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Abstract
By employing time-varying proximal functions,
adaptive subgradient methods (ADAGRAD) have
improved the regret bound and been widely used in
online learning and optimization. However, ADA-
GRAD with full matrix proximal functions (ADA-
FULL) cannot deal with large-scale problems due
to the impractical time and space complexities,
though it has better performance when gradients
are correlated. In this paper, we propose ADA-FD,
an efficient variant of ADA-FULL based on a de-
terministic matrix sketching technique called fre-
quent directions. Following ADA-FULL, we incor-
porate our ADA-FD into both primal-dual subgradi-
ent method and composite mirror descent method
to develop two efficient methods. By maintaining
and manipulating low-rank matrices, at each itera-
tion, the space complexity is reduced from O(d2)
to O(τd) and the time complexity is reduced from
O(d3) to O(τ2d), where d is the dimensionality of
the data and τ � d is the sketching size. Theoret-
ical analysis reveals that the regret of our methods
is close to that of ADA-FULL as long as the outer
product matrix of gradients is approximately low-
rank. Experimental results show that our ADA-FD
is comparable to ADA-FULL and outperforms oth-
er state-of-the-art algorithms in online convex opti-
mization as well as in training convolutional neural
networks (CNN).

1 Introduction
Online learning refers to the process of answering a sequence
of questions given answers to previous questions, which en-
joys an attractive combination of computational efficiency
and theoretical guarantees [Shalev-Shwartz, 2011]. Recently,
it has received ever-increasing attention due to the emergence
of large-scale applications such as online classification [Fre-
und and Schapire, 1999; Kakade et al., 2008], online met-
ric learning [Jain et al., 2008; Chechik et al., 2010], online
matrix factorization [Mairal et al., 2010] and online anomaly
detection [Yuan et al., 2015]. Adaptive subgradient method-
s (ADAGRAD), which employ proximal functions that adapt
to the geometry of the data observed in earlier iterations, are

popular for online learning and optimization [Duchi et al.,
2011]. According to the type of proximal functions, ADA-
GRAD can be divided into learning with full matrix proxi-
mal functions (ADA-FULL) and learning with diagonal matrix
proximal functions (ADA-DIAG). In contrast to ADA-FULL,
ADA-DIAG has been successfully applied to many large-scale
applications because of its light computations and storages.

However, the diagonal matrix maintained in ADA-DIAG
only contains limited information of gradient outer product-
s. This shortcoming causes the regret of ADA-DIAG worse
than that of ADA-FULL when the high-dimensional data is
dense and has an approximately low-rank structure. In con-
sideration of this dilemma, Duchi et al. [2011] proposed an
open question concerning whether we can efficiently use ful-
l matrices in the proximal functions. To solve this problem,
Krummenacher et al. [2016] utilized random projections to
approximate ADA-FULL, and developed two methods, name-
ly ADA-LR and RADAGRAD. Compared with ADA-FULL,
ADA-LR has the same space complexity O(d2) and a slightly
reduced time complexityO(τd2) where d is the dimensionali-
ty of the data and τ � d is the number of random projections.
Due to the quadratic dependence on d, ADA-LR is impracti-
cal for high-dimensional data, though it is equipped with a
formal regret bound. In contrast, the time and space com-
plexities of RADAGRAD are linear in d, but it lacks theoreti-
cal guarantees owing to further approximations. In our recent
work [Wan and Zhang, 2018], we also utilized random pro-
jections to accelerate ADA-FULL, and proposed ADA-DP that
has complexities linear in d. However, its theoretical guar-
antees are non-deterministic, and the regret bound contains
additional terms that never vanish.

To tackle the above limitations, we develop an efficient
variant of ADA-FULL that is also principled. The computa-
tional bottleneck of ADA-FULL is to store the outer product
matrix of gradients and compute its square root in each round.
We note that a similar bottleneck also exists in other sec-
ond order methods such as online Newton step (ONS) [Hazan
et al., 2007], and recently matrix sketching techniques have
been used to reduce the computational cost of ONS [Luo et
al., 2016]. Motivated by previous works, we propose to em-
ploy frequent directions [Ghashami et al., 2016] to approx-
imate the outer product matrix of gradients in ADA-FULL.
By utilizing the low-rank structure, the efficient variant of
ADA-FULL, named ADA-FD, reduces the space complexity
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from O(d2) to O(τd) and the time complexity from O(d3) to
O(τ2d), which implies both the space and time complexities
of our method are linear in the dimensionality d.

