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Convex Function

f:R™ = R Is convex if

B dom f IS convex

Ox+ (1 —6)y €dom f,v0 € |0,1],x,y € dom f
m Vvdel01], x,y €dom f

fOx+(1-0)y) <0f(x)+(1-60)f(y)




Convex Function

f:R™ > R Is convex If

B dom f IS convex

Ox + (1 —60)y €dom f,v0 € |0,1],x,y € dom f
m Vvoe|01l], x,y €Edom f

fOx+(1-0)y) <0f(x)+(1-60)f(y)

f:R™ = R Is strictly convex if
B vee(01), x#y

fOx+ (1 -0)y) <0f(x)+(1-06)f(y)



Convex Function

f:R™" = R Is convex If

B dom f IS convex

Ox + (1 —60)y €dom f,v0 € |0,1],x,y € dom f
m Vvoe|01l], x,y €Edom f

fOx+(1-0)y) <0f(x)+(1-60)f(y)

f Is concave If —f Is convex
B dom f IS convex

Affine functions are both convex and
concave, and vice versa.




Extended-value Extensions

The extended-value extension of f Is

= . |f(x) xedomf
.f(x)_{oo xgd()mf

B f:R" > RU {o0}
f(x +(1-0)y) <0f() + (1 - 0)f ()
B dom f = {x|f(x) < oo}
Example
B f(x)=fi(x) + f2(x), dom f = dom f; N dom f,
B f(x) =fi() + f2(x)
f(x) = oo,if x € dom f; or x € dom f,




Extended-value Extensions

The extended-value extension of f Is

= . |f(x) xedomf
If(X)—{OO x & dom f

B f:R" > RU {o0}

fox+ (1 —-0)y) <6f(x)+ 1 —-6)f(y)
Example
B Indicator Function of a Set C

= 0 e
IC(X)={OO e




Zeroth-order Condition

Definition
B High-dimensional space

fOx+(1-0)y) <0f(x)+(1-060)f(y)

A function is convex If and only if it is
convex when restricted to any line
that intersects its domain.

B xedomf,veR", teR x+tvedomf

B fis convex © g(t) = f(x + tv) is convex
B One-dimensional space




First-order Conditions

f 1s differentiable. Then f is convex If
and only If

B dom f IS convex
B Forall x,y edomf

fO=fX)+V )" (y—x)

f(z) + Vf(2) (y - )

First-order Taylor approximation



First-order Conditions

f Is differentiable. Then f is convex if
and only if

B dom f IS convex
B For all x,y €domf

fO) = fO)+Vf )T (y —x)

B Local Information = Global Information
B Vf(x)=0=f(y) =f(x),Vy edomf

f 1s strictly convex if and only if
fFO)>fE)+Vf)' (- x)



Proof

fisconvex © f:R-> R, f(y) = f(x) +

f'(x)(y —x),x,y €dom f
B Necessary condition:

fx+tly—x) <A -0)f@) +tf(¥),0<t<1
= () 2 f(x) + L0

t
S FO) =) + () —x)
B Sufficient condition:

z=0x+(1—-0)y

fx) =z f(2)+ f(2)(x = 2)
fzf@+1@y-2)

=0f()+A-0)f(y)=2f(2)=>fOx+(1-0y) <0f(x)+ (1 -6)f(¥)

xX)=f@2)+A-0)f"(2)(x — y)}
fO)=fz)-0f"(2)(x—y)



Proof

fisconvex © f:R-> R, f(y) = f(x) +
f')(y—x),x,y € dom f

fisconvex & f:R*" >R, f(y) = f(x) +

Vf(x)'(y —x),x,y € dom f

g =fty+1-0tx), g =Vflty+(1A-)x)"(y—x)
B f is convex = g(t)is convex = g(1) = g(0) +

g@=fO)=f)+Vfx)'(y—x)

fis e g is Y First-order |:> First-order
convex convex condition of g condition of f




