Introduction

Lijun Zhang <u>zlj@nju.edu.cn</u> http://cs.nju.edu.cn/zlj

Outline

Mathematical Optimization

- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

Outline

□ Mathematical Optimization

- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

Mathematical Optimization (1)

Optimization Problem min $f_0(x)$

- s.t. $f_i(x) \le b_i$, i = 1, ..., m
- Optimization Variable: $x = (x_1, ..., x_n)$
- Objective Function: $f_0: \mathbf{R}^n \to \mathbf{R}$
- Constraint Functions: $f_i: \mathbf{R}^n \to \mathbf{R}$
- $\Box x^*$ is called optimal or a solution
 - $f_i(x^*) \le b_i, \ i = 1, \dots, m$
 - For any z with $f_i(z) \le b_i$, we have $f_0(z) \ge f_0(x^*)$

Mathematical Optimization (2)

Linear Problem

$$f_i(\alpha x + \beta y) = \alpha f_i(x) + \beta f_i(y)$$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$

Nonlinear Program

- If the optimization problem is not linear
- Convex Optimization Problem

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$ with $\alpha + \beta = 1, \ \alpha \ge 0, \ \beta \ge 0$

Applications

min
$$f_0(x)$$

s.t. $f_i(x) \le b_i$, $i = 1, ..., m$

Abstraction

- x represents the choice made
- $f_i(x) \le b_i$ represent firm requirements that limit the possible choices
- $f_0(x)$ represents the cost of choosing x
- A solution corresponds to a choice that has minimum cost, among all choices that meet the requirements

Portfolio Optimization

Variables

- x_i represents the investment in the *i*-th asset
- $x \in \mathbf{R}^n$ describes the overall portfolio allocation across the set of asset
- Constraints
 - A limit on the budget the requirement
 - Investments are nonnegative
 - A minimum acceptable value of expected return for the whole portfolio
- □ Objective
 - Minimize the variance of the portfolio return

Device Sizing

Variables

• $x \in \mathbf{R}^n$ describes the widths and lengths of the devices

Constraints

- Limits on the device sizes
- Timing requirements
- A limit on the total area of the circuit

Objective

Minimize the total power consumed by the circuit

Data Fitting

Variables

• $x \in \mathbf{R}^n$ describes parameters in the model

Constraints

- Prior information
- Required limits on the parameters (such as nonnegativity)

Objective

Minimize the prediction error between the observed data and the values predicted by the model

Solving Optimization Problem

General Optimization Problem

- Very difficult to solve
- Constraints can be very complicated, the number of variables can be very lage
- Methods involve some compromise, e.g., computation time, or suboptimal solution

Exceptions

- Least-squares problems
- Linear programming problems
- Convex optimization problems

Outline

Mathematical Optimization

- □ Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

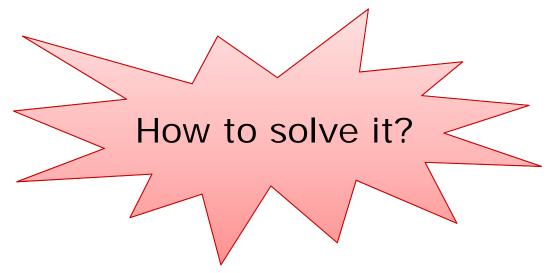
Least-squares Problems (1)

□ The Problem

min
$$||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

• $A \in \mathbf{R}^{k \times n}$, a_i^{\top} is the *i*-th row of A, $b \in \mathbf{R}^k$

• $x \in \mathbf{R}^n$ is the optimization variable



Least-squares Problems (1)

□ The Problem

min
$$||Ax - b||_2^2 = \sum_{i=1}^k (a_i^T x - b_i)^2$$

A ∈ R^{k×n}, a_i^T is the *i*-th row of A, b ∈ R^k
 x ∈ Rⁿ is the optimization variable
 Setting the gradient to be 0

$$2A^{\top}(Ax - b) = 0$$

$$\Rightarrow A^{\top}Ax = A^{\top}b$$

$$\Rightarrow x = (A^{\top}A)^{-1}A^{\top}b$$

Least-squares Problems (2)

- $\Box A \text{ Set of Linear Equations} \\ A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$
- □ Solving least-squares problems
 - Reliable and efficient algorithms and software
 - Computation time proportional to $n^2k \ (A \in \mathbf{R}^{k \times n})$; less if structured
 - A mature technology
 - Challenging for extremely large problems