Moreover, because the idea of ADAGRAD can be incorpo-
rated into either primal-dual subgradient method [Xiao, 2009]
or composite mirror descent method [Duchi et al., 2010], we
also develop two efficient methods according to the type of
subgradient methods, and prove that our methods enjoy the
regret bound close to that of ADA-FULL. The slight differ-
ences in the regret bound are caused by the approximation
error of frequent directions and vanish when the sketching
size τ is larger than the rank of gradient outer products. More
generally, when the outer product matrix of gradients is ap-
proximately low-rank, the differences do not affect the order
of the regret bound. To verify the efficiency and effectiveness
of our ADA-FD, we conduct several numerical experiments
on online convex optimization and training CNN. The results
turn out that our ADA-FD performs comparably with ADA-
FULL but is much more efficient.

2 Related Work
ADAGRAD Adaptive subgradient methods describe and an-
alyze an apparatus for learning the proximal functions which
are modified according to data observed in earlier iterations.
This property significantly simplifies choosing the step size
while ensures regret guarantees as good as the proximal func-
tions tuned manually. In the following, we provide a brief in-
troduction of ADAGRAD for primal-dual subgradient method
[Xiao, 2009] and composite mirror descent method [Duchi et
al., 2010].

At each round t = 1, 2, · · · , T , the online learner predicts
a point βt ∈ Rd and then the adversary reveals a composite
function Ft(β) = ft(β) + ϕ(β) where ft and ϕ are con-
vex. The learner suffers loss Ft(βt) for this round, and the
goal of learner is to minimize the regret that is defined as
R(T ) =

∑T
t=1 Ft(βt)−

∑T
t=1 Ft(β

∗) where β∗ is the fixed
optimal predictor. Let gt ∈ ∂ft(βt) be a particular vector in
the subdifferential set ∂ft(β) of function ft. The outer prod-
uct matrix of gradients is defined as Gt =

∑t
i=1 gig

>
i , and

Ht has the following two choices:

Ht =

{
δId + diag(Gt)

1/2 ADA-DIAG

δId + G
1/2
t ADA-FULL

where δ > 0 is a parameter making Ht invertible. The
proximal term is given by Ψt(β) = 1

2 〈β,Htβ〉 and let
BΨt(x,y) = Ψt(x) − Ψt(y) − 1

2 〈∇Ψt(y),x − y〉 denote
the Bregman divergence associated with Ψt. Let η > 0 be
a fixed step size and ḡt =

∑t
i=1 gi. In each iteration, the

primal-dual subgradient method updates by

βt+1 = argmin
β

{
η

〈
1

t
ḡt,β

〉
+ ηϕ(β) +

1

t
Ψt(β)

}
= −ηH−1

t ḡt, if ϕ = 0.

(1)

And the composite mirror descent method updates by
βt+1 = argmin

β
{η 〈gt,β〉+ ηϕ(β) +BΨt(β,βt)}

= βt − ηH−1
t gt, if ϕ = 0.

(2)

Because the storage complexity of Gt is O(d2) and the time
complexity of finding its square root is O(d3), ADA-FULL is
impractical for large-scale problems.

To reduce the complexities of ADA-FULL, Krummenacher
et al. [2016] proposed two methods based on the fast random-
ized singular value decomposition (SVD) [Nalko et al., 2011]
to approximate the proximal term Ψt(β). Let Π ∈ Rτ×d
be the random matrix of the subsampled randomized Fourier
transform. They first used the following steps to update βt:

Gt = Gt−1 + gtg
>
t

G̃t = GtΠ
> Random Projection

QR = G̃t QR-decomposition

B = Q>Gt,UΣV> = B SVD

βt+1 = βt − ηV(Σ1/2 + δIτ )−1V>gt

(3)

and the resulting algorithm is refereed to as ADA-LR. Note
that the space and time complexities of ADA-LR are respec-
tively O(d2) and O(τd2), which prevent ADA-LR from be-
ing practical for high-dimensional data. By introducing more
randomized approximations, they presented a more scalable
algorithm RADAGRAD that performs the following updates:

g̃t = Πgt Random Projection

G̃t = G̃t−1 + gtg̃
>
t

[Qt,Rt] = qr update(Qt−1,Rt−1,gt, g̃t)

