Suboptimality

\square Gap between Primal \& Dual Objectives

$$
f_{0}(x)-g(\lambda, v)
$$

- Referred to as duality gap associated with primal feasible x and dual feasible (λ, v)
- $x,(\lambda, v)$ localizes the optimal value of the primal (and dual) problems to an interval

$$
p^{\star} \in\left[g(\lambda, v), f_{0}(x)\right], \quad d^{\star} \in\left[g(\lambda, v), f_{0}(x)\right]
$$

\checkmark The width of the interval is the duality gap

- If duality gap of $x,(\lambda, v)$ is 0 , then x is primal optimal and (λ, v) is dual optimal

Stopping Criteria

\square Optimization algorithms produce a sequence of primal feasible $x^{(k)}$ and dual feasible $\left(\lambda^{(k)}, \nu^{(k)}\right)$ for $k=1,2, \ldots$,
\square Required absolute accuracy: $\epsilon_{\text {abs }}$
\square A Nonheuristic Stopping Criterion

$$
f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}, v^{(k)}\right) \leq \epsilon_{\mathrm{abs}}
$$

■ Guarantees when algorithm terminates, $x^{(k)}$ is $\epsilon_{\text {abs }}$-suboptimal

Stopping Criteria

\square A Relative Accuracy $\epsilon_{\text {rel }}$
\square Nonheuristic Stopping Criteria
■ If

$$
g\left(\lambda^{(k)}, v^{(k)}\right)>0, \quad \frac{f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}, \nu^{(k)}\right)}{g\left(\lambda^{(k)}, v^{(k)}\right)} \leq \epsilon_{\mathrm{rel}}
$$

or

$$
f_{0}\left(x^{(k)}\right)<0, \quad \frac{f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}, v^{(k)}\right)}{-f_{0}\left(x^{(k)}\right)} \leq \epsilon_{\mathrm{rel}}
$$

■ Then $p^{\star} \neq 0$, and the relative error satisfies

$$
\frac{f_{0}\left(x^{(k)}\right)-p^{\star}}{\left|p^{\star}\right|} \leq \epsilon_{\mathrm{rel}}
$$

Outline

\square Saddle-point Interpretation

- Max-min Characterization of Weak and Strong Duality
- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Complementary Slackness

\square Suppose Strong Duality Holds
■ For primal optimal x^{\star} \& dual optimal $\left(\lambda^{\star}, \nu^{\star}\right)$

$$
\begin{aligned}
f_{0}\left(x^{\star}\right) & =g\left(\lambda^{\star}, v^{\star}\right) \\
& =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

\checkmark First line: the optimal duality gap is zero
\checkmark Second line: definition of the dual function
\checkmark Third line: infimum of Lagrangian over x is less than or equal to its value at $x=x^{\star}$

Complementary Slackness

\square Suppose Strong Duality Holds
■ For primal optimal x^{\star} \& dual optimal $\left(\lambda^{\star}, v^{\star}\right)$

$$
\begin{aligned}
f_{0}\left(x^{\star}\right) & =g\left(\lambda^{\star}, v^{\star}\right) \\
& =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

\checkmark Last line: $\lambda_{i}^{\star} \geq 0, f_{i}\left(x^{\star}\right) \leq 0, i=1, \ldots, m$ and $h_{i}\left(x^{\star}\right)=0, i=1, \ldots, p$
\checkmark We conclude that the two inequalities in this chain hold with equality

Complementary Slackness

\square Suppose Strong Duality Holds
■ For primal optimal x^{\star} \& dual optimal $\left(\lambda^{\star}, v^{\star}\right)$

$$
\begin{aligned}
f_{0}\left(x^{\star}\right) & =g\left(\lambda^{\star}, v^{\star}\right) \\
& =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}(x)\right) \\
& =f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& =f_{0}\left(x^{\star}\right)
\end{aligned}
$$

\checkmark Equality in the third line implies x^{\star} minimizes $L\left(x, \lambda^{\star}, v^{\star}\right)$
\checkmark Equality in the last line implies $\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$