Using Least-squares

Easy to RecognizeWeighted least-squares

$$\sum_{i=1}^{\kappa} w_i (a_i^{\mathsf{T}} x - b_i)^2$$

1_

Different importance

Using Least-squares

Easy to Recognize Weighted least-squares $\sum_{i=1}^{k} w_i (a_i^{\mathsf{T}} x - b_i)^2 = \sum_{i=1}^{k} (\sqrt{w_i} a_i^{\mathsf{T}} x - \sqrt{w_i} b_i)^2$ Different importance Regularization $\sum_{i=1}^{n} (a_i^{\mathsf{T}} x - b_i)^2 + \rho \sum_{i=1}^{n} x_i^2$ More stable

Outline

Mathematical Optimization

- Least-squares
- □ Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

Linear Programming

The Problem min $c^T x$ s.t. $a_i^T x \le b_i$, i = 1, ..., m

 $c, a_1, \dots, a_m \in \mathbf{R}^n, \ b_1, \dots, b_m \in \mathbf{R}$

□ Solving Linear Programs

- No analytical formula for solution
- Reliable and efficient algorithms and software
- Computation time proportional to n^2m if $m \ge n$; less with structure
- A mature technology
- Challenging for extremely large problems

Using Linear Programming

Not as easy to recognize
 Chebyshev Approximation Problem

min	$\max_{i=1,\dots,k} a_i^{T}x - b_i $
min s.t.	$t = \max_{i=1,\dots,k} a_i^{T} x - b_i $

$$\iff \begin{array}{l} \min \quad t \\ \text{s.t.} \quad t \ge \left| a_i^{\mathsf{T}} x - b_i \right|, i = 1, \dots, k \end{array}$$

 $\iff \begin{array}{l} \min \quad t \\ \text{s.t.} \quad -t \leq a_i^{\mathsf{T}} x - b_i \leq t, i = 1, \dots, k \end{array}$

Outline

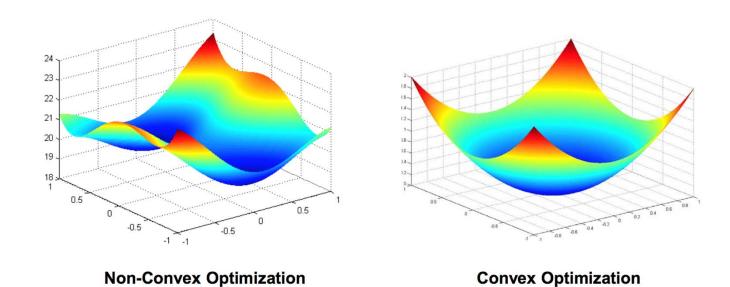
Mathematical Optimization

- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

Convex Optimization

□ Why Convexity?

" The great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." — R. Rockafellar, SIAM Review 1993



١d

93

Convex Optimization

□ Why Convexity?

" The great watershed in optimization onlinearity, but convexity and no -R.

Local minimizers are also global minimizers.



Non-Convex Optimization

Convex Optimization

Convex Optimization Problems (1)

□ The Problem

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \le b_i, \qquad i = 1, \dots, m \end{array}$

Functions $f_0, \ldots, f_m: \mathbf{R}^n \to \mathbf{R}$ are convex:

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

for all $x, y \in \mathbf{R}^n$ and all $\alpha, \beta \in \mathbf{R}$ with $\alpha + \beta = 1, \ \alpha \ge 0, \ \beta \ge 0$

Least-squares and linear programs as special cases

Convex Optimization Problems (2)

Solving Convex Optimization Problems

- No analytical solution
- Reliable and efficient algorithms (e.g., interior-point methods)
- Computation time (roughly) proportional to max{n³, n²m, F}
 - ✓ F is cost of evaluating f'_i s and their first and second derivatives
- Almost a technology

Using Convex Optimization

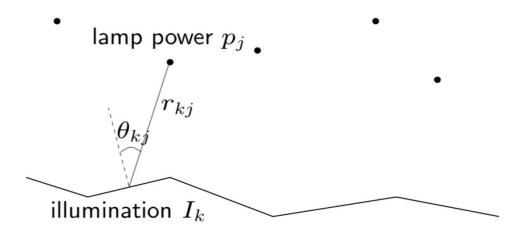
Often difficult to recognize

Many tricks for transforming problems into convex form

Surprisingly many problems can be solved via convex optimization

An Example (1)

