Mathematical Background

Lijun Zhang <u>zlj@nju.edu.cn</u> <u>http://cs.nju.edu.cn/zlj</u>

Outline

□ Norms

- Analysis
- □ Functions
- Derivatives
- Linear Algebra

Inner product

 \square Inner product on \mathbb{R}^n $\langle x, y \rangle = x^{\top} y = \sum_{i=1}^{n} x_i y_i, x, y \in \mathbf{R}^n$ \Box Euclidean norm, or l_2 -norm $||x||_2 = (x^{\top}x)^{1/2} = (x_1^2 + \dots + x_n^2)^{1/2}, x \in \mathbf{R}^n$ Cauchy-Schwartz inequality $|x^{\top}y| \leq ||x||_{2} ||y||_{2}, x, y \in \mathbf{R}^{n}$ \square Angle between nonzero vectors $x, y \in \mathbb{R}^n$ $\angle(x, y) = \cos^{-1}\left(\frac{x^{+}y}{\|x\|_{2}\|y\|_{2}}\right), x, y \in \mathbf{R}^{n}$

Inner product

 $\square \text{ Inner product on } \mathbb{R}^{m \times n}, X, Y \in \mathbb{R}^{m \times n}$ $\langle X, Y \rangle = \operatorname{tr}(X^{\top}Y) = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij} Y_{ij}$

Here tr() denotes trace of a matrix.

 \Box Frobenius norm of a matrix $X \in \mathbf{R}^{m \times n}$

$$||X||_F = \left(\operatorname{tr}(X^{\top}X)\right)^{1/2} = \left(\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2\right)^{1/2}$$

 \Box Inner product on \mathbf{S}^n

$$\langle X, Y \rangle = \operatorname{tr}(XY) = \sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij} Y_{ij} = \sum_{i=1}^{n} X_{ii} Y_{ii} + 2 \sum_{i < j} X_{ij} Y_{ij}$$

- □ A function $f: \mathbb{R}^n \to \mathbb{R}$ with dom $f = \mathbb{R}^n$ is called a norm if
 - f is nonnegative: $f(x) \ge 0$ for all $x \in \mathbf{R}^n$
 - *f* is definite: f(x) = 0 only if x = 0
 - f is homogeneous: f(tx) = |t|f(x), for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

■ f satisfies the triangle inequality: $f(x + y) \le f(x) + f(y)$, for all $x, y \in \mathbb{R}^n$

Distance

Between vectors x and y as the length of their difference, i.e., dist(x, y) = ||x - y||

Unit ball

The set of all vectors with norm less than or equal to one,

 $\mathcal{B} = \{ x \in \mathbf{R}^n \mid ||x|| \le 1 \}$

is called the unit ball of the norm $\|\cdot\|$.

- The unit ball satisfies the following properties:
 - ✓ \mathcal{B} is symmetric about the origin, i.e., $x \in \mathcal{B}$ if and only if $-x \in \mathcal{B}$
 - ✓ B is convex
 - ✓ B is closed, bounded, and has nonempty interior
- Conversely, if $C \subseteq \mathbf{R}^n$ is any set satisfying these three conditions, the it is the unit ball of a norm:

 $||x|| = (\sup\{t \ge 0 | tx \in C\})^{-1}$

NANITH CONTRACTOR

Some common norms on Rⁿ Sum-absolute-value, or l₁-norm ||x||₁ = |x₁| + ... + |x_n|, x ∈ Rⁿ Chebyshev or l_∞-norm ||x||_∞ = max{|x₁|, ..., |x_n|} l_p-norm

Norms

$$||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p}$$

For $P \in \mathbf{S}_{++}^{n}$, *P*-quadratic norm is $\|x\|_{P} = (x^{\top}Px)^{1/2} = \|P^{1/2}x\|_{2}$

Some common norms on $\mathbb{R}^{m \times n}$ Sum-absolute-value norm $\|X\|_{sav} = \sum_{i=1}^{m} \sum_{j=1}^{n} |X_{ij}|$

Maximum-absolute-value norm

 $||X||_{\max} = \max\{|X_{ij}||i=1,...,m,j=1,...,n\}$

Equivalence of norms

- Suppose that $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms on \mathbb{R}^n , there exist positive constants α and β , for all $x \in \mathbb{R}^n$ $\alpha \|x\|_a \le \|x\|_b \le \beta \|x\|_a$
- If ||·|| is any norm on Rⁿ, then there exists a quadratic norm ||·||_P for which ||x||_P ≤ ||x|| ≤ √n ||x||_P
 holds for all x.