Complementary Slackness

\square Complementary Slackness

$$
\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, \quad i=1, \ldots, m
$$

■ Derived from $\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$

- Holds for any primal optimal x^{\star} and dual optimal $\lambda^{\star}, v^{\star}$ (when strong duality holds)

■ Other expressions

$$
\begin{aligned}
& \lambda_{i}^{\star}>0 \Rightarrow f_{i}\left(x^{\star}\right)=0 \\
& f_{i}\left(x^{\star}\right)<0 \Rightarrow \lambda_{i}^{\star}=0
\end{aligned}
$$

$\checkmark i$-th optimal Lagrange multiplier is zero unless
i-th constraint is active at the optimum

Outline

\square Saddle-point Interpretation

- Max-min Characterization of Weak and Strong Duality
- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

KKT Conditions for Nonconvex Problems

$\square x^{\star}$ and $\left(\lambda^{\star}, v^{\star}\right):$ any primal and dual optimal points with zero duality gap
■ x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$

$$
\begin{gathered}
\Rightarrow \nabla L\left(x^{\star}, \lambda^{\star}, v^{\star}\right)=0 \\
\Rightarrow \nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)=0
\end{gathered}
$$

KKT Conditions for Nonconvex Problems

$\square x^{\star}$ and $\left(\lambda^{\star}, v^{\star}\right):$ any primal and dual optimal points with zero duality gap

$$
\begin{array}{rlrl}
f_{i}\left(x^{\star}\right) \leq 0, & & i=1, \ldots, m \\
h_{i}\left(x^{\star}\right)=0, & & i=1, \ldots, p \\
\lambda_{i}^{\star} \geq 0, & & i=1, \ldots, m \\
\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, & & i=1, \ldots, m \\
\nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)=0
\end{array}
$$

■ Karush-Kuhn-Tucker (KKT) conditions
For optimization problem with differentiable Condition objective and constraint functions for which strong duality obtains, any pair of primal and dual optimal must satisfy KKT conditions.

KKT Conditions for Convex Problems

If f_{i} are convex, h_{i} are affine, $\tilde{x}, \tilde{\lambda}, \tilde{v}$ satisfy

$$
\begin{array}{rlrl}
f_{i}(\tilde{x}) \leq 0, & & i=1, \ldots, m \\
h_{i}(\tilde{x})=0, & & i=1, \ldots, p \\
\tilde{\lambda}_{i} \geq 0, & & i=1, \ldots, m \\
\tilde{\lambda}_{i} f_{i}(\tilde{x})=0, & & i=1, \ldots, m \\
\nabla f_{0}(\tilde{x})+\sum_{i=1}^{m} \tilde{\lambda}_{\sim} \nabla f_{i}(\tilde{x})+\sum_{i=1}^{p} \tilde{v}_{\mathrm{i}} \nabla h_{i}(\tilde{x})=0
\end{array}
$$

\square Then, \tilde{x} and $\tilde{\lambda}, \tilde{v}$ are primal and dual optimal, with zero duality gap.

KKT Conditions for Convex Problems

\square For convex problem satisfying Slater's condition, KKT conditions provide necessary and sufficient conditions for optimality.

- Slater's condition implies that optimal duality gap is zero and dual optimum is attained
■ x is optimal if and only if there are (λ, v) that, together with x, satisfy the KKT conditions

KKT Conditions for Convex Problems

\square The KKT conditions play an important role in optimization.
■ In a few special cases it is possible to solve the KKT conditions.