B = G̃>t Qt,UΣW> = B SVD

V = QtW, γt = η(gt −VV>gt)

βt+1 = βt − ηV(Σ1/2 + δIτ )−1V>gt − γt

(4)

where qr update means QR decomposition with rank-one up-
dates. In this case, RADAGRAD reduces the space and time
complexities to O(τd) and O(τ2d) respectively. Unfortu-
nately, it is a heuristic method and lacks theoretical guar-
antees. When ft(βt) = l(β>t xt) where xt is a data vector
independent from algorithm, we recently proposed ADA-DP
[Wan and Zhang, 2018] based on random projections to at-
tain theoretical guarantees and keep complexities linear in d.
However, due to the randomness of random projections, the
regret bound of ADA-DP is non-deterministic and is worse
than ADA-FULL even when τ = d.

Matrix Sketching and Frequent Directions For any giv-
en matrix A ∈ Rt×d, the purpose of sketching is to gen-
erate a matrix B ∈ Rτ×d where τ � t is the sketching
size such that A ≈ B or AA> ≈ BB>. There are many
matrix sketching techniques via frequent directions [Liber-
ty, 2013; Ghashami and Phillips, 2014; Woodruff, 2014;
Ghashami et al., 2016], random projection [Kaski, 1998;
Charikar et al., 2004; Woodruff, 2014] and column selec-
tion [Drineas et al., 2006]. Frequent directions [Ghashami
et al., 2016] is a deterministic matrix sketching technique
by extending the well-known algorithm for approximating
item frequencies in streams [Misra and Gries, 1982]. Let
B = [b1,b2, · · · ,bτ ]> = 0τ×d where τ � min{t, d}. For
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Algorithm 1 Adaptive Dual Averaging via Frequent Direc-
tions

1: Input: η > 0, δ > 0, τ , S0 = 0τ×d, ḡ0 = 0, β1 = 0;
2: for t = 1, ..., T do
3: Receive gradient gt = ∇ft(βt)
4: Insert gt into the last row of St−1 and ḡt = ḡt−1 + gt
5: Compute UΣV> = St−1, σt = Σ2

tt

6: Compute St = Σ′V> where Σ′ =
√

Σ2 − σtIτ
7: βt+1 = −ηδ

(
ḡt −V(δIτ + Σ′)−1Σ′V>ḡt

)
8: end for

any given matrix A = [a1,a2, · · · ,at]>, frequent directions
processes each row of A as follows

bτ = ai,UΣV> = B SVD

B =
√

Σ2 − σIτV> where σ = Σ2
ττ

and products a sketch matrix B.
Recently, the techniques of matrix sketching have been

used by Luo et al. [2016] to accelerate online Newton step
[Hazan et al., 2007]. They studied ONS that updates by

At = αId +
t∑
i=1

ηigig
>
i and βt+1 = βt −A−1

t gt (5)

where α > 0 and ηt > 0 are some parameters for gener-
al convex functions, and used matrix sketching techniques to
construct a low-rank approximation of the second order infor-
mation. Motivated by Luo et al. [2016], our work employs
frequent directions to calculate a low-rank approximation of
the full matrix, which obviously reduces the storage and time
complexities of ADA-FULL. Compared to the approximation
algorithm used by Krummenacher et al. [2016], frequent di-
rections has two advantages which are deterministic theoreti-
cal properties and easy implementations.

3 An Efficient Variant of ADA-FULL
In this section, we first describe how to make ADA-FULL
more efficient by frequent directions. Then we introduce our
proposed methods and the corresponding theoretical result-
s. Finally, we compare our work with Krummenacher et al.
[2016] and Luo et al. [2016]. To facilitate presentations, we
consider the case ϕ = 0, and our methods can be extended to
the general case ϕ 6= 0.

3.1 Algorithms
Define Ct = [g1,g2, ...,gt]

> ∈ Rt×d, where each row is a
gradient vector. The outer product matrix of gradients can be
calculated as

Gt =
t∑
i=1

gig
>
i = C>t Ct.