Operator norms

- Suppose $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms on \mathbb{R}^m and \mathbb{R}^n , respectively. Operator norm of $X \in \mathbb{R}^{m \times n}$ induced by $\|\cdot\|_a$ and $\|\cdot\|_b$ is $\|X\|_{a,b} = \sup\{\|Xu\|_a \mid \|u\|_b \le 1\}$
- When $\|\cdot\|_a$ and $\|\cdot\|_b$ are Euclidean norms, the operator norm of X is its maximum singular value, and is denoted $\|X\|_2$

$$\|X\|_2 = \sigma_{\max}(X) = \left(\lambda_{\max}(X^\top X)\right)^{1/2}$$

✓ Spectral norm or ℓ_2 -norm

n

Norms

Operator norms

The norm induced by the ℓ_{∞} -norm on \mathbb{R}^m and \mathbb{R}^n , denoted $||X||_{\infty}$, is the max-row-sum norm,

$$\|X\|_{\infty} = \sup\{\|Xu\|_{\infty}\|\|u\|_{\infty} \le 1\} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |X_{ij}|$$

The norm induced by the ℓ_1 -norm on \mathbb{R}^m and \mathbb{R}^n , denoted $||X||_1$, is the max-column-sum norm,

$$||X||_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |X_{ij}|$$

Dual norm

- Let $\|\cdot\|$ be a norm on \mathbb{R}^n .
- The associated dual norm, denoted \|.\|.
 is defined as

 $||z||_* = \sup\{z^\top x | ||x|| \le 1\}$

- We have the inequality $z^{T}x \le ||x|| ||z||_{*}$
- The dual of Euclidean norm

$$\sup\{z^{\mathsf{T}}x\|\|x\|_2 \le 1\} = \|z\|_2$$

• The dual of the ℓ_{∞} -norm

 $\sup\{z^{\top}x | \|x\|_{\infty} \le 1\} = \|z\|_{1}$

Dual Norm

The dual of ℓ_p -norm is the ℓ_q -norm such that

$$\frac{1}{p} + \frac{1}{q} = 1$$

The dual of the ℓ_2 -norm on $\mathbf{R}^{m \times n}$ is the nuclear norm

$$||Z||_{2*} = \sup\{\operatorname{tr}(Z^{\top}X)|||X||_2 \le 1\}$$
$$= \sigma_1(Z) + \dots + \sigma_r(Z) = \operatorname{tr}(Z^{\top}Z)^{1/2}$$

Outline

□ Norms

- □ Analysis
- □ Functions
- Derivatives
- Linear Algebra

Analysis

Interior and Open Set

An element $x \in C \subseteq \mathbb{R}^n$ is called an interior point of *C* if there exists an $\epsilon > 0$ for which $\{y \mid \|y - x\|_2 \le \epsilon\} \subseteq C$

i.e., there exists a ball centered at x that lies entirely in C.

The set of all points interior to C is called the interior of C and is denoted int C.

• A set C is open if int C = C

Analysis

Closed Set and Boundary

A set $C \subseteq \mathbb{R}^n$ is closed if its complement is open

$$\mathbf{R}^n \setminus C = \{ x \in \mathbf{R}^n | x \notin C \}$$

- The closure of a set C is defined as $cl C = \mathbf{R}^n \setminus int(\mathbf{R}^n \setminus C)$
- The boundary of the set C is defined as $bd C = cl C \setminus int C$
 - C is closed if it contains its boundary. It is open if it contains no boundary points.

□ Supremum and infimum

The least upper bound or supremum of the set C is denoted sup C.

The greatest lower bound or infimum of the set C is denoted inf C.

