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More Symmetric Form

 Assume no equality constraint

 Suppose for some . Then, 
≽ by and 

 If , then the optimal 
choice of is and ≽

sup
≽

𝐿 𝑥, 𝜆 sup
≽

𝑓 𝑥 𝜆 𝑓 𝑥

 𝑓 𝑥         𝑓 𝑥 0,    𝑖 1, … , 𝑚
∞                                         otherwise



More Symmetric Form

 Optimal Value of Primal Problem

 Optimal Value of Dual Problem

 Weak Duality

 Strong Duality

 Min and Max can be switched

𝑝⋆ inf sup
≽

𝐿 𝑥, 𝜆

𝑑⋆ sup
≽

inf 𝐿 𝑥, 𝜆

sup
≽

inf 𝐿 𝑥, 𝜆 inf sup
≽

𝐿 𝑥, 𝜆

sup
≽

inf 𝐿 𝑥, 𝜆 inf sup
≽

𝐿 𝑥, 𝜆



A More General Form

 Max-min Inequality

 For any and any

 Strong Max-min Property

 Hold only in special cases

sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧

sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧
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Saddle-point Interpretation

 is a saddle point for 

 minimizes , maximizes 
𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧 , ∀𝑤 ∈ 𝑊, 𝑧 ∈ 𝑍

𝑓 𝑤, 𝑧 inf
∈

𝑓 𝑤, 𝑧 , 𝑓 𝑤, 𝑧 sup
∈

𝑓 𝑤, 𝑧

https://en.wikipedia.org/wiki/Saddle_point



Saddle-point Interpretation

 is a saddle point for 

 minimizes , maximizes 

 Imply the strong max-min property 
𝑓 𝑤, 𝑧 inf

∈
𝑓 𝑤, 𝑧 , 𝑓 𝑤, 𝑧 sup

∈
𝑓 𝑤, 𝑧

sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧  

𝑓 𝑤, 𝑧 sup
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧  

⇒ sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧

⇒ sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧

𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧 , ∀𝑤 ∈ 𝑊, 𝑧 ∈ 𝑍



Saddle-point Interpretation

 is a saddle point for 

 minimizes , maximizes 

 If ⋆ ⋆ are primal and dual optimal 
points and strong duality holds, ⋆ ⋆

form a saddle-point.
 If is saddle-point, then is primal 

optimal, is dual optimal, and the 
duality gap is zero.

𝑓 𝑤, 𝑧 inf
∈

𝑓 𝑤, 𝑧 , 𝑓 𝑤, 𝑧 sup
∈

𝑓 𝑤, 𝑧

𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧 𝑓 𝑤, 𝑧 , ∀𝑤 ∈ 𝑊, 𝑧 ∈ 𝑍
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Continuous Zero-sum Game

 Two players
 The 1st player chooses , and the 2nd 

player selects 
 Player 1 pays an amount to player 2

 Goals
 Player 1 wants to minimize 
 Player 2 wants to maximize 

 Continuous game
 The choices are vectors, and not discrete



Continuous Zero-sum Game

 Player 1 makes his choice first
 Player 2 wants to maximize payoff 

and the resulting payoff is 
∈

 Player 1 knows that player 2 will follow 
this strategy, and so will choose to 
make 

∈
as small as possible

 Thus, player 1 chooses

 The payoff 
argmin

∈
sup

∈
𝑓 𝑤, 𝑧

inf
∈

sup
∈

𝑓 𝑤, 𝑧



Continuous Zero-sum Game

 Player 2 makes his choice first
 Player 1 wants to minimize payoff 

and the resulting payoff is 
∈

 Player 2 knows that player 1 will follow 
this strategy, and so will choose to 
make 