To accelerate the computation of H−1
t , we take advantage of

frequent directions to produce a low-rank approximation of
Ct denoted by St = [st1, s

t
2, ..., s

t
τ ]> ∈ Rτ×d. Then we can

redefine the Ht in the proximal term as

Ht = δId + (S>t St)
1/2.

Algorithm 2 Adaptive Mirror Descent via Frequent Direc-
tions

1: Input: η > 0, δ > 0, τ , S0 = 0τ×d, β1 = 0;
2: for t = 1, ..., T do
3: Receive gradient gt = ∇ft(βt)
4: Insert gt into the last row of St−1

5: Compute UΣV> = St−1, σt = Σ2
tt

6: Compute St = Σ′V> where Σ′ =
√

Σ2 − σtIτ
7: βt+1 = βt − η

δ

(
gt −V(δIτ + Σ′)−1Σ′V>gt

)
8: end for

Let SVD of St be St = UΣV> where U ∈ Rτ×τ ,Σ ∈ Rτ×τ
and V ∈ Rτ×d, then we have (S>t St)

1/2 = VΣV>. By
Woodbury Formula [Hager, 1989], we have

H−1
t =(δId + VΣV>)−1

=
1

δ

(
Id −V(δIτ + Σ)−1ΣVT

)
.

With the above procedures, we propose an efficient variant of
ADA-FULL, named as adaptive online learning via frequent
directions (ADA-FD). Then, we first consider to incorporate
ADA-FD into primal-dual subgradient method. According to
the update rules in (1), in the t-th round our algorithm per-
forms the following updates

st−1
τ = gt, ḡt = ḡt−1 + gt

UΣV> = St−1, σt = Σ2
tt SVD

Σ′ =
√

Σ2 − σtIτ , St = Σ′V>

βt+1 = −η
δ

(
ḡt −V(δIτ + Σ′)−1Σ′V>ḡt

) (6)

The detailed procedures of ADA-FD for primal-dual subgra-
dient method are summarized in Algorithm 1 and this method
is named as adaptive dual averaging via frequent directions.

Moreover, we incorporate ADA-FD into composite mirror
descent method. According to the update rules in (2), in the
t-th round our algorithm performs the following updates

st−1
τ = gt

UΣV> = St−1, σt = Σ2
tt SVD

Σ′ =
√

Σ2 − σtIτ , St = Σ′V>

βt+1 = βt −
η

δ

(
gt −V(δIτ + Σ′)−1Σ′V>gt

) (7)

The detailed procedures of ADA-FD for composite mirror de-
scent method are summarized in Algorithm 2 and this method
is named as adaptive mirror descent via frequent directions.

Remark First, the space complexity of our two methods is
O(τd) caused by the maintenance of St,U,V. And the time
complexity of our two methods is O(τ2d) caused by step 5 in
each algorithm which contains SVD. Thus, both of them are
linear in the dimensionality d. Second, compared with the
update rules of ADA-LR (3) and RADAGRAD (4), our update
rules (6) and (7) do not need random projection and are more
simple. Third, when ϕ 6= 0, the computational cost of H−1

t
can still be reduced dramatically, though the updating of βt
may not have closed-form solution.
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3.2 Theoretical Guarantees
Compared with RADAGRAD, a significant advantage of our
methods is they are equipped with formal theoretical guar-
antees similar to ADA-FULL. We present regret bounds for
Algorithms 1 and 2 in the following two theorems respective-
ly and postpone the detailed analysis to the supplementary
material due to the limitation of space.
Theorem 1. Adaptive dual averaging via frequent directions
ensures

R(T ) ≤ δ

2η
‖β∗‖22 +

1

2η
tr(G

1/2
T )‖β∗‖22

+ 2ηmax

1,

max
t≤T
‖gt‖2 +

√
∆T

δ

 tr(G
1/2
T )

+

∑T
t=1

√
σt

2η
max
t≤T
‖βt+1‖22

where ∆T =
∑T
i=1 σi.

Theorem 2. Adaptive mirror descent via frequent directions
ensures

R(T ) ≤ δ

2η
‖β∗‖22 +

1

2η
max
t≤T
‖β∗ − βt‖22 tr(G

1/2
T )

+ 2ηmax

(
1,

√
∆T

δ

)
tr(G

1/2
T )

+
τ
∑T
t=1

√
σt

2η
max
t≤T
‖β∗ − βt‖22

where ∆T =
∑T
i=1 σi.