Proof

fisconvex © f:R-> R, f(y) = f(x) +

f'x)(y —x),x,y € dom f

fisconvex © f:R" > R, f(y) = f(x) +

Vf(x)'(y —x),x,y € dom f

g =fty+1-0tx), g =Vflty+1A-)x)"(y—x)

B fty+A-x)=f({Ey+(1—-1)x)
+VfEy + (A -Dx)"(y —x)(t = )
=>gt)=g@)+ g @) —1t) = g(t) is convex =
f Is convex

fis Y g is g First-order <:| First-order
convex convex condition of g condition of f




Second-order Conditions

f Is twice differentiable. Then f iIs
convex If and only If

B dom f IS convex
B Forall x edomf, V3f(x) >0

Attention
B V?f(x) > 0= fis strictly convex
B fis strict convex # V%f(x) >0
f(x) = x*is strict convex but f"(0) =0
B dom f is convex is necessary, f(x) =1/x?




Examples

Functions on R

B ec*is convexonR, Va€eR

B x%isconvexonR,, whena>1o0ora<20,

and concave for0<a<1

B |x|P, forp>1, is convex on R

B logx IS concave on R,

B Negative entropy xlogx Is convex on R,



Examples

Functions on R"

B Every norm on R" is convex

B f(x) = max{xq,..,x,}
B Quadratic-over-linear: f(x,y) =xy—2
v dom f={(x,y) € R* |y > 0}
B f(x) =log(e* + -+ e*n)
max{xq, ..., xp} < f(x) < max{xq, ..., x,} +logn
B f(x) = (I~,x)"is concave on R%,

B f(X) =logdetX is concave on S},



Examples

Functions on R"

B Every norm on R" is convex
v' f(x) is a norm on R"
v f6x+ (1 —0)y) < f(6x) + f((1 - 0)y)
=0f(x)+ (1 -6)f(»)
B f(x) =max{xq, .., x,} = max x;

Y f0x + (1= 6)y) = max{6x; + (1 - 6)y}
< Omax{x;} + (1-6) max{y;}



Examples

Functions on R"
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Examples

Functions on R"
B f(x) =log(e*r + -+ e*n)




Examples

Functions on R"
B f(x) =log(e* + -+ e*n)

vV V(%) = s (1T 2)diag(2) — 227)

v z = (e*1,..., e*n)
VTPV = G (SR 20 (S vE ) -
(T viz)?) = 0
v’ Cauchy-Schwarz inequality: (a"a)(b"h) =
(a'b)?




Examples

Functions on R"

B f(X) =logdetX is concave on S},
v g =fZ+tV),Z+tV >0,Z>0
v g(t) =logdet(Z + tV)
1 11y 1
— logdet(z2(1 + t772v772) 72)
=Y ,log(1+tA;) +logdetZ

1

1
v A4, ..., A, are the eigenvalues of Z 2VZ 2

[ r /12
4O =0 O = - S

det(AB) = det(4) det(B) https://en.wikipedia.org/wiki/Determinant




Sublevel Sets

a-Sublevel set
C,={x€domf |f(x) < a}

B f(x)Is convex = (C, IS conveX, Va € R
B (C,Is convex,Va € R# f(x)Is convex

e.g., f(x) =—e*
a-superlevel set
Cy,={x€domf |f(x) = a}
B f(x)Is concave = (, isconvex, Va € R

" GO = Ty X A(x)——Zl 1 X

B {x e R}|G(x) = aA(x)}is conveX,a € [0,1]




Epigraph

Graph of function f:R" - R

B {(x,f(x))|x € dom f}

Epigraph of function f:R" - R
B epif={(xt)|xedomf,f(x) <t}

epi f
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Epigraph

Epigraph of function f:R" - R
B epif ={(xt)|x edomf, f(x) <t}

Hypograph
B hypof ={(x,t)[x edomf,t < f(x)}

Conditions
B f(x)is convex & epif is convex
B f(x) is concave © hypo f is convex




Example

Matrix Fractional Function
f(x,Y)=xTY"1x,dom f = R? x S%,

B Quadratic-over-linear: f(x,y) = x%/y

Boepif={(xY,0)|]Y >0,x"Y Ix <t}

:{(x,Y,t) [xYT ﬂ%O,Y>O}

v' Schur complement condition
B epif IS convex
v' Linear matrix inequality
v" Recall Example 2.10 in the book