∈
as large as possible

 Thus, player 2 chooses

 The payoff 
argmax

∈
inf
∈

𝑓 𝑤, 𝑧

sup
∈

inf
∈

𝑓 𝑤, 𝑧



Continuous Zero-sum Game

 Max-min Inequality

 Player 1 wants to minimize 
 Player 2 wants to maximize 

sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧

Player 1 plays firstPlayer 2 plays first

It is better for a 
player to go second



Continuous Zero-sum Game

 Strong Max-min Property

 Player 1 wants to minimize 
 Player 2 wants to maximize 

sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧

Player 1 plays firstPlayer 2 plays first

There is no advantage 
to playing second



Continuous Zero-sum Game

 Strong Max-min Property

 Saddle-point Property
 If is a saddle-point for (and ), 

then it is called a solution of the game
 𝑤: the optimal strategy for player 1
 𝑧: the optimal strategy for player 2
 No advantage to playing second

sup
∈

inf
∈

𝑓 𝑤, 𝑧 inf
∈

sup
∈

𝑓 𝑤, 𝑧

Player 1 plays firstPlayer 2 plays first



A Special Case

 Payoff is the Lagrangian; 
 Player 1 chooses the primal variable while 

player 2 chooses the dual variable 
 The optimal choice for player 2, if she must 

choose first, is any dual optimal ⋆

 The resulting payoff: 𝑑⋆

 Conversely, if player 1 chooses first, his 
optimal choice is any primal optimal ⋆

 The resulting payoff: 𝑝⋆

 Duality gap: advantage of going second
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Certificate of Suboptimality

 Dual Feasible 
 A lower bound on the optimal value

of the primal problem
⋆

 Provides a proof or certificate

 Bound how suboptimal a given feasible 
point is, without knowing the value of ⋆

⋆

 𝑥 is 𝜖-suboptimal for primal problem 
 (𝜆, 𝜈 is 𝜖-suboptimal for dual



Certificate of Suboptimality

 Gap between Primal & Dual Objectives

 Referred to as duality gap associated with 
primal feasible and dual feasible 

 localizes the optimal value of the
primal (and dual) problems to an interval 

⋆ ⋆

 The width of the interval is the duality gap

 If duality gap of is , then is 
primal optimal and is dual optimal



Stopping Criteria

 Optimization algorithms produce a 
sequence of primal feasible and dual 
feasible for 

 Required absolute accuracy: 

 A Nonheuristic Stopping Criterion

 Guarantees when algorithm terminates, 
is -suboptimal



Stopping Criteria

 A Relative Accuracy 
 Nonheuristic Stopping Criteria
 If 

𝑔 𝜆 , 𝜈 0,     
𝑓 𝑥 𝑔 𝜆 , 𝜈

𝑔 𝜆 , 𝜈
𝜖

or

𝑓 𝑥 0,         
𝑓 𝑥 𝑔 𝜆 , 𝜈

𝑓 𝑥
𝜖

 Then ⋆ , and the relative error satisfies  
𝑓 𝑥 𝑝⋆

|𝑝⋆| 𝜖
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Complementary Slackness

 Suppose Strong Duality Holds
 For primal optimal ⋆ & dual optimal ⋆ ⋆

 First line: the optimal duality gap is zero
 Second line: definition of the dual function
 Third line: infimum of Lagrangian over 𝑥 is 