For comparisons, let us introduce the theoretical guaran-
tees of ADA-FULL below.
Theorem 3. (Theorem 7 of Duchi et al. [2011]) Provided
with δ ≥ max

t≤T
‖gt‖2, ADA-FULL incorporated into primal-

dual subgradient method ensures

R(T ) ≤ δ

2η
‖β∗‖22 +

1

2η
tr(G

1/2
T )‖β∗‖22 + 2η tr(G

1/2
T ).

ADA-FULL incorporated into composite mirror descen-
t method ensures

R(T ) ≤ σ

2η
‖β∗‖22 +

1

2η
max
t≤T
‖β∗ − βt‖22 tr(G

1/2
T )

+ 2η tr(G
1/2
T ).

Remark Compared with the Theorem 3, we confirm that
our methods enjoy the regret bound close to that of ADA-
FULL, and we point out the slight differences as follow-
ing. First, the regret bounds of our two methods contain
an additional term, respectively

∑T
t=1

√
σt

2η max
t≤T
‖βt+1‖22 and

τ
∑T

t=1

√
σt

2η max
t≤T
‖β∗ − βt‖22. According to Cauchy-Schwarz

inequality and ∆T =
∑T
i=1 σi, we have

T∑
t=1

√
σt ≤

√
T

√√√√ T∑
t=1

σt =
√
T∆T

which means the additional term does not affect the order of
the regret bounds when ∆T is small. Second, our two bound-

s magnify the third term by max

(
1,

max
t≤T
‖gt‖2+

√
∆T

δ

)
and

max
(

1,
√

∆T

δ

)
respectively, which does not change the or-

der of the regret bounds when ∆T is small. Let Ckt denote
the minimizer of ‖Ct − Ckt ‖F over all rank k matrices. Ac-
cording to the property of frequent directions, we have

∆T ≤ ‖CT − CkT ‖2F /(τ − k)

for any k < τ , which means ∆T is small when the outer prod-
uct matrix of gradients is approximately low-rank. Moreover,
when GT is low-rank and rank(GT ) = r, we have ∆T = 0
by choosing τ = r + 1.

3.3 Discussions
We would like to emphasize the differences between our
work and Krummenacher et al. [2016]. First, both ADA-
LR and RADAGRAD only consider composite mirror descent
method, ignoring primal-dual subgradient method. Second,
unlike random projections adopted in Krummenacher et al.
[2016], our work makes use of frequent directions that be-
longs to deterministic matrix sketching techniques. As a re-
sult, our methods are much more simple than ADA-LR and
RADAGRAD while the theoretical guarantees of our methods
are deterministic, contrary to the probabilistic regret bound of
ADA-LR. Third, our methods are very efficient in the sense
that the time and storage complexities are linear in the dimen-
sionality d, without losing regret bound. By contrast, RADA-
GRAD reaches similar complexities while does not have the-
oretical justifications.

Next, we discuss the differences between our work and Luo
et al. [2016]. First, our methods and Luo et al. [2016] are de-
signed for different tasks. Our goal is to develop an efficient
variant of ADA-FULL, and the goal of Luo et al. [2016] is
to accelerate ONS. Note that ADA-FULL is a data dependent
algorithm for general convex functions and ONS is proposed
to derive a logarithmic regret for exp-concave functions. Sec-
ond, the theoretical analysis in our work is obviously different
from Luo et al. [2016]. They provide a regret bound of ONS
with order O(

√
Td) for general convex functions by setting

ηt = O(1/
√
t). Although its update rules (5) can be refor-

mulated as

Ht = δId +
t∑
i=1

1√
i
gig
>
i and βt+1 = βt − ηH−1

t gt

which is similar to ADAGRAD, its O(
√
Td) bound destroys

the data dependent property. Third, the main algorithm of Lu-
o et al. [2016] can be regarded as a mirror descent method.
In contrast, our work proposes two efficient methods for
primal-dual subgradient method and composite mirror de-
scent method respectively.