- More generally, many algorithms for convex optimization can be nterpreted as methods for solving the KKT conditions

Example

\square Equality Constrained Convex Quadratic Minimization
■ Primal Problem (with $P \in \mathbb{S}_{+}^{n}$)

$$
\begin{array}{ll}
\min & (1 / 2) x^{\top} P x+q^{\top} x+r \\
\text { s.t. } & A x=b
\end{array}
$$

- KKT conditions

$$
\begin{gathered}
A x^{\star}=b, P x^{\star}+q+A^{\top} v^{\star}=0 \\
\Leftrightarrow\left[\begin{array}{cc}
P & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
x^{\star} \\
v^{\star}
\end{array}\right]=\left[\begin{array}{c}
-q \\
b
\end{array}\right]
\end{gathered}
$$

\checkmark Solving this set of $m+n$ equations in $m+n$ variables x^{\star}, v^{\star} gives optimal primal and dual variables

Outline

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Solving the Primal Problem via the Dual

\square If strong duality holds and a dual optimal solution ($\lambda^{\star}, \nu^{\star}$) exists, any primal optimal point is also a minimizer of $L\left(x, \lambda^{\star}, v^{\star}\right)$

- Suppose the minimizer of $L\left(x, \lambda^{\star}, v^{\star}\right)$ below is unique

$$
\min f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}(x)
$$

\checkmark If solution is primal feasible, it's primal optimal
\checkmark If not primal feasible, no optimal point exists

Example

\square Entropy Maximization
■ Primal Problem (with domain \mathbb{R}_{++}^{n})

$$
\begin{array}{cl}
\min & f_{0}(x)=\sum_{i=1}^{n} x_{i} \log x_{i} \\
\text { s.t. } & A x \preccurlyeq b \\
& \mathbf{1}^{\top} x=1
\end{array}
$$

■ Dual Problem (a_{i} : the i-th column of A)

$$
\begin{array}{ll}
\max & -b^{\top} \lambda-v-e^{-v-1} \sum_{i=1}^{n} e^{-a_{i}^{\top} \lambda} \\
\text { s.t. } & \lambda \succcurlyeq 0
\end{array}
$$

■ Assume weak Slater's condition holds
\checkmark There exists an $x>0$ with $A x \preccurlyeq b, \mathbf{1}^{\top} x=1$
\checkmark So strong duality holds and an optimal solution ($\lambda^{\star}, v^{\star}$) exists

Example

\square Entropy Maximization

■ Suppose we have solved the dual problem

- The Lagrangian at $\left(\lambda^{*}, v^{\star}\right)$ is

$$
L\left(x, \lambda^{\star}, v^{\star}\right)=\sum_{i=1}^{n} x_{i} \log x_{i}+\lambda^{\star \top}(A x-b)+v^{\star}\left(\mathbf{1}^{\top} x-1\right)
$$

\checkmark Strictly convex on \mathcal{D} and bounded below
\checkmark So it has a unique solution
$x_{i}^{\star}=1 / \exp \left(a_{i}^{\top} \lambda^{\star}+v^{\star}+1\right), \quad i=1, \ldots, n$
\checkmark If x^{\star} is primal feasible, it must be the optimal solution of the primal problem
\checkmark If x^{\star} is not primal feasible, we can conclude that the primal optimum is not attained

Outline

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Examples

\square Introduce New Variables and Equality Constraints
\square Transform the Objective
\square Implicit Constraints

Introduce New Variables and Equality Constraints

\square Unconstrained Problem

$$
\min \quad f_{0}(A x+b)
$$

■ Lagrange dual function: constant p^{\star}
\checkmark strong duality holds ($p^{\star}=d^{\star}$), but it is not useful
\square Reformulation

$$
\begin{array}{cl}
\min & f_{0}(y) \\
\text { s.t. } & A x+b=y
\end{array}
$$

- Lagrangian of the reformulated problem

$$
L(x, y, v)=f_{0}(y)+v^{\top}(A x+b-y)
$$

Introduce New Variables and Equality Constraints

\square Unconstrained Problem

- Find dual function by minimizing L
\checkmark Minimizing over $x, g(v)=-\infty$ unless $A^{\top} v=0$
- When $A^{\top} v=0$, minimizing L gives
$g(v)=b^{\top} v+\inf _{y}\left(f_{0}(y)-v^{\top} y\right)=b^{\top} v-f_{0}^{*}(v)$
$\checkmark f_{0}^{*}$: conjugate of f_{0}
- Dual problem

$$
\begin{array}{cl}
\max & b^{\top} v-f_{0}^{*}(v) \\
\text { s.t. } & A^{\top} v=0
\end{array}
$$