less than or equal to its value at 𝑥 𝑥⋆

𝑓 𝑥⋆ 𝑔 𝜆⋆, 𝜈⋆

inf  𝑓 𝑥 ∑ 𝜆⋆𝑓 𝑥 ∑ 𝜈⋆ℎ 𝑥

𝑓 𝑥⋆ ∑ 𝜆⋆𝑓 𝑥⋆ ∑ 𝜈⋆ℎ 𝑥⋆

𝑓 𝑥⋆



Complementary Slackness

 Suppose Strong Duality Holds
 For primal optimal ⋆ & dual optimal ⋆ ⋆

 Last line: 𝜆⋆ 0, 𝑓 𝑥⋆ 0, 𝑖 1, … , 𝑚 and 
ℎ 𝑥⋆ 0, 𝑖 1, … , 𝑝

 We conclude that the two inequalities in this 
chain hold with equality

𝑓 𝑥⋆ 𝑔 𝜆⋆, 𝜈⋆

inf  𝑓 𝑥 ∑ 𝜆⋆𝑓 𝑥 ∑ 𝜈⋆ℎ 𝑥

𝑓 𝑥⋆ ∑ 𝜆⋆𝑓 𝑥⋆ ∑ 𝜈⋆ℎ 𝑥⋆

𝑓 𝑥⋆



Complementary Slackness

 Suppose Strong Duality Holds
 For primal optimal ⋆ & dual optimal ⋆ ⋆

 Equality in the third line implies 𝑥⋆ minimizes 
𝐿 𝑥, 𝜆⋆, 𝜈⋆

 Equality in the last line implies ∑ 𝜆⋆𝑓 𝑥⋆ 0

𝑓 𝑥⋆ 𝑔 𝜆⋆, 𝜈⋆

inf  𝑓 𝑥 ∑ 𝜆⋆𝑓 𝑥 ∑ 𝜈⋆ℎ 𝑥

𝑓 𝑥⋆ ∑ 𝜆⋆𝑓 𝑥⋆ ∑ 𝜈⋆ℎ 𝑥⋆

𝑓 𝑥⋆



Complementary Slackness

 Complementary Slackness

 Derived from ⋆ ⋆

 Holds for any primal optimal ⋆ and dual 
optimal ⋆ ⋆ (when strong duality holds)

 Other expressions
⋆ ⋆

⋆ ⋆

 𝑖-th optimal Lagrange multiplier is 0 unless 𝑖-
th constraint is active at the optimum 𝑓 𝑥⋆ 0

𝜆⋆𝑓 𝑥⋆ 0, 𝑖 1, … , 𝑚
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KKT Conditions for Nonconvex 
Problems

 ⋆ and ⋆ ⋆ : any primal and dual 
optimal points with zero duality gap
 ⋆ minimizes ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆



KKT Conditions for Nonconvex 
Problems

 ⋆ and ⋆ ⋆ : any primal and dual 
optimal points with zero duality gap

 Karush-Kuhn-Tucker (KKT) conditions

                                  𝑓 𝑥⋆ 0,              𝑖 1, … , 𝑚
                                ℎ 𝑥⋆ 0,              𝑖 1, … , 𝑝

                                          𝜆⋆ 0,              𝑖 1, … , 𝑚
                               𝜆⋆𝑓 𝑥⋆ 0,              𝑖 1, … , 𝑚
𝛻𝑓 𝑥⋆ ∑ 𝜆⋆𝛻𝑓 𝑥⋆ ∑ 𝜈⋆𝛻ℎ 𝑥⋆ 0

For optimization problem with differentiable
objective and constraint functions for which
strong duality obtains, any pair of primal and
dual optimal must satisfy KKT conditions.

Necessary 
Condition



KKT Conditions for Convex 
Problems

 If are convex, are affine, 
satisfy

 Then, and are primal and dual 
optimal, with zero duality gap.

                                  𝑓 𝑥 0,              𝑖 1, … , 𝑚
                                ℎ 𝑥 0,              𝑖 1, … , 𝑝

                                        𝜆 0,              𝑖 1, … , 𝑚
                               𝜆 𝑓 𝑥 0,              𝑖 1, … , 𝑚

𝛻𝑓 𝑥 ∑ 𝜆 𝛻𝑓 𝑥 ∑ 𝜈 𝛻ℎ 𝑥 0

For any convex optimization problem with
differentiable objective and constraint functions,
any points that satisfy the KKT conditions are
primal and dual optimal, and have zero duality gap.

Sufficient 
Condition



KKT Conditions for Convex 
Problems

 For convex problem satisfying Slater’s 
condition, KKT conditions provide 
necessary and sufficient conditions 
for optimality.
 Slater’s condition implies that optimal 

duality gap is zero and dual optimum is 
attained

 is optimal if and only if there are 
that, together with , satisfy the KKT 
conditions



KKT Conditions for Convex 
Problems

 The KKT conditions play an important 
role in optimization.
 In a few special cases it is possible to 

solve the KKT conditions. 

