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Inner product

 Inner product on 

 Euclidean norm, or -norm
/ /

 Cauchy-Schwartz inequality

 Angle between nonzero vectors 

∠ 𝑥, 𝑦 cos
𝑥 𝑦

𝑥 𝑦 , 𝑥, 𝑦 ∈ 𝐑



Inner product

 Inner product on , 

Here tr  denotes trace of a matrix.

 Frobenius norm of a matrix 

 Inner product on

𝑋 tr 𝑋 𝑋 / 𝑋

/

⟨𝑋, 𝑌⟩ tr 𝑋 𝑌 𝑋 𝑌

⟨𝑋, 𝑌⟩ tr 𝑋𝑌 𝑋 𝑌 𝑋 𝑌 2 𝑋 𝑌



Norms
 A function 𝑓: 𝐑 → 𝐑 with dom 𝑓 𝐑 is called a 

norm if
 𝑓 is nonnegative: 𝑓 𝑥 0 for all 𝑥 ∈ 𝐑
 𝑓 is definite: 𝑓 𝑥 0 only if 𝑥 0
 𝑓 is homogeneous: 𝑓 𝑡𝑥 |𝑡|𝑓 𝑥 ,  for all 𝑥 ∈

𝐑  and 𝑡 ∈ 𝐑
 𝑓 satisfies the triangle inequality: 

𝑓 𝑥 𝑦 𝑓 𝑥 𝑓 𝑦 ,  for all 𝑥, 𝑦 ∈ 𝐑
 Distance
 Between vectors 𝑥 and 𝑦 as the length of 

their difference, i.e.,
dist 𝑥, 𝑦 𝑥 𝑦



Norms

 Unit ball
 The set of all vectors with norm less than or 

equal to one,
ℬ 𝑥 ∈ 𝐑  | 𝑥 1

is called the unit ball of the norm ∥⋅∥.
 The unit ball satisfies the following properties:
 ℬ is symmetric about the origin, i.e., 𝑥 ∈ ℬ if and 

only if 𝑥 ∈ ℬ
 ℬ is convex
 ℬ is closed, bounded, and has nonempty interior

 Conversely, if 𝐶 ⊆ 𝐑 is any set satisfying these 
three conditions, the it is the unit ball of a norm:

𝑥 sup 𝑡 0 𝑡𝑥 ∈ 𝐶



Norms

 Some common norms on 
 Sum-absolute-value, or -norm

 Chebyshev or -norm

 -norm 
/

 For , -quadratic norm is
/ /



Norms

 Some common norms on 
 Sum-absolute-value norm

 Maximum-absolute-value norm



Norms

 Equivalence of norms
 Suppose that and are norms 

on , there exist positive constants 
and , for all 

 If is any norm on , then there 
exists a quadratic norm for which

holds for all .



Norms

 Operator norms
 Suppose and are norms on 

and , respectively. Operator norm of 
induced by and is

,

 When and are Euclidean norms, 
the operator norm of is its maximum 
singular value, and is denoted 

 Spectral norm or ℓ -norm

𝑋 𝜎 𝑋 𝜆 𝑋 𝑋 /



Norms

 Operator norms
 The norm induced by the ℓ -norm on 𝐑

and 𝐑 , denoted 𝑋 , is the max-row-sum 
norm,

𝑋 sup 𝑋𝑢 | 𝑢 1 max ,…, 𝑋

 The norm induced by the ℓ -norm on 𝐑 and 
𝐑 , denoted 𝑋 , is the max-column-sum 
norm,

𝑋 max ,…, ∑ 𝑋



Norms

 Dual norm
 Let be a norm on . 
 The associated dual norm, denoted ∗, 

is defined as 
∗

 We have the inequality
∗

 The dual of Euclidean norm 

 The dual of the -norm
sup 𝑧 𝑥| 𝑥 1 𝑧

sup 𝑧 𝑥| 𝑥 1 𝑧



Norms

 Dual Norm
 The dual of -norm is the -norm such 

that

 The dual of the -norm on is the 
nuclear norm

∗

/
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Analysis

 Interior and Open Set
 An element 𝑥 ∈ 𝐶 ⊆ 𝐑 is called an interior 

point of 𝐶 if there exists an 𝜖 0 for which
𝑦  𝑦 𝑥 𝜖 ⊆ 𝐶

i.e., there exists a ball centered at 𝑥 that 
lies entirely in 𝐶.

 The set of all points interior to 𝐶 is called 
the interior of 𝐶 and is denoted int 𝐶.

 A set is open if 



Analysis

 Closed Set and Boundary
 A set  is closed if its complement is 

open

 The closure of a set 𝐶 is defined as
cl 𝐶 𝐑 ∖ int 𝐑𝐧 ∖ 𝐶

 The boundary of the set 𝐶 is defined as 
bd 𝐶 cl 𝐶 ∖ int 𝐶

 𝐶 is closed if it contains its boundary. It is 
open if it contains no boundary points.

𝐑 ∖ 𝐶 𝑥 ∈ 𝐑 |𝑥 ∉ 𝐶



Analysis

 Supremum and infimum

 The least upper bound or supremum 
of the set is denoted .