\checkmark More useful

Example

\square Unconstrained Geometric Program

■ Problem
$\min \quad \log \left(\sum_{i=1}^{m} \exp \left(a_{i}^{\top} x+b_{i}\right)\right)$

- Add new variables \& equality constraints
$\min f_{0}(y)=\log \left(\sum_{i=1}^{m} \exp y_{i}\right)$
s.t. $\quad A x+b=y$
$\checkmark a_{i}^{\top}: i$-th row of A
- Conjugate of the log-sum-exp function

$$
f_{0}^{*}(v)=\left\{\begin{array}{lr}
\sum_{i=1}^{m} v_{i} \log v_{i} & v \succcurlyeq 0, \mathbf{1}^{\top} v=1 \\
\infty & \text { otherwise }
\end{array}\right.
$$

Introduce New Variables and Equality Constraints

\square Unconstrained Geometric Program

- Primal Problem

$$
\begin{array}{cl}
\min & f_{0}(y)=\log \left(\sum_{i=1}^{m} \exp y_{i}\right) \\
\text { s.t. } & A x+b=y
\end{array}
$$

■ Dual of the reformulated problem

$$
\begin{array}{cl}
\max & b^{\top} v-\sum_{i=1}^{m} v_{i} \log v_{i} \\
\text { s.t. } & \mathbf{1}^{\top} v=1 \\
& A^{\top} v=0 \\
& v \geqslant 0
\end{array}
$$

\checkmark An entropy maximization problem

Example

\square Norm Approximation Problem
■ Problem (with any norm \|•\|)

$$
\min \|A x-b\|
$$

\checkmark Constant Lagrange dual function (not useful)

- Reformulate the problem

$$
\begin{array}{cl}
\min & \|y\| \\
\text { s.t. } & A x-b=y
\end{array}
$$

■ Lagrange dual problem

$$
\begin{array}{cl}
\max & b^{\top} v \\
\text { s.t. } & \|v\|_{*} \leq 1, A^{\top} v=0
\end{array}
$$

\checkmark The conjugate of a norm is the indicator function of the dual norm unit ball

Introduce New Variables and Equality Constraints

\square Constraint Functions

$$
\begin{array}{ll}
\min & f_{0}\left(A_{0} x+b_{0}\right) \\
\text { s.t. } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

- $A_{i} \in \mathbf{R}^{k_{i} \times n} ; f_{i}: \mathbf{R}^{k_{i}} \rightarrow \mathbf{R}$

■ Introduce $y_{i} \in \mathbf{R}^{k_{i}}, i=0, \ldots, m$

$$
\begin{array}{cl}
\min & f_{0}\left(y_{0}\right) \\
\mathrm{s.t.} & f_{i}\left(y_{i}\right) \leq 0, \quad i=1, \ldots, m \\
& A_{i} x+b_{i}=y_{i}, \quad i=0, \ldots, m
\end{array}
$$

- The Lagrangian for the above problem

$$
\begin{aligned}
& L\left(x, y_{0}, \ldots, y_{m}, \lambda, v_{0}, \ldots, v_{m}\right) \\
& =f_{0}\left(y_{0}\right)+\sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{i}\right)+\sum_{i=0}^{m} v_{i}^{\top}\left(A_{i} x+b_{i}-y_{i}\right)
\end{aligned}
$$