 More generally, many algorithms for 
convex optimization can be interpreted 
as methods for solving the KKT 
conditions



Example

 Equality Constrained Convex Quadratic 
Minimization
 Primal Problem (with )

 KKT conditions
𝐴𝑥⋆ 𝑏, 𝑃𝑥⋆ 𝑞 𝐴 𝜈⋆ 0

⇔ 𝑃 𝐴
𝐴 0

𝑥⋆

𝑣⋆ = 𝑞
𝑏

 Solving this set of 𝑚 𝑛 equations in 𝑚 𝑛
variables 𝑥⋆, 𝜈⋆ gives optimal primal and dual 
variables

min 1/2 𝑥 𝑃𝑥 𝑞 𝑥 𝑟      
s. t. 𝐴𝑥 𝑏                                  
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Solving the Primal Problem via 
the Dual

 If strong duality holds and a dual 
optimal solution ⋆ ⋆ exists, any 
primal optimal point is also a minimizer 
of ⋆ ⋆

 Suppose the minimizer of ⋆ ⋆ below is 
unique

 If solution is primal feasible, it’s primal optimal
 If not primal feasible, no optimal point exists

min     𝑓 𝑥 𝜆⋆𝑓 𝑥 𝜈⋆ℎ 𝑥



Example

 Entropy Maximization
 Primal Problem (with domain )

 Dual Problem ( : the -th column of )

 Assume weak Slater’s condition holds
 There exists an 𝑥 ≻ 0 with 𝐴𝑥 ≼ 𝑏, 𝟏 𝑥 1
 So strong duality holds and an optimal solution 

𝜆⋆, 𝜈⋆ exists 

min 𝑓 𝑥 ∑ 𝑥 log 𝑥        
s. t. 𝐴𝑥 ≼ 𝑏                                  

𝟏 𝑥 1                    

max 𝑏 𝜆 𝜈 𝑒 ∑ 𝑒        
s. t. 𝜆 ≽ 0                                                      



Example

 Entropy Maximization
 Suppose we have solved the dual problem
 The Lagrangian at ⋆ ⋆ is

 Strictly convex on 𝒟 and bounded below
 So it has a unique solution

 If 𝑥⋆ is primal feasible, it must be the optimal 
solution of the primal problem

 If 𝑥⋆ is not primal feasible, we can conclude 
that the primal optimum is not attained

𝐿 𝑥, 𝜆⋆, 𝜈⋆ ∑ 𝑥 log 𝑥 𝜆⋆ 𝐴𝑥 𝑏 𝜈⋆ 𝟏 𝑥 1

𝑥⋆ 1/ exp 𝑎 𝜆⋆ 𝜈⋆ 1 ,   𝑖 1, … , 𝑛
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Examples

 Introduce New Variables and Equality 
Constraints

 Transform the Objective

 Implicit Constraints



Introduce New Variables and 
Equality Constraints

 Unconstrained Problem

 Lagrange dual function: constant ⋆

 strong duality holds (𝑝⋆ 𝑑⋆ , but it is not 
useful

 Reformulation

 Lagrangian of the reformulated problem
𝐿 𝑥, 𝑦, 𝜈 𝑓 𝑦 𝜈 𝐴𝑥 𝑏 𝑦

min 𝑓 𝑦             
s. t. 𝐴𝑥 𝑏 𝑦

min     𝑓 𝐴𝑥 𝑏



Introduce New Variables and 
Equality Constraints

 Unconstrained Problem
 Find dual function by minimizing 
 Minimizing over 𝑥, 𝑔 𝜈 ∞ unless 𝐴 𝑣 0