Example

Matrix Fractional Function
f(x,Y)=xTY"1x,dom f = R? x S%,

B Quadratic-over-linear: f(x,y) = x%/y

Boepif={(xY,0)|]Y >0,x"Y Ix <t}

:{(x,Y,t) [xYT ﬂ%O,Y>O}

v' Schur complement condition
Linear Matrix Inequality
A(x) = x{AL + -+ x,4,
{x|A(x) < B} = {x|B — A(x) € S}




Application of Epigraph

First order Condition
B f)=f)+Vfx)' (y—x)
B (yt)eepif2t=f)=f)+Vf(x)' 'y —x)




Application of Epigraph

First order Condition
B f)=2fx)+V )" (y—x)
B (yt)Eepif=2t=f(x)+Vf(x)' (y —x)
T
B (y,t)Eepif > [Vi(lx) (m — [fécx)]) <0

Suport epi f at
point (x, f(x))




Jensen’s Inequality

Basic inequality
m 0e|01]
B fOx+(1-0)y) <0f(x)+(1-06)f(y)

K points
B9, e[01],0,+ 460, =1
B f(01x) + -+ Opxy) <01 () + -+ O f(x1)




Jensen’s Inequality

Infinite points
B p(x)=>0SC<Sdomf, fS'p(x) dx =1

O f(fsp(x)x dx) < fsf(x)p(x) dx
B f(Ex) <Ef(x)

v f(x) <Ef(x+2z2),zIis a zero-mean noisy

Holder’s inequality

1 1
m-+-=
i 1,p>1

1 1
B YL xy < Qinlx PP Qi |yl e
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Nonnegative Weighted Sums

The set of convex
functions is itself a
convex cone

1 Finite sums
B w; >0,f;Is convex

B f=wf,++w,f,IiS convex
1 Infinite sums

B f(x,y)isconvexin x,Vy € A,w(y) =0
B g(x) =/, f(x,y)w()dy is convex

[l Epigraph interpretation
B epi (wf) ={(x,)|wf(x) <t}

= || Oepi(n = {woirm =g

= epi(wf)=| Olepi(r)




Composition with an affine
mapping

f:R" >R
AeR™™ pheR"?
Affine Mapping
g(x) = f(Ax + b)
m If fis convex, so s g.

B If fiIs concave, soO Is g.



Pointwise Maximum

f1, f> IS convex

f(x) = max{f; (x), f(x)}

IS convex with dom f = dom f; N dom f,

B f(Ox+(1-06)y)
= max{f;(6x + (1 - 0)y), f,(6x + (1 - 0)y)}
<max{ffi(x) + (1 -0)f1(¥),0f,(x) + (1 -
) f,(y)}
< O max{f; (x), f,(x)} + (1 — 8) max{f; (y), f2,(¥)}
=0f(x)+ (1 -0)f(y)

I ST IS convex = f(x) — max{fl(x): s fm (X))}




Examples

Piecewise-linear functions
B f(x) =max{a{x+by,..,a} x + b}

Sum of r largest components
- xER"x[]>x[]>'“>x[]
B f(x) =Yi_,xpis convex
= max{x; +--+x |[1<i <. <i. <n}

B Pointwise maximum of ——— linear
ri(n —r)!

functions



Pointwise Supremum

Vy € A, f(x,y)Is convex in x
g(x) = sup f(x,y)
VEA
IS convex with dom g = {x|(x,y) €

dom f,Vy € A, sup f(x,y) < oo}
YEA

Epigraph interpretation
W epig = Nyeqepif(,y)
B Intersection of convex sets IS convex

Pointwise infimum of a set of
concave functions IS concave




Examples

Support function of a set
B CcCRYC#0
B Sc(x) =sup{x'yly € C}

B domS; = {x|supx'y < oo}
yeC

Distance to farthest point of a set
m CCcR?