 The greatest lower bound or infimum 
of the set is denoted .
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Functions

 Notation



 An example 





Functions

 Continuity
 A function is continuous at 

if for all there exists a with 
, such that

 Closed functions
 A function is closed if, for each 

, the sublevel set

is closed. This is equivalent to 
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Derivatives

 Definition
 Suppose and . The 

function is differentiable at if there 
exists a matrix that satisfies

in which case we refer to as the 
derivative (or Jacobian) of at .

lim
∈  , , →

𝑓 𝑧 𝑓 𝑥 𝐷𝑓 𝑥 𝑧 𝑥
𝑧 𝑥 0



Derivatives

 Definition
 The affine function of given by

is called the first-order approximation 
of at (or near) .



Derivatives
 Gradient
 When 𝑓 is real-valued (i.e., 𝑓: 𝐑 → 𝐑) the 

derivative 𝐷𝑓 𝑥 is a 1 𝑛 matrix (it is a row 
vector). Its transpose is called the gradient of 
the function:

𝛻𝑓 𝑥 𝐷𝑓 𝑥
which is a column vector (in 𝐑 ). Its components 
are the partial derivatives of 𝑓:

𝛻𝑓 𝑥
𝜕𝑓 𝑥

𝜕𝑥 , 𝑖 1, ⋯ , 𝑛

 The first-order approximation of 𝑓 at a point 𝑥 ∈
int dom 𝑓 can be expressed as (the affine function 
of 𝑧)

𝑓 𝑥 𝛻𝑓 𝑥 𝑧 𝑥



Derivatives

 Examples

𝑓 𝑥
1
2 𝑥 𝑃𝑥 𝑞 𝑥 𝑟

𝛻𝑓 𝑥 𝑃𝑥 𝑞

𝑓 𝑋 log det 𝑋 , dom 𝑓 𝐒

𝛻𝑓 𝑋 𝑋  



Derivatives

 Chain rule
 Suppose 𝑓: 𝐑 → 𝐑 is differentiable at 𝑥 ∈ int 

dom 𝑓 and 𝑔: 𝐑 → 𝐑 is differentiable at 𝑓 𝑥 ∈ int 
dom 𝑔.
Define the composition ℎ: 𝐑 → 𝐑 by ℎ 𝑧

𝑔 𝑓 𝑧 . Then ℎ is differentiable at 𝑥, with derivate

 Suppose 𝑓: 𝐑 → 𝐑, 𝑔: 𝐑 → 𝐑, and ℎ 𝑥 𝑔 𝑓 𝑥

𝐷ℎ 𝑥 𝐷𝑔 𝑓 𝑥 𝐷𝑓 𝑥

𝛻ℎ 𝑥 𝑔 𝑓 𝑥 𝛻𝑓 𝑥



Derivatives

 Composition of Affine Function
𝑔 𝑥 𝑓 𝐴𝑥 𝑏

𝛻𝑔 𝑥 𝐴 𝛻𝑓 𝐴𝑥 𝑏

𝑓: 𝐑 → 𝐑,  𝑔: 𝐑 → 𝐑

𝑔 𝑡 𝑓 𝑥 𝑡𝑣 , 𝑥, 𝑣 ∈ 𝐑

𝑔′ 𝑡 𝑣 𝛻𝑓 𝑥 𝑡𝑣



Example 1

 Consider the function 

 where 


𝑓 𝑥 log exp 𝑎 𝑥 𝑏

𝑔 𝑦 log exp 𝑦

𝛻𝑔 𝑦
1

∑ exp 𝑦

exp 𝑦
⋮

exp 𝑦



Example 1 

 Consider the function 

 where 


𝑓 𝑥 log exp 𝑎 𝑥 𝑏

𝛻𝑓 𝑥 𝐴 𝛻𝑔 𝐴𝑥 𝑏
1

1 𝑧 𝐴 𝑧

𝑧
exp 𝑎 𝑥 𝑏

⋮
exp 𝑎 𝑥 𝑏



Example 2

 Consider the function

 where 




Second Derivative

 Definition
 Suppose 𝑓: 𝐑 → 𝐑. The second derivative or 

Hessian matrix of 𝑓 at 𝑥 ∈ int dom 𝑓, denoted 
𝛻 𝑓 𝑥 , is given by

 Second-order Approximation

𝛻 𝑓 𝑥
𝜕 𝑓 𝑥
𝜕𝑥 𝜕𝑥 , 𝑖 1, ⋯ , 𝑛, 𝑗 1, ⋯ , 𝑛.

𝑓 𝑥 𝛻𝑓 𝑥 𝑧 𝑥
1
2 𝑧 𝑥 𝛻 𝑓 𝑥 𝑧 𝑥



Derivatives

 Examples

𝑓 𝑥
1
2 𝑥 𝑃𝑥 𝑞 𝑥 𝑟

𝛻𝑓 𝑥 𝑃𝑥 𝑞

𝑓 𝑋 log det 𝑋 , dom 𝑓 𝐒

𝛻𝑓 𝑋 𝑋  

𝛻 𝑓 𝑥 𝑃

𝑓 𝑋 tr 𝑋 𝑍 𝑋
1
2 tr 𝑋 𝑍 𝑋 𝑋 𝑍 𝑋



Second Derivative

 Chain rule
 Suppose , , and 

.