 When minimizing gives
𝑔 𝜈 𝑏 𝜈 inf 𝑓 𝑦 𝜈 𝑦 𝑏 𝜈 𝑓∗ 𝜈

 𝑓∗: conjugate of 𝑓
 Dual problem

 More useful

max 𝑏 𝜈 𝑓∗ 𝜈
s. t. 𝐴 𝜈 0       



Example

 Unconstrained Geometric Program
 Problem

min      log  ∑ exp 𝑎 𝑥 𝑏
 Add new variables & equality constraints

 𝑎 : 𝑖-th row of 𝐴
 Conjugate of the log-sum-exp function

min 𝑓 𝑦 log ∑ exp 𝑦  
s. t. 𝐴𝑥 𝑏 𝑦                            

𝑓∗ 𝜈  ∑ 𝜈 log 𝜈     𝜈 ≽ 0, 𝟏 𝜈 1
∞                                  otherwise



Introduce New Variables and 
Equality Constraints

 Unconstrained Geometric Program
 Primal Problem

 Dual of the reformulated problem

 An entropy maximization problem

max 𝑏 𝜈 ∑ 𝜈 log 𝜈
s. t. 𝟏 𝜈 1                      

𝐴 𝜈 0         
𝜈 ≽ 0              

min 𝑓 𝑦 log ∑ exp 𝑦  
s. t. 𝐴𝑥 𝑏 𝑦                            



Example

 Norm Approximation Problem
 Problem (with any norm )

min      𝐴𝑥 𝑏
 Constant Lagrange dual function (not useful)

 Reformulate the problem  

 Lagrange dual problem 

 The conjugate of a norm is the indicator 
function of the dual norm unit ball 

min  𝑦                          
s. t.  𝐴𝑥 𝑏 𝑦          

max   𝑏 𝜈                                
s. t. 𝜈 ∗ 1, 𝐴 𝜈 0              



Introduce New Variables and 
Equality Constraints

 Constraint Functions



 Introduce 

 The Lagrangian for the above problem

min  𝑓 𝐴 𝑥 𝑏                                                 
s. t.  𝑓 𝐴 𝑥 𝑏 0, 𝑖 1, … , 𝑚          

min  𝑓 𝑦                                                 
s. t.  𝑓 𝑦 0, 𝑖 1, … , 𝑚          

         𝐴 𝑥 𝑏 𝑦 , 𝑖 0, … , 𝑚

𝐿 𝑥, 𝑦 , … , 𝑦 , 𝜆, 𝜈 , … , 𝜈
𝑓 𝑦 ∑ 𝜆 𝑓 𝑦 ∑ 𝜈 𝐴 𝑥 𝑏 𝑦



Introduce New Variables and 
Equality Constraints

 Constraint Functions
 Dual function (by minimizing over )
 Minimum over 𝑥 is ∞ unless ∑ 𝐴 𝜈 0

  In this case, for 𝜆 ≻ 0,   𝑔 𝜆, 𝜈 , … , 𝜈

𝜈 𝑏 inf
,…,

𝑓 𝑦 𝜆 𝑓 𝑦 𝜈 𝑦

𝜈 𝑏 inf  𝑓 𝑦 𝜈 𝑦 𝜆 inf  𝑓 𝑦 𝜈 /𝜆 𝑦

𝜈 𝑏 𝑓∗ 𝜈 𝜆 𝑓∗ 𝜈 /𝜆



Introduce New Variables and 
Equality Constraints

 Constraint Functions
 What happens when (but some )
 If 𝜆 0 & 𝜈 0, the dual function is ∞
 If 𝜆 0 & 𝜈 0, terms involving 𝑦 , 𝜈 , 𝜆  are 0

 The expression for is valid for all if
 Take 𝜆 𝑓∗ 𝜈 /𝜆 0, when 𝜆 0 & 𝜈 0
 Take 𝜆 𝑓∗ 𝜈 /𝜆 ∞, when 𝜆 0 & 𝜈 0