Outline

□ Norms

- Analysis
- □ Functions
- Derivatives
- Linear Algebra

Functions

□ Notation *f*

$$f\colon A\to B$$

 $\bullet \quad \text{dom } f \subseteq A$

 $\square \text{ An example } f: \mathbf{S}^n \to \mathbf{R}$ $f(X) = \log \det X$

dom $f \subseteq \mathbf{S}_{++}^n$

Functions

Continuity

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at $x \in$ dom f if for all $\epsilon > 0$ there exists a δ with $y \in \text{dom } f$, such that $\|y - x\|_2 \le \delta \Rightarrow \|f(y) - f(x)\|_2 \le \epsilon$

Closed functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is closed if, for each $\alpha \in \mathbb{R}$, the sublevel set $\{x \in \text{dom } f \mid f(x) \le \alpha\}$

is closed. This is equivalent to epi $f = \{(x,t) \in \mathbb{R}^{n+1} | x \in \text{dom } f, f(x) \le t\}$

Outline

□ Norms

- Analysis
- □ Functions
- Derivatives
- Linear Algebra

Definition

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ and $x \in \text{int dom } f$. The function f is differentiable at x if there exists a matrix $Df(x) \in \mathbb{R}^{m \times n}$ that satisfies

$$\lim_{z \in \text{dom } f, \, z \neq x, \, z \to x} \frac{\|f(z) - f(x) - Df(x)(z - x)\|_2}{\|z - x\|_2} = 0$$

in which case we refer to Df(x) as the derivative (or Jacobian) of f at x.

Definition

The affine function of z given by

f(x) + Df(x)(z - x)

is called the first-order approximation of *f* at (or near) *x*.

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, i = 1, \cdots, m, j = 1, \cdots, n$$

□ Gradient

When f is real-valued (i.e., $f: \mathbb{R}^n \to \mathbb{R}$) the derivative Df(x) is a $1 \times n$ matrix (it is a row vector). Its transpose is called the gradient of the function:

$$\nabla f(x) = Df(x)^{\top}$$

which is a column vector (in \mathbb{R}^n). Its components are the partial derivatives of f:

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, i = 1, \cdots, n$$

■ The first-order approximation of f at a point x ∈ int dom f can be expressed as (the affine function of z)

$$f(x) + \nabla f(x)^{\mathsf{T}}(z - x)$$

Examples

$$f(x) = \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x + r$$
$$\nabla f(x) = Px + q$$

$$f(X) = \log \det X$$
, dom $f = \mathbf{S}_{++}^n$
 $\nabla f(X) = X^{-1}$

Chain rule

Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $x \in int$ dom f and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at $f(x) \in int$ dom g.

Define the composition $h: \mathbb{R}^n \to \mathbb{R}^p$ by h(z) = g(f(z)). Then *h* is differentiable at *x*, with derivate

$$Dh(x) = Dg(f(x))Df(x)$$

Suppose $f: \mathbf{R}^n \to \mathbf{R}, g: \mathbf{R} \to \mathbf{R}$, and h(x) = g(f(x)) $\nabla h(x) = g'(f(x))\nabla f(x)$

Composition of Affine Function g(x) = f(Ax + b) $\nabla g(x) = A^{\top} \nabla f(Ax + b)$

 $f: \mathbf{R}^n \to \mathbf{R}, \qquad g: \mathbf{R} \to \mathbf{R}$ $g(t) = f(x + tv), \qquad x, v \in \mathbf{R}^n$ $g'(t) = v^\top \nabla f(x + tv)$

 $\Box Consider the function f: \mathbb{R}^n \to \mathbb{R}$

$$f(x) = \log \sum_{i=1}^{n} \exp(a_i^{\mathsf{T}} x + b_i)$$

where $a_1, ..., a_m \in \mathbb{R}^n$ f = g(Ax + b) $g(y) = \log \sum_{i=1}^m \exp(y_i)$ $\nabla g(y) = \frac{1}{\sum_{i=1}^m \exp y_i} \begin{bmatrix} \exp y_1 \\ \vdots \\ \exp y_i \end{bmatrix}$

 $\Box \text{ Consider the function } f: \mathbf{R}^n \to \mathbf{R}$

$$f(x) = \log \sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x + b_i)$$

where $a_1, ..., a_m \in \mathbb{R}^n$ f = g(Ax + b) $\nabla f(x) = A^{\top} \nabla g(Ax + b) = \frac{1}{1^{\top} z} A^{\top} z$ $z = \begin{bmatrix} \exp a_1^{\top} x + b_1 \\ \vdots \\ \exp a_m^{\top} x + b_m \end{bmatrix}$