 Composition with affine function:

𝛻 𝑔 𝑥 𝐴 𝛻 𝑓 𝐴𝑥 𝑏 𝐴

𝛻 ℎ 𝑥 𝑔 𝑓 𝑥 𝛻 𝑓 𝑥 𝑔 𝑓 𝑥 𝛻𝑓 𝑥 𝛻𝑓 𝑥

𝑔 𝑥 𝑓 𝐴𝑥 𝑏



Example 1

 Consider the function 

 where 


𝑓 𝑥 log exp 𝑎 𝑥 𝑏

𝑔 𝑦 log exp 𝑦

𝛻𝑔 𝑦
1

∑ exp 𝑦

exp 𝑦
⋮

exp 𝑦

𝛻 𝑔 𝑦 diag 𝛻𝑔 𝑦 𝛻𝑔 𝑦 𝛻𝑔 𝑦



Example 1

 Consider the function 

 where 




𝑓 𝑥 log exp 𝑎 𝑥 𝑏
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Linear algebra

 Range and nullspace
 Let 𝐴 ∈ 𝐑 , the range of 𝐴, denoted ℛ 𝐴 , 

is the set of all vectors in 𝐑 that can be 
written as linear combinations of the 
columns of A:

ℛ 𝐴 𝐴𝑥|𝑥 ∈ 𝐑 ⊆ 𝐑
 The nullspace (or kernel) of A, denoted 

𝒩 𝐴 , is the set of all vectors 𝑥 mapped into 
zero by A:

𝒩 𝐴 𝑥|𝐴𝑥 0 ⊆ 𝐑
 if 𝒱 is a subspace of 𝐑 , its orthogonal 

complement, denoted 𝒱 , is defined as:
𝒱 𝑥|𝑧 𝑥 0 for all 𝑧 ∈ 𝒱



Linear algebra

 Range and nullspace
 Let 𝐴 ∈ 𝐑 , the range of 𝐴, denoted ℛ 𝐴 , 

is the set of all vectors in 𝐑 that can be 
written as linear combinations of the 
columns of A:

ℛ 𝐴 𝐴𝑥|𝑥 ∈ 𝐑 ⊆ 𝐑
 The nullspace (or kernel) of A, denoted 

𝒩 𝐴 , is the set of all vectors 𝑥 mapped into 
zero by A:

𝒩 𝐴 𝑥|𝐴𝑥 0 ⊆ 𝐑
 if 𝒱 is a subspace of 𝐑 , its orthogonal 

complement, denoted 𝒱 , is defined as:
𝒱 𝑥|𝑧 𝑥 0 for all 𝑧 ∈ 𝒱

𝒩 𝐴 ℛ 𝐴𝒩 𝐴 ℛ 𝐴



Linear algebra

 Symmetric eigenvalue decomposition
 Suppose , i.e., is a real 

symmetric matrix. Then can 
be factored as

where is orthogonal, i.e., 
satisfies , and 
 The determinant and trace can be 

expressed in terms of the eigenvalue.
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 Norms
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/



Linear algebra

 Positive definite Matrix
 A matrix is called positive 

definite, if for all , 
denoted as .

 If is positive definite, we say is 
negative definite, denoted as .

 We use to denote the set of 
positive definite matrices in .

 We use to denote the set of 
positive semidefinite matrices in .



Linear algebra

 Singular value decomposition (SVD)
 Suppose with . Then 

can be factored as 

where satisfies 
satisfies , and with

 The singular value decomposition can be 
written



Linear algebra

 Norms

/



Linear algebra
 Pseudo-inverse
 Let 𝐴 𝑈𝛴𝑉 be the singular value 

decomposition of 𝐴 ∈ 𝐑 , with rank 𝐴 𝑟. The 
pseudo-inverse or Moore-Penrose inverse of 𝐴 is

𝐴 𝑉𝛴 𝑈 ∈ 𝐑

 Schur complement
 𝐴 ∈ 𝐒 , and a matrix 𝑋 ∈ 𝐒 partitioned as

𝑋 𝐴 𝐵
𝐵 𝐶

 If det 𝐴 0, the matrix
𝑆 𝐶 𝐵 𝐴 𝐵

is called the Schur complement of 𝐴 in 𝑋.



Application of Schur
complement
 PD Matrices
 if and only if and 
 If , then if and only if 

 PSD Matrices

𝑋 ≽ 0 ⟺ 𝐴 ≽ 0, 𝐼 𝐴𝐴 𝐵 0, 𝐶 𝐵 𝐴 𝐵 ≽ 0



Summary

 Norms of vectors
 -norm, -norm, -norm, -quadratic 

norm
 Norms of Matrices
 Frobenius norm, spectral norm, nuclear 

norm
 Gradients of Common Functions
 The Matrix Cookbook

 Eigendecompostion vs SVD
 PSD matrices