 Dual Problem
max  ∑ 𝜈 𝑏 𝑓∗ 𝜈 ∑ 𝜆 𝑓∗ 𝜈 /𝜆  
s. t. 𝜆 ≽ 0,  ∑ 𝐴 𝜈 0                                          



Example

 Inequality Constrained Geometric 
Program
 Problem

 Let 𝑓 𝑦 log ∑ 𝑒

 Conjugate of 𝑓

min log ∑ 𝑒                                                 

s. t. log ∑ 𝑒 0, 𝑖 1, … , 𝑚                

𝑓∗ 𝜈  ∑ 𝜈 log 𝜈     𝜈 ≽ 0, 𝟏 𝜈 1
∞                                     otherwise



Example

 Inequality Constrained Geometric 
Program
 Dual problem is

max  𝑏 𝜈 ∑ 𝜈 log 𝜈 ∑ 𝑏 𝜈 ∑ 𝜈 log 𝜈 /𝜆

s. t. 𝜈 ≽ 0,    𝟏 𝜈 1                                                                               
𝜈 ≽ 0,    𝟏 𝜈 𝜆 ,         𝑖 1, … , 𝑚                                           
𝜆 0,     𝑖 1, … , 𝑚                                                              
∑ 𝐴 𝜈 0                                                                            



Transform the Objective

 Replace the Objective by an 
Increasing Function of 
 The resulting problem is equivalent

 The dual of this equivalent problem can be 
very different from dual of original problem



Example

 Minimum Norm Problem
min      𝐴𝑥 𝑏

 Reformulate this problem as

 Introduce new variables and replace the 
objective by half its square

 Equivalent to the original problem
 Dual of the reformulated problem

min   1/2 𝑦                                     
s. t. 𝐴𝑥 𝑏 𝑦                               

max  𝜈 ∗ 𝑏 𝜈              
s. t.   𝐴 𝜈 0                                  



Implicit Constraints

 Include Some of the Constraints in 
the Objective Function
 Modifying the objective function to be 

infinite when the constraint is violated



Example

 Linear Program with Box Constraints
 Problem

 𝐴 ∈ 𝐑 and 𝑙 ≺ 𝑢
 𝑙 ≼ 𝑥 ≼ 𝑢 are called box constraints

 Derive the dual of this linear program

min   𝑐 𝑥                                       
s. t. 𝐴𝑥 𝑏                               

𝑙 ≼ 𝑥 ≼ 𝑢              

min   𝑏 𝜈 𝜆 𝑢 𝜆 𝑙                                       
s. t. 𝐴 𝜈 𝜆 𝜆 𝑐 0                             

𝜆 ≽ 0,      𝜆 ≽ 0                          



Example

 Linear Program with Box Constraints
 Problem

 𝐴 ∈ 𝐑 and 𝑙 ≺ 𝑢
 𝑙 ≼ 𝑥 ≼ 𝑢 are called box constraints

 Reformulate the problem as

 Here, we define

min   𝑐 𝑥                                       
s. t. 𝐴𝑥 𝑏                               

𝑙 ≼ 𝑥 ≼ 𝑢              

min   𝑓 𝑥     
s. t.   𝐴𝑥 𝑏

𝑓 𝑥  𝑐 𝑥       𝑙 ≼ 𝑥 ≼ 𝑢
∞          otherwise



Implicit Constraints

 Linear Program with Box Constraints
 Dual function

 𝑦 max 𝑦 , 0 , 𝑦 max 𝑦 , 0
 We can derive an analytical formula for 𝑔, 

which is a concave piecewise-linear function
 Dual problem

max     𝑏 𝜈 𝑢 𝐴 𝜈 𝑐 𝑙 𝐴 𝜈 𝑐
 Unconstrained problem
 Different form from the dual of original problem

𝑔 𝜈 inf
≼ ≼

𝑐 𝑥 𝜈 𝐴𝑥 𝑏

   𝑏 𝜈 𝑢 𝐴 𝜈 𝑐 𝑙 𝐴 𝜈 𝑐



Outline
 Saddle-point Interpretation
 Max-min Characterization of Weak and Strong 