Consider the function $f(x) = \log \det(F_0 + x_1F_1 + \dots + x_nF_n)$ • where $F_0, \dots, F_n \in S^p$ $\Box f(x) = g(F_0 + x_1F_1 + \dots + x_nF_n)$ $g(X) = \log \det X$ $\frac{\partial f(x)}{\partial x_i} = \operatorname{tr}(F_i \nabla \log \det(F)) = \operatorname{tr}(F^{-1}F_i)$ $\nabla f(x) = \begin{vmatrix} \operatorname{tr}(F^{-1}F_1) \\ \vdots \\ \operatorname{tr}(F^{-1}F_n) \end{vmatrix}$

Second Derivative

Definition

Suppose $f: \mathbb{R}^n \to \mathbb{R}$. The second derivative or Hessian matrix of f at $x \in int \text{ dom } f$, denoted $\nabla^2 f(x)$, is given by

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, i = 1, \cdots, n, j = 1, \cdots, n.$$

Second-order Approximation

$$f(x) + \nabla f(x)^{\mathsf{T}}(z-x) + \frac{1}{2}(z-x)^{\mathsf{T}} \nabla^2 f(x)(z-x)$$

Examples

$$f(x) = \frac{1}{2}x^{\top}Px + q^{\top}x + r$$
$$\nabla f(x) = Px + q$$
$$\nabla^2 f(x) = P$$

$$f(X) = \log \det X, \dim f = \mathbf{S}_{++}^n$$
$$\nabla f(X) = X^{-1}$$
$$f(X) + \operatorname{tr}(X^{-1}(Z - X)) - \frac{1}{2}\operatorname{tr}(X^{-1}(Z - X)X^{-1}(Z - X))$$

Second Derivative

- Chain rule
 - Suppose $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$, and h(x) = g(f(x)).

 $\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^\top$

Composition with affine function:

g(x) = f(Ax + b) $\nabla^2 g(x) = A^{\top} \nabla^2 f(Ax + b)A$

 $\Box \text{ Consider the function } f: \mathbf{R}^n \to \mathbf{R}$

$$f(x) = \log \sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x + b_i)$$

where $a_1, \dots, a_m \in \mathbb{R}^n$ $f = g(Ax + b) g(y) = \log \sum_{i=1}^m \exp(y_i)$ $\frac{1}{1} \begin{bmatrix} \exp y_1 \\ i \end{bmatrix}$

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} \exp y_i} \begin{bmatrix} \vdots \\ \exp y_m \end{bmatrix}$$

 $\nabla^2 g(y) = \operatorname{diag}(\nabla g(y)) - \nabla g(y) \nabla g(y)^\top$

 $\Box \text{ Consider the function } f: \mathbf{R}^n \to \mathbf{R}$

$$f(x) = \log \sum_{i=1}^{m} \exp(a_i^{\mathsf{T}} x + b_i)$$

• where $a_1, \dots, a_m \in \mathbf{R}^n$

 $\Box f = g(Ax + b)$ $\nabla^2 f(x) = A^{\top} \nabla g^2 (Ax + b) A$ $= A^{\top} \left(\frac{1}{\mathbf{1}^{\top} z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^{\top} z)^2} z z^{\top} \right) A$ $\mathbf{z}_i = \exp(a_i^{\top} x + b_i), i = 1, \dots, m$

Outline

□ Norms

- Analysis
- □ Functions
- Derivatives
- □ Linear Algebra

□ Range and nullspace

Let $A \in \mathbb{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbb{R}^m that can be written as linear combinations of the columns of A:

 $\mathcal{R}(A) = \{Ax | x \in \mathbf{R}^n\} \subseteq \mathbf{R}^m$

The nullspace (or kernel) of A, denoted *N*(A), is the set of all vectors x mapped into zero by A:

 $\mathcal{N}(A) = \{x | Ax = 0\} \subseteq \mathbb{R}^n$

■ if \mathcal{V} is a subspace of \mathbb{R}^n , its orthogonal complement, denoted \mathcal{V}^{\perp} , is defined as: $\mathcal{V}^{\perp} = \{x | z^{\top}x = 0 \text{ for all } z \in \mathcal{V}\}$