Introduce New Variables and Equality Constraints

\square Constraint Functions
■ Dual function (by minimizing over $x \& y_{i}$)
\checkmark Minimum over x is $-\infty$ unless $\sum_{i=0}^{m} A_{i}^{\top} v_{i}=0$ In this case, for $\lambda>0, g\left(\lambda, v_{0}, \ldots, v_{m}\right)$

$$
\begin{aligned}
& =\sum_{i=0}^{m} v_{i}^{\top} b_{i}+\inf _{y_{0}, \ldots, y_{m}}\left(f_{0}\left(y_{0}\right)+\sum_{i=1}^{m} \lambda_{i} f_{i}\left(y_{i}\right)-\sum_{i=0}^{m} v_{i}^{\top} y_{i}\right) \\
& =\sum_{i=0}^{m} v_{i}^{\top} b_{i}+\inf _{y_{0}}\left(f_{0}\left(y_{0}\right)-v_{0}^{\top} y_{0}\right)+\sum_{i=1}^{m} \lambda_{i} \inf _{y_{i}}\left(f_{i}\left(y_{i}\right)-\left(v_{i} / \lambda_{i}\right)^{\top} y_{i}\right) \\
& =\sum_{i=0}^{m} v_{i}^{\top} b_{i}-f_{0}^{*}\left(v_{0}\right)-\sum_{i=1}^{m} \lambda_{i} f_{i}^{*}\left(v_{i} / \lambda_{i}\right)
\end{aligned}
$$

Introduce New Variables and Equality Constraints

\square Constraint Functions

- What happens when $\lambda \succcurlyeq 0$ (but some $\lambda_{i}=0$)
\checkmark If $\lambda_{i}=0 \& v_{i} \neq 0$, the dual function is $-\infty$
\checkmark If $\lambda_{i}=0 \& v_{i}=0$, terms involving $y_{i}, v_{i}, \lambda_{i}$ are 0
- The expression for g is valid for all $\lambda \geqslant 0$ if
\checkmark Take $\lambda_{i} f_{i}^{*}\left(v_{i} / \lambda_{i}\right)=0$, when $\lambda_{i}=0 \& v_{i}=0$
\checkmark Take $\lambda_{i} f_{i}^{*}\left(v_{i} / \lambda_{i}\right)=\infty$, when $\lambda_{i}=0 \& v_{i} \neq 0$
■ Dual Problem
$\max \quad \sum_{i=0}^{m} v_{i}^{\top} b_{i}-f_{0}^{*}\left(v_{0}\right)-\sum_{i=1}^{m} \lambda_{i} f_{i}^{*}\left(v_{i} / \lambda_{i}\right)$
s.t. $\quad \lambda \geqslant 0, \quad \sum_{i=0}^{m} A_{i}^{\top} v_{i}=0$

Example

\square Inequality Constrained Geometric Program

- Problem
$\min \log \left(\sum_{k=1}^{K_{0}} e^{a_{0 k}^{\top} x+b_{0 k}}\right)$
s. t. $\quad \log \left(\sum_{k=1}^{K_{i}} e^{a_{i k}^{\top} x+b_{i k}}\right) \leq 0, i=1, \ldots, m$
\checkmark Let $f_{i}(y)=\log \left(\sum_{k=1}^{K_{i}} e^{y_{k}}\right)$
\checkmark Conjugate of f_{i}

$$
f_{i}^{*}(v)=\left\{\begin{array}{lr}
\sum_{k=1}^{K_{i}} v_{k} \log v_{k} & v \succcurlyeq 0, \mathbf{1}^{\top} v=1 \\
\infty & \text { otherwise }
\end{array}\right.
$$

Example

\square Inequality Constrained Geometric Program

- Dual problem is
$\max \quad b_{0}^{\top} v_{0}-\sum_{k=1}^{K_{0}} v_{0 k} \log v_{0 k}+\sum_{i=1}^{m}\left(b_{i}^{\top} v_{i}-\sum_{k=1}^{K_{i}} v_{i k} \log \left(v_{i k} / \lambda_{i}\right)\right)$
s.t. $\quad v_{0} \geqslant 0, \quad \mathbf{1}^{\top} v_{0}=1$
$v_{i} \succcurlyeq 0, \quad \mathbf{1}^{\top} v_{i}=\lambda_{i}, \quad i=1, \ldots, m$
$\lambda_{i} \geq 0, \quad i=1, \ldots, m$
$\sum_{i=0}^{m} A_{i}^{\top} v_{i}=0$