B f(x) =sup|x—yl
yecC




Examples

Maximum eigenvalue of a symmetric
matrix
B f(X) = Adpax(X),dom f = S™

B (X)) =sup{y Xy |llyll, = 1}

Norm of a matrix

B (X)) =|X]|, is maximum singular value
of X

B dom f = RP*1
B f(X) =sup{u"Xv | |lull, =1 |lv|l, = 1}




Representation

Almost every convex function can be
expressed as the pointwise supremum
of a family of affine functions.

f:R™ - Ris convex and dom f = R"

= f(x) = sup{g(x)|g affine, g(2) < f(2) vz}




Compositions

Definition
B h:R¥ > R g:R" - RF
B f=hog:R" >R
f@) = h(g(x)
B dom f ={x €dom g|g(x) € dom h}

Chain Rule
B :R-Rg:R">R

V2f(x) = h'(g(x)V2g(x) + h""(g(x))Vg(x)Vg(x)T




Scalar Composition

h:R—->R,g:R—> R
B h and g are twice differentiable
B domg =domh=R
f"(x) =h"(g(x)g'(x)* +h'(g(x))g"(x)
B fis convex, if f"(x) =0
mh>0h=0g9"20
v' h is convex and nondecreasing, g is convex

mhr>0h<0g"<0

v' his convex and nonincreasing, g is concave




Scalar Composition

h:R—->R,g:R—> R
B h and g are twice differentiable
B domg =domh=R
f"(x) =h"(g(x)g'(x)* +h'(g(x))g"(x)
M fisconcave, if f"(x) <0
mhA <0h=20g"<0
v' h is concave and nondecreasing, g is concave

mhr <0h<0g'20

v' his concave and nonincreasing, g is convex




Scalar Composition

h:-R-R,g:R" >R
B Without differentiability assumption
B Without domain condition

B h(x) =0 with dom h = [1,2], which is convex
and nondecreasing

B g(x) = x? with dom g = R, which is convex
f(x) =h(g(x)) =0
B domf =|—V2,-1|U[1,V2]



Scalar Composition

h:-R-R,g:R" >R

Without differentiability assumption
Without domain condition

h is convex, h is nondecreasing, and g is
convex = f IS convex

h is convex, h is nonincreasing, and g is
concave = f IS convex

The conditions for concave are similar



Extended-value Extensions

epi [ epi [

0 0 p Y 0

H H i
Figure 3.7 Left. The function 2*, with domain R, is convex and nonde-
creasing on its domain, but its extended-value extension is not nondecreas-
ing. Right. The function 111-('1)({:1',0}2, with domain R, is convex, and its
extended-value extension is nondecreasing.



Examples

g Is convex = exp g(x) IS convex

g I1s concave and positive = logg(x) IS
concave

g Is concave and positive = 1/g(x) Is
convex

g 1s convex and nonnegative and p >
1= g(x)P is convex

g is convex = —log(—g(x)) is convex on

ixlg(x) < 0}



Vector Composition

h:R¥ > R,g;:R—> R
f=heg=nh(g:(x),..,9x(x))

B h and g are twice differentiable

B domg; = R,domh = R

f'x) = 7h(g(x) g'(x)
F7(0) = g'C)Th(g(0)g' (1) + Th(g() " (0




Vector Composition

h:R* > R,gi:R—> R
f=heg=nh(g:(x),..,9x(x))

B h and g are twice differentiable

B domg; = R,domh = R

£ = g/ @) T7?h(g()) g (x) + Th(g@) g"(x)

B fisconvex, if f'(x) =0

v' h is convex, h is nondecreasing in each
argument, and g; are convex

v' h is convex, h is nonincreasing in each
argument, and g; are concave




Vector Composition

h:R* > R,gi:R—> R
f=heg=nh(g:(x),..,9x(x))

B h and g are twice differentiable

B domg; = R,domh = R

£ = g/ @) T7?h(g()) g (x) + Th(g@) g"(x)