□ Range and nullspace

Let $A \in \mathbb{R}^{m \times n}$, the range of A, denoted $\mathcal{R}(A)$, is the set of all vectors in \mathbb{R}^m that can be written as linear combinations of the columns of A:

$$\mathcal{R}(A) = \{A \mid B \in \mathcal{R}\}$$

The nullsp: $\mathcal{N}(A)$, is the $\mathcal{N}(A) = \mathcal{R}(A^{\top})^{\perp}$ enoted napped into zero by A:

 $\mathcal{N}(A) = \{x | Ax = 0\} \subseteq \mathbf{R}^n$

■ if \mathcal{V} is a subspace of \mathbb{R}^n , its orthogonal complement, denoted \mathcal{V}^{\perp} , is defined as: $\mathcal{V}^{\perp} = \{x | z^T x = 0 \text{ for all } z \in \mathcal{V}\}$

Symmetric eigenvalue decomposition Suppose $A \in S^n$, i.e., A is a real symmetric $n \times n$ matrix. Then A can be factored as

 $A = Q \Lambda Q^{\top}$

where $Q \in \mathbf{R}^{n \times n}$ is orthogonal, i.e., satisfies $Q^{\top}Q = I$, and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.

The determinant and trace can be expressed in terms of the eigenvalue.

det
$$A = \prod_{i=1}^{n} \lambda_i$$
, tr $A = \sum_{i=1}^{n} \lambda_i$

□ Norms

$$||A||_2 = \max_{i=1,\dots,n} |\lambda_i| = \max(\lambda_1, -\lambda_n)$$

$$\|A\|_F = \left(\sum_{i=1}^n \lambda_i^2\right)^{1/2}$$

Positive definite Matrix

- A matrix $A \in \mathbf{S}^n$ is called positive definite, if for all $x \neq 0, x^{\top}Ax > 0$, denoted as A > 0.
- If -A is positive definite, we say A is negative definite, denoted as $A \prec 0$.
- We use S_{++}^n to denote the set of positive definite matrices in S^n .
- We use S_{+}^{n} to denote the set of positive semidefinite matrices in S^{n} .

□ Singular value decomposition (SVD)

Suppose $A \in \mathbb{R}^{m \times n}$ with rank A = r. Then A can be factored as

$$A = U\Sigma V^{\top}$$

where $U \in \mathbf{R}^{m \times r}$ satisfies $U^{\top}U = I, V \in \mathbf{R}^{n \times r}$ satisfies $V^{\top}V = I$, and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r)$ with $\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r \ge 0$

The singular value decomposition can be written

$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}$$

□ Norms

 $\|A\|_2 = \sigma_1$

$$\|A\|_F = \left(\sum_{i=1}^n \sigma_i^2\right)^{1/2}$$

Pseudo-inverse

Let $A = U\Sigma V^{\top}$ be the singular value decomposition of $A \in \mathbf{R}^{m \times n}$, with rank A = r. The pseudo-inverse or Moore-Penrose inverse of A is $A^{\dagger} = V\Sigma^{-1}U^{\top} \in \mathbf{R}^{n \times m}$

Schur complement

• $A \in \mathbf{S}^k$, and a matrix $X \in \mathbf{S}^n$ partitioned as $X = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$

If det $A \neq 0$, the matrix $S = C - B^{T} A^{-1} B$

is called the Schur complement of A in X.

Application of Schur complement

PD Matrices

• X > 0 if and only if A > 0 and S > 0

If A > 0, then $X \ge 0$ if and only if $S \ge 0$

PSD Matrices

 $X \ge 0 \Leftrightarrow A \ge 0, (I - AA^{\dagger})B = 0, C - B^{\top}A^{\dagger}B \ge 0$

Summary

Norms of vectors

- l₁-norm, l_2 -norm, l_{∞} -norm, P-quadratic norm
- Norms of Matrices
 - Frobenius norm, spectral norm, nuclear norm
- □ Gradients of Common Functions
 - The Matrix Cookbook
- □ Eigendecompositon vs SVD
- PSD matrices