Transform the Objective

\square Replace the Objective f_{0} by an Increasing Function of f_{0}

- The resulting problem is equivalent
- The dual of this equivalent problem can be very different from dual of original problem

Example

\square Minimum Norm Problem

$$
\min \quad\|A x-b\|
$$

■ Reformulate this problem as

$$
\begin{array}{cl}
\min & (1 / 2)\|y\|^{2} \\
\text { s. t. } & A x-b=y
\end{array}
$$

\checkmark Introduce new variables and replace the objective by half its square
\checkmark Equivalent to the original problem

- Dual of the reformulated problem

$$
\begin{array}{cl}
\max & -(1 / 2)\|v\|_{*}^{2}+b^{\top} v \\
\text { s.t. } & A^{\top} v=0
\end{array}
$$

Implicit Constraints

\square Include Some of the Constraints in the Objective Function

- Modifying the objective function to be infinite when the constraint is violated

Example

\square Linear Program with Box Constraints
■ Problem

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& l \preccurlyeq x \preccurlyeq u
\end{array}
$$

$\checkmark A \in \mathbf{R}^{p \times n}$ and $l<u$
$\checkmark l \leqslant x \leqslant u$ are called box constraints

- Derive the dual of this linear program

$$
\begin{array}{ll}
\min & -b^{\top} v-\lambda_{1}^{\top} u+\lambda_{2}^{\top} l \\
\text { s.t. } & A^{\top} v+\lambda_{1}-\lambda_{2}+c=0 \\
& \lambda_{1} \succcurlyeq 0, \quad \lambda_{2} \succcurlyeq 0
\end{array}
$$

Example

\square Linear Program with Box Constraints
■ Problem

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s. t. } & A x=b \\
& l \preccurlyeq x \preccurlyeq u
\end{array}
$$

$\checkmark A \in \mathbf{R}^{p \times n}$ and $l<u$
$\checkmark l \leqslant x \leqslant u$ are called box constraints
■ Reformulate the problem as
$\min f_{0}(x)$
\checkmark s.t. $A x=b, \begin{array}{ll}c^{\top} x & l \leqslant x \preccurlyeq u \\ \infty & \text { otherwise }\end{array}$

Implicit Constraints

\square Linear Program with Box Constraints
■ Dual function

$$
\begin{aligned}
g(v) & =\inf _{l \leqslant x \leqslant u}\left(c^{\top} x+v^{\top}(A x-b)\right) \\
& =-b^{\top} v-u^{\top}\left(A^{\top} v+c\right)^{-}+l^{\top}\left(A^{\top} v+c\right)^{+} \\
\checkmark y_{i}^{+} & =\max \left\{y_{i}, 0\right\}, y_{i}^{-}=\max \left\{-y_{i}, 0\right\}
\end{aligned}
$$

\checkmark We can derive an analytical formula for g, which is a concave piecewise-linear function
■ Dual problem

$$
\max -b^{\top} v-u^{\top}\left(A^{\top} v+c\right)^{-}+l^{\top}\left(A^{\top} v+c\right)^{+}
$$

\checkmark Unconstrained problem
\checkmark Different form from the dual of original problem

Outline

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

Generalized Inequalities

\square Problems with Generalized Inequality Constraints

- Primal Problem

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \preccurlyeq_{K_{i}} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

$\checkmark K_{i} \subseteq \mathbf{R}^{k_{i}}$ are proper cones
\checkmark Do not assume convexity of the problem
\checkmark Assume the domain is nonempty

The Lagrange Dual

\square Lagrangian

$$
\begin{gathered}
L(x, \lambda, v)=f_{0}(x)+\lambda_{1}^{\top} f_{1}(x)+\cdots+\lambda_{m}^{\top} f_{m}(x)+ \\
v_{1} h_{1}(x)+\cdots+v_{p} h_{p}(x) \\
\checkmark \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right), \lambda_{i} \in \mathbf{R}^{k_{i}}, v=\left(v_{1}, \ldots, v_{p}\right)
\end{gathered}
$$

