Unconstrained Minimization (II)

Lijun Zhang
zlj@nju.edu.cn
http://cs.nju.edu. cn/zlj

Outline

\square Gradient Descent Method

- Convergence Analysis

■ Examples
\square General Convex Functions

- Convergence Analysis

■ Extensions

Outline

\square Gradient Descent Method

- Convergence Analysis
- Examples
\square General Convex Functions
- Convergence Analysis

■ Extensions

General Descent Method

\square The Algorithm
Given a starting point $x \in \operatorname{dom} f$ Repeat

1. Determine a descent direction Δx.
2. Line search: Choose a step size $t \geq 0$.
3. Update: $x=x+t \Delta x$.
until stopping criterion is satisfied.
\square Descent Direction

$$
\nabla f\left(x^{(k)}\right)^{\top} \Delta x^{(k)}<0
$$

Gradient Descent Method

\square The Algorithm
Given a starting point $x \in \operatorname{dom} f$ Repeat

1. $\Delta x:=-\nabla f(x)$.
2. Line search: Choose step size t via exact or backtracking line search.
3. Update: $x:=x+t \Delta x$.
until stopping criterion is satisfied.
\square Stopping Criterion

$$
\|\nabla f(x)\|_{2} \leq \eta
$$

Outline

\square Gradient Descent Method

- Convergence Analysis

■ Examples
\square General Convex Functions

- Convergence Analysis

■ Extensions

Preliminary

$\square x^{(k+1)}=x^{(k)}+t^{(k)} \Delta x^{(k)} \Rightarrow x^{+}=x+t \Delta x$
$\square \Delta x=-\nabla f(x)$
$\square f(\cdot)$ is both strongly convex and smooth $m I \leqslant \nabla^{2} f(x) \preccurlyeq M I, \quad \forall x \in S$
\square Define $\tilde{f}: \mathbf{R} \rightarrow \mathbf{R}$ as

$$
\tilde{f}(t)=f(x-t \nabla f(x))
$$

■ A quadratic upper bound on \tilde{f}

$$
\tilde{f}(t) \leq f(x)-t\|\nabla f(x)\|_{2}^{2}+\frac{M t^{2}}{2}\|\nabla f(x)\|_{2}^{2}
$$

Analysis for Exact Line Search

1. Minimize Both Sides of

$$
\tilde{f}(t) \leq f(x)-t\|\nabla f(x)\|_{2}^{2}+\frac{M t^{2}}{2}\|\nabla f(x)\|_{2}^{2}
$$

■ Left side: $\tilde{f}\left(t_{\text {exact }}\right)$, where $t_{\text {exact }}$ is the step length that minimizes \tilde{f}

- Right side: $t=1 / M$ is the solution

$$
f\left(x^{+}\right)=\tilde{f}\left(t_{\text {exact }}\right) \leq f(x)-\frac{1}{2 M}\|\nabla f(x)\|_{2}^{2}
$$

2. Subtracting p^{*} from Both Sides

$$
f\left(x^{+}\right)-p^{*} \leq f(x)-p^{*}-\frac{1}{2 M}\|\nabla f(x)\|_{2}^{2}
$$

Analysis for Exact Line Search

3. $f(\cdot)$ is strongly convex on S

$$
\begin{aligned}
& \nabla^{2} f(x) \geqslant m I, \quad \forall x \in S \\
\Rightarrow & \|\nabla f(x)\|_{2}^{2} \geq 2 m\left(f(x)-p^{*}\right)
\end{aligned}
$$

4. Combining

$$
f\left(x^{+}\right)-p^{*} \leq(1-m / M)\left(f(x)-p^{*}\right)
$$

5. Applying it Recursively

$$
f\left(x^{(k)}\right)-p^{*} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{*}\right)
$$

- $c=1-m / M<1$

■ $f\left(x^{(k)}\right)$ coverges to p^{*} as $k \rightarrow \infty$

Discussions

\square Iteration Complexity

- $f\left(x^{(k)}\right)-p^{*} \leq \epsilon$ after at most

$$
\frac{\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)}{\log (1 / c)} \text { iterations }
$$

■ $\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)$ indicates that initialization is important