□ *m* lamps illuminating *n* patches



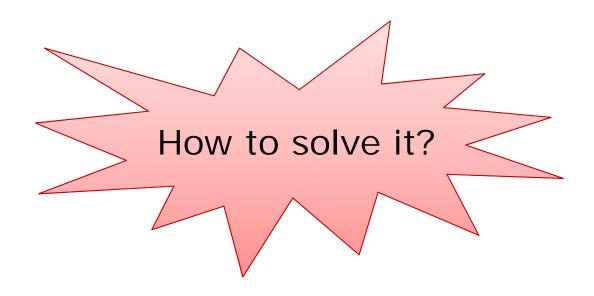
Intensity I_k at patch k depends linearly on lamp powers p_i

$$I_{k} = \sum_{j=1}^{m} a_{kj} p_{j}, \qquad a_{kj} = r_{kj}^{-2} \max\{\cos\theta_{kj}, 0\}$$

An Example (2)

Achieve desired illumination I_{des} with bounded lamp powers

 $\begin{array}{ll} \min & \max_{k=1,\dots,n} |\log I_k - \log I_{\mathrm{des}}| \\ \mathrm{s.t.} & 0 \leq p_j \leq p_{\mathrm{max}}, j = 1,\dots,m \end{array}$



An Example (3)

1. Use uniform power: $p_j = p$, vary p2. Use least-squares

min
$$\sum_{i=1}^{k} (I_k - I_{des})^2 = \sum_{i=1}^{k} \left(\sum_{j=1}^{m} a_{kj} p_j - I_{des} \right)^2$$

Round p_j if $p_j > p_{max}$ or $p_j < 0$

3. Use weighted least-squares

min
$$\sum_{i=1}^{k} (I_k - I_{des})^2 + \sum_{j=1}^{m} w_j \left(p_j - \frac{p_{max}}{2} \right)^2$$

Adjust weights w_j until $0 \le p_j \le p_{max}$

An Example (4)

4. Use linear programming min $\max_{k=1,\dots,n} |I_k - I_{des}|$ s.t. $0 \le p_j \le p_{max}, j = 1,\dots,m$

5. Use convex optimization

min
$$\max_{k=1,\dots,n} |\log I_k - \log I_{des}|$$

s.t. $0 \le p_j \le p_{\max}, j = 1,\dots,m$

$$\iff \min \max_{k=1,\dots,n} \max\left(\log \frac{I_k}{I_{des}}, \log \frac{I_{des}}{I_k}\right)$$

s.t. $0 \le p_j \le p_{max}, j = 1, \dots, m$

An Example (5)

$$\iff \min \max_{k=1,\dots,n} \max\left(\frac{l_k}{l_{des}}, \frac{l_{des}}{l_k}\right)$$
s.t. $0 \le p_j \le p_{\max}, j = 1, \dots, m$

$$\iff \min \max_{k=1,\dots,n} h\left(\frac{l_k}{l_{des}}\right)$$
s.t. $0 \le p_j \le p_{\max}, j = 1,\dots, m$
• $h(u) = \max\left(u, \frac{1}{u}\right)$

Outline

Mathematical Optimization

- Least-squares
- Linear Programming
- Convex Optimization
- □ Nonlinear Optimization
- □ Summary

Nonlinear Optimization

- An optimization problem when the objective or constraint functions are not linear, but not known to be convex
- Sadly, there are no effective methods for solving the general nonlinear programming problem
 - Could be NP-hard

□ We need compromise

Local Optimization Methods

- □ Find a point that minimizes f_0 among feasible points near it
 - The compromise is to give up seeking the optimal x
- □ Fast, can handle large problems
 - Differentiability
- Require initial guess
- Provide no information about distance to (global) optimum
- Local optimization methods are more art than technology

Comparisons

	Problem Formulation	Solving the Problem
Local Optimization Methods for Nonlinear Programming	Straightforward	Art
Convex Optimization	Art	Standard

Global Optimization

 Find the global solution
 The compromise is efficiency
 Worst-case complexity grows exponentially with problem size

Worst-case Analysis

- Whether the worst-case value is acceptable
- A local optimization method can be tried

Role of Convex Optimization in **Nonconvex Problems**

Initialization for local optimization

- An approximate, but convex, formulation
- Convex heuristics for nonconvex optimization
 - Sparse solutions (compressive sensing)
- Bounds for global optimization
 - Relaxation
 - Lagrangian relaxation

Outline

Mathematical Optimization

- Least-squares
- Linear Programming
- Convex Optimization
- Nonlinear Optimization
- □ Summary

Summary

Mathematical Optimization

- Least-squares
 - Closed-form Solution
- Linear Programming
 - Efficient algorithms
- Convex Optimization
 - Efficient algorithms, Modeling is an art
- Nonlinear Optimization
 - Compromises, Optimization is an Art