\square Dual Function

$$
\begin{aligned}
& g(\lambda, v)=\inf _{x \in \mathcal{D}} L(x, \lambda, v) \\
& =\inf _{x \in \mathcal{D}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\top} f_{i}(x)+\sum_{i=1}^{p} v_{i} h_{i}(x)\right)
\end{aligned}
$$

\checkmark Lagrangian is affine in dual variables; Dual function is pointwise infimum of Lagrangian. So, dual function is concave

The Lagrange Dual

\square Nonnegativity on dual variables

$$
\lambda_{i} \succcurlyeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
$$

- K_{i}^{*} : the dual cone of K_{i}
- Lagrange multipliers must be dual nonnegative
\square Weak Duality
- If $\lambda_{i} \succcurlyeq_{K_{i}^{*}} 0$ and $f_{i}(\tilde{x}) \preccurlyeq_{K_{i}} 0$, then $\lambda_{i}^{\top} f_{i}(\tilde{x}) \leq 0$
- So, for any primal feasible \tilde{x} and $\lambda_{i} \succcurlyeq_{k_{i}^{*}} 0$,

$$
f_{0}(\tilde{x})+\sum_{i=1}^{m} \lambda_{i}^{\top} f_{i}(\tilde{x})+\sum_{i=1}^{p} v_{i} h_{i}(\tilde{x}) \leq f_{0}(\tilde{x})
$$

■ Taking the infimum over \tilde{x} yields $g(\lambda, v) \leq p^{\star}$

The Lagrange Dual

\square Lagrange dual optimization problem

$$
\begin{array}{ll}
\max & g(\lambda, v) \\
\text { s.t. } & \lambda_{i} \succcurlyeq_{K_{i}^{*}} 0, \quad i=1, \ldots, m
\end{array}
$$

■ Always have weak duality ($d^{\star} \leq p^{\star}$) whether or not the primal problem is convex
\square Primal Problem

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \preccurlyeq_{K_{i}} 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

The Lagrange Dual

\square Slater's Condition and Strong Duality

- Strong duality: $d^{\star}=p^{\star}$
\checkmark Holds when primal problem is convex and satisfies appropriate constraint qualifications
■ For problem (convex f_{0} and K_{i}-convex f_{i})

$$
\begin{array}{cl}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \preccurlyeq_{K_{i}} 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

■ Generalized version of Slater's condition
$\checkmark \exists x \in \operatorname{relint} \mathcal{D}, A x=b, f_{i}(x) \prec_{K_{i}} 0, i=1, \ldots, m$
\checkmark Implies strong duality and the dual optimum is attained

Example

\square Lagrange Dual of Cone Program in Standard Form
■ Primal Problem

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. } & A x=b \\
& x \succcurlyeq_{K} 0
\end{array}
$$

$\checkmark A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$ and $K \subseteq \mathbf{R}^{n}$ is a proper cone
■ Lagrangian: $L(x, \lambda, v)=c^{\top} x-\lambda^{\top} x+v^{\top}(A x-b)$

- Dual function

$$
g(\lambda, v)=\inf _{x} L(x, \lambda, v)=\left\{\begin{array}{lc}
-b^{\top} v & A^{\top} v-\lambda+c=0 \\
-\infty & \text { otherwise }
\end{array}\right.
$$

Example

\square Lagrange Dual of Cone Program in Standard Form
■ Dual problem

$$
\begin{array}{cl}
\max & -b^{\top} v \\
\text { s.t. } & A^{\top} v+c=\lambda \\
& \lambda \succcurlyeq_{K^{*}} 0
\end{array}
$$

- Eliminating λ and defining $y=-v$ gives
$\max b^{\top} y$
s. t. $A^{\top} y \preccurlyeq_{K^{*}} C$
\checkmark A cone program in inequality form
\checkmark Involving the dual generalized inequality
\checkmark Strong duality (Slater condition): $x>_{K} 0, A x=b$