- $\log (1 / c)$ is a function of the condition number M / m
- When M / m is large

$$
\log (1 / c)=-\log (1-m / M) \approx m / M
$$

Discussions

\square Iteration Complexity

- $f\left(x^{(k)}\right)-p^{*} \leq \epsilon$ after at most
$\frac{\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)}{\log (1 / c)} \approx \frac{M}{m} \log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)$ iterations
■ $\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)$ indicates that initialization is important
- $\log (1 / c)$ is a function of the condition number M / m
- When M / m is large

$$
\log (1 / c)=-\log (1-m / M) \approx m / M
$$

Discussions

\square Iteration Complexity

- $f\left(x^{(k)}\right)-p^{*} \leq \epsilon$ after at most

$$
\frac{\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)}{\log (1 / c)} \text { iterations }
$$

■ $\log \left(\left(f\left(x^{(0)}\right)-p^{*}\right) / \epsilon\right)$ indicates that initialization is important

- $\log (1 / c)$ is a function of the condition number M / m
- Linear Convergence
\checkmark Error lies below a line on a log-linear plot of error versus iteration number

Analysis for Backtracking Line Search

\square Backtracking Line Search
given a descent direction Δx for f at $x \in \operatorname{dom} f, \alpha \in$ $(0,0.5), \beta \in(0,1)$
$t:=1$
while $f(x+t \Delta x)>f(x)+\alpha t \nabla f(x)^{\top} \Delta x, t:=\beta t$

1. $\tilde{f}(t) \leq f(x)-\alpha t\|\nabla f(x)\|_{2}^{2}$ for all $0 \leq t \leq 1 / M$

$$
0 \leq t \leq \frac{1}{M} \Rightarrow-t+\frac{M t^{2}}{2} \leq-\frac{t}{2}
$$

$\tilde{f}(t) \leq f(x)-t\|\nabla f(x)\|_{2}^{2}+\frac{M t^{2}}{2}\|\nabla f(x)\|_{2}^{2}$

Analysis for Backtracking Line Search

\square Backtracking Line Search
given a descent direction Δx for f at $x \in \operatorname{dom} f, \alpha \in$ $(0,0.5), \beta \in(0,1)$
$t:=1$
while $f(x+t \Delta x)>f(x)+\alpha t \nabla f(x)^{\top} \Delta x, t:=\beta t$

1. $\tilde{f}(t) \leq f(x)-\alpha t\|\nabla f(x)\|_{2}^{2}$ for all $0 \leq t \leq 1 / M$

$$
\begin{aligned}
\tilde{f}(t) & \leq f(x)-(t / 2)\|\nabla f(x)\|_{2}^{2} \\
& \leq f(x)-\alpha t\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

- $a<1 / 2$

Analysis for Backtracking Line Search

2. Backtracking Line Search Terminates

- Either with $t=1$

$$
f\left(x^{+}\right) \leq f(x)-\alpha\|\nabla f(x)\|_{2}^{2}
$$

- Or with a value $t \geq \beta / M$

$$
f\left(x^{+}\right) \leq f(x)-(\beta \alpha / M)\|\nabla f(x)\|_{2}^{2}
$$

- So,

$$
f\left(x^{+}\right) \leq f(x)-\min \{\alpha, \beta \alpha / M\}\|\nabla f(x)\|_{2}^{2}
$$

3. Subtracting p^{*} from Both Sides

$$
f\left(x^{+}\right)-p^{*} \leq f(x)-p^{*}-\min \{\alpha, \beta \alpha / M\}\|\nabla f(x)\|_{2}^{2}
$$

Analysis for Backtracking Line Search

4. Combining with Strong Convexity

$$
f\left(x^{+}\right)-p^{*} \leq\left(1-\min \left\{2 m \alpha, \frac{2 \beta \alpha m}{M}\right\}\right)\left(f(x)-p^{*}\right)
$$

5. Applying it Recursively

$$
f\left(x^{(k)}\right)-p^{*} \leq c^{k}\left(f\left(x^{(0)}\right)-p^{*}\right)
$$

- $c=1-\min \left\{2 m \alpha, \frac{2 \beta \alpha m}{M}\right\}<1$
- $f\left(x^{(k)}\right)$ converges to p^{*} with an exponent that depends on the condition number M / m
- Linear Convergence