B f is concave, if f(x) <0

v' h is concave, h is nondecreasing in each
argument, and g; are concave

The general case Is similar



Examples

h(z) = zj;y + -+ 2z, 2 € R¥, g4, ..., gi are convex =
hoglils convex

h(z) =log(X¥ ,e?),g,, ..., gx are convex = ho g is
convex

1 -
h(z)=(Zk, z7)""? on RE is concave for 0 < p <1,
and its extension is nondecreasing. If g; Is
concave and nonnegative = ho g =

(Z =1 gz(x)p)l/p IS concave

Suppose p > 1, and g4, ..., g, are convex and

nonnegative. Then the function (Zl 1gl(x)p)1/
convex



Minimization

f is convex in (x,y),C is convex (C # @)
B g(x) = 3i}relgf(x, y) is convex if g(x) >

— oo,V x €Edomg
B domg = {x|(x,y) € dom f for some y € C}

Proof by Epigraph
B epig={(xt)|(x,yt) €epifforsomey € C}
B The projection of a convex set Is convex.




Minimization

f is convex in (x,y),C is convex (C + 0)
B g(x) = 3i}relgf(x, y) is convex if g(x) >

— oo,V x €Edomg
B domg = {x|(x,y) € dom f for some y € C}

Pointwise Supremum

Vy € A, f(x,y)Is convex in x

g(x) = sup f(x,)
y
IS convex with dom g = {x|(x,y) €
dom f,Vy € A, sup f(x,y) < oo}
YEA




Pointwise Supremum

Vy € A, f(x,y)Is convex in x
g(x) = sup f(x,y)
VEA
IS convex with dom g = {x|(x,y) €

dom f,Vy € A, sup f(x,y) < oo}
YEA

Epigraph interpretation
W epig = Nyeqepif(,y)
B Intersection of convex sets IS convex

Pointwise infimum of a set of
concave functions IS concave




Examples

Schur complement
B f(x,y)=x"Ax+2x"By+y'Cy
;T g = 0,4,C I1s symmetric = f(x,y) IS convex

B g(x) =inff(x,y) =x"(A—BCTBT)x is convex
y

= A—BCTBT =0, CT is the pseudo-inverse of C

Distance to a set

B S is aconvex nonempty set,f(x,y) = ||lx —y]|| is
convex in (x,y)
B g(x) = dist(x,$) = inf |[x — y|
YES




Examples

Distance to farthest point of a set
B CcR"

B f(x)=supllx—yll
yecC

Distance to a set

B S is aconvex nonempty set,f(x,y) = ||lx —y]|| is
convex in (x,y)
B g(x) = dist(x,$) = inf |[x — y|
YES




Examples

Affine domain
B h(y) Is convex
B g(x) =inf {h(y)|Ay = x} is convex

Proof

h(y) ifAy—x=0
O =
fy) { o  otherwise

B f(x,y) Is convex in (x,y)
B g is the minimum of f over y



Perspective of a function

f:R" > R, g:R""! - R defined as
glx,t) = tf(x/t)

IS the perspective of f
B domg = {(x,t)|x/t € dom f,t > 0}
B f is convex = g IS convex

Proof

(x,t,s) Eepig & tf(%) <s
X\ S
=f(3)=

L
S (x/t,s/t) €Eepif

B Perspective mapping preserve convexity



Perspective Functions

Perspective function P:R**! - R"

Z
P(Z,t) =Z,d0mp =RnXR++

If C € dom P Is convex, then its image
P(C) = {P(x)|x € C}

IS convex

If C € R™ Is convex, the inverse image

P~1(C) = {(x, t) € R*t1 %e C,t> O}
IS convex




Example

Euclidean norm squared
B f(x)=x"x

" g0 =c(;) () =Fe>0

Composition with an Affine function
B f:R™ - R is convex
B AeR™" heR™ceR",dER

Ax+b € dom f}

cTx+d

B domg = {x‘ch+d > 0,

B g() = (Tx+f (

Ax+Db
cTx+d

) IS convex
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