Duality
 Saddle-point Interpretation
 Game Interpretation

 Optimality Conditions
 Certificate of Suboptimality and Stopping Criteria
 Complementary Slackness
 KKT Optimality Conditions
 Solving the Primal Problem via the Dual

 Examples
 Generalized Inequalities



Generalized Inequalities

 Problems with Generalized Inequality 
Constraints
 Primal Problem

 𝐾 ⊆ 𝐑 are proper cones
 Do not assume convexity of the problem
 Assume the domain is nonempty

min 𝑓 𝑥                                                              
s. t. 𝑓 𝑥 ≼ 0,     𝑖 1, … , 𝑚                     

ℎ 𝑥 0,     𝑖 1, … , 𝑝             



The Lagrange Dual

 Lagrangian
𝐿 𝑥, 𝜆, 𝜈 𝑓 𝑥 𝜆 𝑓 𝑥 ⋯ 𝜆 𝑓 𝑥

                              𝜈 ℎ 𝑥 ⋯ 𝜈 ℎ 𝑥
 𝜆 𝜆 , … , 𝜆 , 𝜆 ∈ 𝐑 , 𝜈 𝜈 , … , 𝜈

 Dual Function
𝑔 𝜆, 𝜈 inf

∈𝒟
𝐿 𝑥, 𝜆, 𝜈  

inf
∈𝒟

 𝑓 𝑥 ∑ 𝜆 𝑓 𝑥 ∑ 𝜈 ℎ 𝑥

 Lagrangian is affine in dual variables;
 Dual function is pointwise infimum of 

Lagrangian. So, dual function is concave



The Lagrange Dual

 Nonnegativity on dual variables
∗

 ∗ the dual cone of 
 Lagrange multipliers must be dual 

nonnegative
 Weak Duality
 If ∗ and then 
 So, for any primal feasible and ∗

𝑓 𝑥 ∑ 𝜆 𝑓 𝑥 ∑ 𝜈 ℎ 𝑥 𝑓 𝑥
 Taking the infimum over yields ⋆



The Lagrange Dual

 Lagrange dual optimization problem

 Always have weak duality ( ⋆ ⋆) 
whether or not the primal problem is 
convex

 Primal Problem

max   𝑔 𝜆, 𝜈                                       
s. t. 𝜆 ≽ ∗ 0,     𝑖 1, … , 𝑚     

min 𝑓 𝑥                                                              
s. t. 𝑓 𝑥 ≼ 0,     𝑖 1, … , 𝑚                     

ℎ 𝑥 0,     𝑖 1, … , 𝑝             



The Lagrange Dual

 Slater’s Condition and Strong Duality
 Strong duality: ⋆ ⋆

 Holds when primal problem is convex and 
satisfies appropriate constraint qualifications

 For problem (convex and -convex )

 Generalized version of Slater’s condition
 ∃𝑥 ∈ relint 𝒟, 𝐴𝑥 𝑏, 𝑓 𝑥 ≺ 0, 𝑖 1, … , 𝑚
 Implies strong duality and the dual optimum 

is attained 

min 𝑓 𝑥                                           
s. t. 𝑓 𝑥 ≼ 0,    𝑖 1, … , 𝑚   

𝐴𝑥 𝑏                           



Example

 Lagrange Dual of Cone Program in 
Standard Form
 Primal Problem

 𝐴 ∈ 𝐑 , 𝑏 ∈ 𝐑 and 𝐾 ⊆ 𝐑 is a proper cone
 Lagrangian: 𝐿 𝑥, 𝜆, 𝜈 𝑐 𝑥 𝜆 𝑥 𝜈 𝐴𝑥 𝑏
 Dual function

min   𝑐 𝑥                                       
s. t. 𝐴𝑥 𝑏                               

𝑥 ≽ 0                   

𝑔 𝜆, 𝜈 inf 𝐿 𝑥, 𝜆, 𝜈  𝑏 𝜈    𝐴 𝜈 𝜆 𝑐 0,
∞            otherwise.       