Outline

\square Gradient Descent Method

- Convergence Analysis

■ Examples
\square General Convex Functions

- Convergence Analysis

■ Extensions

A Quadratic Problem in \mathbf{R}^{2}

\square A Quadratic Objective Function

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right), \quad \gamma>0
$$

- The optimal point $x^{*}=0$
- The optimal value is 0
- The Hessian of f is constant and has eigenvalues 1 and γ
- $m=\min \{1, \gamma\}, M=\max \{1, \gamma\}$

■ Condition number

$$
\frac{\max \{1, \gamma\}}{\min \{1, \gamma\}}=\max \left\{\gamma, \frac{1}{\gamma}\right\}
$$

A Quadratic Problem in \mathbf{R}^{2}

\square A Quadratic Objective Function

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right), \quad \gamma>0
$$

\square Gradient Descent Method

- Exact line search starting at $x^{(0)}=(\gamma, 1)$

$$
\begin{aligned}
& x_{1}^{(k)}=\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{k}, x_{2}^{(k)}=\gamma\left(-\frac{\gamma-1}{\gamma+1}\right)^{k} \Gamma^{\text {Convergence is }} \begin{array}{l}
\text { exactly linear }
\end{array} \\
& f\left(x^{(k)}\right)=\frac{\gamma(\gamma+1)}{2}\left(\frac{\gamma-1}{\gamma+1}\right)^{2 k}=\left(\frac{\gamma-1}{\gamma+1}\right)^{2 k} f\left(x^{(0)}\right) \\
& \text { Reduced by the factor }|(\gamma-1) /(\gamma+1)|^{2}
\end{aligned}
$$

A Quadratic Problem in \mathbf{R}^{2}

\square Comparisons

- $m=\min \{1, \gamma\}, M=\max \{1, \gamma\}$
- From our general analysis, the error is reduced by $1-\frac{m}{M}$
- From the closed-form solution, the error is reduced by

$$
\left(\frac{\gamma-1}{\gamma+1}\right)^{2}=\left(\frac{1-m / M}{1+m / M}\right)^{2}
$$

A Quadratic Problem in \mathbf{R}^{2}

\square Comparisons

- $m=\min \{1, \gamma\}, M=\max \{1, \gamma\}$

■ From our general analysis, the error is reduced by $1-\frac{m}{M}$

- From the closed-form solution, the error is reduced by

$$
\left(\frac{\gamma-1}{\gamma+1}\right)^{2}=\left(\frac{1-m / M}{1+m / M}\right)^{2}=\left(1-\frac{2 m / M}{1+m / M}\right)^{2}
$$

- When M / m is large, the iteration complexity differs by a factor of 4

A Quadratic Problem in \mathbf{R}^{2}

\square Experiments

- For γ not far from one, convergence is rapid

Figure 9.2 Some contour lines of the function $f(x)=(1 / 2)\left(x_{1}^{2}+10 x_{2}^{2}\right)$. The condition number of the sublevel sets, which are ellipsoids, is exactly 10 . The figure shows the iterates of the gradient method with exact line search, started at $x^{(0)}=(10,1)$.

A Non-Quadratic Problem in \mathbf{R}^{2}

\square The Objective Function

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

■ Gradient descent method with backtracking line search

$$
\checkmark \alpha=0.1, \beta=0.7
$$

A Non-Quadratic Problem in \mathbf{R}^{2}

\square The Objective Function

$$
f\left(x_{1}, x_{2}\right)=e^{x_{1}+3 x_{2}-0.1}+e^{x_{1}-3 x_{2}-0.1}+e^{-x_{1}-0.1}
$$

■ Gradient descent method with exact line search

A Non-Quadratic Problem in \mathbf{R}^{2}

\square Comparisons
■ Both are linear, and exact l.s. is faster

A Problem in \mathbf{R}^{100}

\square A Larger Problem

$$
\begin{aligned}
& f(x)=c^{\top} x-\sum_{i=1}^{m} \log \left(b_{i}-\alpha_{i}^{\top} x\right) \\
& m=500 \text { and } n=100
\end{aligned}
$$

- Gradient descent method with backtracking line search
$\checkmark \alpha=0.1, \beta=0.5$
■ Gradient descent method with exact line search