Optimality Conditions

\square Complementary Slackness

- Assume primal and dual optimal values are equal, and attained at $x^{\star}, \lambda^{\star}, \nu^{\star}$
■ Complementary slackness

$$
\begin{aligned}
f_{0}\left(x^{\star}\right) & =g\left(\lambda^{\star}, v^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star \top} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)
\end{aligned}
$$

$\checkmark x^{\star}$ minimizes $L\left(x, \lambda^{\star}, v^{\star}\right)$
\checkmark The two sums in the second line are zero
\checkmark The second sum is zero $\Rightarrow \sum_{i=1}^{m} \lambda_{i}^{\star \top} f_{i}\left(x^{\star}\right)=0 \Rightarrow$

$$
\lambda_{i}^{\star \top} f_{i}\left(x^{\star}\right)=0, \quad i=1, \ldots, m
$$

Optimality Conditions

\square Complementary Slackness

- Assume primal and dual optimal values are equal, and attained at $x^{\star}, \lambda^{\star}, \nu^{\star}$
■ Complementary slackness

$$
\begin{aligned}
& f_{0}\left(x^{\star}\right)=g\left(\lambda^{\star}, \nu^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star \top} f_{i}\left(x^{\star}\right)+\sum_{i=1}^{p} v_{i}^{\star} h_{i}\left(x^{\star}\right) \\
& \leq f_{0}\left(x^{\star}\right) \\
& \checkmark \text { From } \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, \text { we can conclude }
\end{aligned}
$$

$$
\lambda_{i}^{\star} \succ_{K_{i}^{*}} 0 \Rightarrow f_{i}\left(x^{\star}\right)=0, \quad f_{i}\left(x^{\star}\right) \prec_{K_{i}} 0 \Rightarrow \lambda_{i}^{\star}=0
$$

\checkmark Possible to satisfy $\lambda_{i}^{\star \top} f_{i}\left(x^{\star}\right)=0$ with $\lambda_{i}^{\star} \neq$ $0 \& f_{i}\left(x^{\star}\right) \neq 0$

Optimality Conditions

\square KKT Conditions
■ Additionally assume f_{i}, h_{i} are differentiable

■ Generalize the KKT conditions to problems with generalized inequalities

■ x^{\star} minimizes $L\left(x, \lambda^{\star}, \nu^{\star}\right)$

$$
\nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} D f_{i}\left(x^{\star}\right)^{\top} \lambda_{i}^{\star}+\sum_{i=1}^{p} v_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)=0
$$

$\checkmark D f_{i}\left(x^{\star}\right) \in \mathbb{R}^{k_{i} \times n}$: derivative of f_{i} evaluated at x^{\star}

Optimality Conditions

\square KKT Conditions

- If strong duality holds, any primal optimal x^{\star} and dual optimal ($\lambda^{\star}, \nu^{\star}$) must satisfy the optimality conditions (or KKT conditions)

$$
\begin{aligned}
f_{i}\left(x^{\star}\right) \preccurlyeq_{K_{i}} 0, & i=1, \ldots, m \\
h_{i}\left(x^{\star}\right)=0, & i=1, \ldots, p \\
\lambda_{i}^{\star} \succcurlyeq K_{i}^{*} 0, & i=1, \ldots, m \\
\lambda_{i}^{\star \top} f_{i}\left(x^{\star}\right)=0, & i=1, \ldots, m
\end{aligned}
$$

$$
\nabla f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} D f_{i}\left(x^{\star}\right)^{\top} \lambda_{i}^{\star}+\sum_{i=1}^{p} v_{i}^{\star} \nabla h_{i}\left(x^{\star}\right)=0
$$

\checkmark If the primal problem is convex, the converse also holds

Summary

\square Saddle-point Interpretation
■ Max-min Characterization of Weak and Strong Duality

- Saddle-point Interpretation
- Game Interpretation
\square Optimality Conditions
- Certificate of Suboptimality and Stopping Criteria

■ Complementary Slackness

- KKT Optimality Conditions
- Solving the Primal Problem via the Dual
\square Examples
\square Generalized Inequalities