Example

 Lagrange Dual of Cone Program in 
Standard Form
 Dual problem

 Eliminate and define gives

 A cone program in inequality form
 Involve the dual generalized inequality 
 Strong duality (Slater condition): 𝑥 ≻ 0, 𝐴𝑥 𝑏

max 𝑏 𝜈                                            
s. t. 𝐴 𝜈 𝑐 𝜆                               

𝜆 ≽ ∗ 0                           

max 𝑏 𝑦                                         
s. t. 𝐴 𝑦 ≼ ∗ 𝑐                            



Optimality Conditions

 Complementary Slackness
 Assume primal and dual optimal values are 

equal, and attained at ⋆ ⋆ ⋆

 Complementary slackness

 𝑥⋆ minimizes 𝐿 𝑥, 𝜆⋆, 𝜈⋆

 The two sums in the second line are zero
 The second sum is zero ⇒ ∑ 𝜆⋆ 𝑓 𝑥⋆ 0 ⇒

𝜆⋆ 𝑓 𝑥⋆ 0,       𝑖 1, … , 𝑚

𝑓 𝑥⋆ 𝑔 𝜆⋆, 𝜈⋆

              𝑓 𝑥⋆ ∑ 𝜆⋆ 𝑓 𝑥⋆ ∑ 𝜈⋆ℎ 𝑥⋆

𝑓 𝑥⋆



Optimality Conditions

 Complementary Slackness
 Assume primal and dual optimal values are 

equal, and attained at ⋆ ⋆ ⋆

 Complementary slackness

 From 𝜆⋆ 𝑓 𝑥⋆ 0, we can conclude
𝜆⋆ ≻ ∗ 0 ⇒ 𝑓 𝑥⋆ 0,    𝑓 𝑥⋆ ≺ 0 ⇒ 𝜆⋆ 0 

 Possible to satisfy 𝜆⋆ 𝑓 𝑥⋆ 0 with 𝜆⋆

0 & 𝑓 𝑥⋆ 0

𝑓 𝑥⋆ 𝑔 𝜆⋆, 𝜈⋆

              𝑓 𝑥⋆ ∑ 𝜆⋆ 𝑓 𝑥⋆ ∑ 𝜈⋆ℎ 𝑥⋆

𝑓 𝑥⋆



Optimality Conditions

 KKT Conditions
 Additionally assume are differentiable

 Generalize the KKT conditions to problems 
with generalized inequalities

 ⋆ minimizes ⋆ ⋆

 𝐷𝑓 𝑥⋆ ∈ 𝐑 : derivative of 𝑓 evaluated at 𝑥⋆

𝛻𝑓 𝑥⋆ 𝐷𝑓 𝑥⋆ 𝜆⋆ 𝜈⋆𝛻ℎ 𝑥⋆ 0



Optimality Conditions

 KKT Conditions
 If strong duality holds, any primal optimal 

⋆ and dual optimal ⋆ ⋆ must satisfy the 
optimality conditions (or KKT conditions)

 If the primal problem is convex, the converse 
also holds

                                  𝑓 𝑥⋆ ≼ 0,              𝑖 1, … , 𝑚
                                        ℎ 𝑥⋆ 0,              𝑖 1, … , 𝑝    

                                          𝜆⋆ ≽ ∗ 0,              𝑖 1, … , 𝑚

                                 𝜆⋆ 𝑓 𝑥⋆ 0,              𝑖 1, … , 𝑚

𝛻𝑓 𝑥⋆ 𝐷𝑓 𝑥⋆ 𝜆⋆ 𝜈⋆𝛻ℎ 𝑥⋆ 0



Summary
 Saddle-point Interpretation
 Max-min Characterization of Weak and Strong 

Duality
 Saddle-point Interpretation
 Game Interpretation

 Optimality Conditions
 Certificate of Suboptimality and Stopping Criteria
 Complementary Slackness
 KKT Optimality Conditions
 Solving the Primal Problem via the Dual

 Examples
 Generalized Inequalities