A Problem in \mathbf{R}^{100}

\square Comparisons

- Both are linear, and exact l.s. is only a bit faster

Gradient Method and Condition Number

\square A Larger Problem

$$
f(x)=c^{\top} x-\sum_{i=1}^{m} \log \left(b_{i}-\alpha_{i}^{\top} x\right)
$$

- Replace x by $T \bar{x}$

$$
T=\operatorname{diag}\left(1, \gamma^{1 / n}, \gamma^{2 / n}, \ldots, \gamma^{(n-1) / n}\right)
$$

\square A Family of Optimization Problems

$$
\bar{f}(\bar{x})=c^{\top} T \bar{x}-\sum_{i=1}^{m} \log \left(b_{i}-\alpha_{i}^{\top} T \bar{x}\right)
$$

■ Indexed by γ

Gradient Method and Condition $\sqrt{\text { Number }}$ Num

\square Number of iterations required to obtain $\bar{f}\left(\bar{x}^{k}\right)-\bar{p}^{*}<10^{-5}$

Backtracking line search with $\alpha=0.3$ and $\beta=0.7$

Gradient Method and Condition Number

\square The condition number of the Hessian $\nabla^{2} \bar{f}\left(\bar{x}^{*}\right)$ at the optimum

The larger the condition number, the larger the number of iterations

Conclusions

1. The gradient method often exhibits approximately linear convergence.
2. The convergence rate depends greatly on the condition number of the Hessian, or the sublevel sets.
3. An exact line search sometimes improves the convergence of the gradient method, but the effect is not large.
4. The choice of backtracking parameters α, β has a noticeable but not dramatic effect on the convergence.

Outline

\square Gradient Descent Method

- Convergence Analysis

■ Examples
\square General Convex Functions

- Convergence Analysis

■ Extensions

General Convex Functions

$\square f(\cdot)$ is convex
$\square f(\cdot)$ is Lipschitz continuous

$$
\|\nabla f(x)\|_{2} \leq G
$$

\square Gradient Descent Method
Given a starting point $x^{(1)} \in \operatorname{dom} f$
For $k=1,2, \ldots, K$ do
Update: $x^{(k+1)}=x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right)$
End for
Return $\bar{x}=\frac{1}{K} \sum_{k=1}^{K} x^{(k)}$

Outline

\square Gradient Descent Method

- Convergence Analysis

■ Examples
\square General Convex Functions

- Convergence Analysis

■ Extensions

Analysis

\square Define $D=\left\|x^{(1)}-x^{*}\right\|_{2}$
\square Let $t^{(k)}=\eta, k=1, \ldots, K$

$$
\begin{aligned}
& f\left(x^{(k)}\right)-f\left(x^{*}\right) \\
\leq & \nabla f\left(x^{(k)}\right)^{\top}\left(x^{(k)}-x^{*}\right) \\
= & \frac{1}{\eta}\left(x^{(k)}-x^{(k+1)}\right)^{\top}\left(x^{(k)}-x^{*}\right) \\
= & \frac{1}{2 \eta}\left(\left\|x^{(k)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k+1)}-x^{*}\right\|_{2}^{2}+\left\|x^{(k)}-x^{(k+1)}\right\|_{2}^{2}\right)
\end{aligned}
$$

Analysis

\square Define $D=\left\|x^{(1)}-x^{*}\right\|_{2}$
\square Let $t^{(k)}=\eta, k=1, \ldots, K$

$$
\begin{aligned}
& f\left(x^{(k)}\right)-f\left(x^{*}\right) \\
\leq & \nabla f\left(x^{(k)}\right)^{\top}\left(x^{(k)}-x^{*}\right) \\
= & \frac{1}{\eta}\left(x^{(k)}-x^{(k+1)}\right)^{\top}\left(x^{(k)}-x^{*}\right) \\
= & \frac{1}{2 \eta}\left(\left\|x^{(k)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k+1)}-x^{*}\right\|_{2}^{2}\right)+\frac{\eta}{2}\left\|\nabla f\left(x^{(k)}\right)\right\|_{2}^{2} \\
\leq & \frac{1}{2 \eta}\left(\left\|x^{(k)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k+1)}-x^{*}\right\|_{2}^{2}\right)+\frac{\eta}{2} G^{2}
\end{aligned}
$$

Analysis

\square So,
$f\left(x^{(k)}\right)-f\left(x^{*}\right) \leq \frac{1}{2 \eta}\left(\left\|x^{(k)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k+1)}-x^{*}\right\|_{2}^{2}\right)+\frac{\eta}{2} G^{2}$
\square Summing over $k=1, \ldots, K$

$$
\sum_{k=1}^{K} f\left(x^{(k)}\right)-K f\left(x^{*}\right) \leq \frac{1}{2 \eta} D^{2}+\frac{\eta K}{2} G^{2}
$$

- Dividing both sides by K

$$
\begin{aligned}
\frac{1}{K} \sum_{k=1}^{K} f\left(x^{(k)}\right)-f\left(x^{*}\right) & \leq \frac{1}{K}\left(\frac{1}{2 \eta} D^{2}+\frac{\eta K}{2} G^{2}\right) \\
& =\frac{D^{2}}{2 \eta K}+\frac{\eta}{2} G^{2}
\end{aligned}
$$

Analysis

\square By Jensen's Inequality

$$
\begin{aligned}
f(\bar{x})-f\left(x^{*}\right) & =f\left(\frac{1}{K} \sum_{k=1}^{K} x^{(k)}\right)-f\left(x^{*}\right) \\
& \leq \frac{1}{K} \sum_{t=1}^{T} f\left(x^{(k)}\right)-f\left(x^{*}\right) \\
& \leq \frac{D^{2}}{2 \eta K}+\frac{\eta}{2} G^{2} \\
& =\frac{G D}{\sqrt{K}}
\end{aligned}
$$

Outline

\square Gradient Descent Method

- Convergence Analysis
- Examples
\square General Convex Functions
- Convergence Analysis

■ Extensions

Discussions

\square How to Ensure $\|\nabla f(x)\|_{2} \leq G$?
\square Add a Domain Constraint

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & x \in X
\end{array}
$$

- Can model any constrained convex optimization problem
\square Gradient Descent with Projection

$$
\hat{x}^{(k+1)}=x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right), \quad x^{(k+1)}=P_{X}\left(\hat{x}^{(k+1)}\right)
$$

- Property of Euclidean Projection

$$
\left\|x^{(k+1)}-x^{*}\right\|_{2}=\left\|P_{X}\left(\hat{x}^{(k+1)}\right)-P_{X}\left(x^{*}\right)\right\|_{2} \leq\left\|\hat{x}^{(k+1)}-x^{*}\right\|_{2}
$$

Gradient Descent with Projection

\square The Problem

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & x \in X
\end{array}
$$

\square The Algorithm
Given a starting point $x^{(1)} \in \operatorname{dom} f$
For $k=1,2, \ldots, K$ do
Update: $\hat{x}^{(k+1)}=x^{(k)}-t^{(k)} \nabla f\left(x^{(k)}\right)$
Projection: $x^{(k+1)}=P_{X}\left(\hat{x}^{(k+1)}\right)$
End for
Return $\bar{x}=\frac{1}{K} \sum_{k=1}^{K} x^{(k)}$
\square Assumptions $\|\nabla f(x)\|_{2} \leq G, \quad \forall x \in X$

Analysis

\square Define $D=\left\|x^{(1)}-x^{*}\right\|_{2}, x^{*}=\operatorname{argmin}_{x \in X} f(x)$
\square Let $t^{(k)}=\eta, k=1, \ldots, K$

$$
\begin{aligned}
& f\left(x^{(k)}\right)-f\left(x^{*}\right) \\
\leq & \nabla f\left(x^{(k)}\right)^{\top}\left(x^{(k)}-x^{*}\right) \\
= & \frac{1}{\eta}\left(x^{(k)}-\hat{x}^{(k+1)}\right)^{\top}\left(x^{(k)}-x^{*}\right) \quad \begin{array}{l}
\text { Property } \\
\text { Projection }
\end{array} \\
\leq & \frac{1}{2 \eta}\left(\left\|x^{(k)}-x^{*}\right\|_{2}^{2}-\left\|\hat{x}^{(k+1)}-x^{*}\right\|_{2}^{2}\right)+\frac{\eta}{2} G^{2} \\
\leq & \frac{1}{2 \eta}\left(\left\|x^{(k)}-x^{*}\right\|_{2}^{2}-\left\|x^{(k+1)}-x^{*}\right\|_{2}^{2}\right)+\frac{\eta}{2} G^{2}
\end{aligned}
$$

Summary

\square Gradient Descent Method

- Convergence Analysis

■ Examples
\square General Convex Functions

- Convergence Analysis

■ Extensions