4 Experiments
In this section, we perform numerical experiments to verify
the efficiency and effectiveness of our ADA-FD. First, we
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Figure 1: The comparison of regret among different algorithms on
synthetic data for primal-dual subgradient (PDS) method and com-
posite mirror descent (CMD) method, and the comparison of run-
ning time among different algorithms for composite mirror descent
(CMD) method

show that ADA-FD approximates ADA-FULL well and out-
performs ADA-DIAG. Second, we compare ADA-FD with
RADAGRAD that is also an approximation of ADA-FULL and
FD-SON [Luo et al., 2016] that is an approximation of ONS
by frequent directions.

4.1 Online Regression
First, we consider the problem of online regression where
ft(β) = |β>xt − yt| and yt = β>∗ xt with ideal synthet-
ic data. Specifically, we set T = 10, 000, d = 500 and
β∗ = β̂∗/‖β̂∗‖2 where each entry of β̂∗ is drawn indepen-
dently from N (0, 1). In order to meet the requirement of ap-
proximately low-rank structure, each data point xt is sampled
independently from a Gaussian distribution N (µ,Σ) where
µ = 1 and Σ has rapidly decaying eigenvalues λj(Σ) =
λ0j
−α with α = 2 and λ0 = 100.

For primal-dual subgradient method, we compare ADA-
FD against ADA-FULL and ADA-DIAG. And for composite
mirror descent method, we compare ADA-FD against ADA-
FULL, ADA-DIAG, RADAGRAD and FD-SON. Parameter-
s η and δ are searched in {1e−4, 1e−3, · · · , 100}, and we
choose the best values for each algorithm. For fairness, all
algorithms are run with the same permutation of the func-
tion sequence. Because of the randomness of RADAGRAD,
its results are averaged over 5 runs. Figure 1 shows the com-
parison of regret among different algorithms and the compar-
ison of running time among different algorithms for compos-
ite mirror descent method where we set τ = 10 for meth-
ods using matrix approximation. For both primal-dual sub-
gradient method and composite mirror descent method, our
ADA-FD outperforms ADA-DIAG and is significantly faster
than ADA-FULL. For composite mirror descent method, our
ADA-FD outperforms RADAGRAD and FD-SON. From the
comparison of running time, we find that ADA-FD is faster
than RADAGRAD and as fast as FD-SON. The comparison of
running time for following experiments is similar and can be
found in the supplementary.

4.2 Online Classification
Then, we perform online classification to evaluate the per-
formance of our ADA-FD with two real world datasets
from LIBSVM repository [Chang and Lin, 2011]: Gisette
and Epsilon which are high-dimensional and dense. At
each round, the learning algorithm receives a single exam-
ple (xt, yt) and suffers the squared hinge loss ft(β) =
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Figure 2: The comparison of mistakes and test accuracy among
different algorithms on Gisette for primal-dual subgradient (PDS)
method and composite mirror descent (CMD) method

Dataset #Examples #Features #Classes
Gisette 6,000/1,000 5,000 2
Epsilon 400,000/100,000 2,000 2
MNIST 60,000/10,000 784 10
CIFAR10 50,000/10,000 3,072 10
SVHN 73,257/26,032 3,072 10

Table 1: Datasets used in experiments

1
2

(
max

(
0, 1− ytβ>xt

))2
. Each learning algorithm ends

with a single pass through the training data. Following Duchi
et al. [2011], we adopt two metrics to measure the perfor-
mance: the online mistakes and the offline accuracy on the
testing data. For primal-dual subgradient method, we com-
pare ADA-FD against ADA-DIAG. And for composite mirror
descent method, we compare ADA-FD against ADA-DIAG,
RADAGRAD and FD-SON. We omit the result of ADA-FULL,
because it is too slow. Similar as before, parameters η and δ
are searched in {2e−4, 2e−3, · · · , 20}, and we choose the
best values for each algorithm. To reduce the computational
cost, we set the sketching size τ = 10 for Gisette and τ = 40
for Epsilon.

Both datasets are divided into training part and testing part,
and the numbers of training and testing examples are shown
in Table 1. For training data, we generate 5 random permu-
tations, and report the average results. Figures 2 and 3 show
the comparison of mistakes and test accuracy during training
among different algorithms on Gisette and Epsilon. We find
that our ADA-FD outperforms ADA-DIAG, RADAGRAD and
FD-SON on both datasets. Note that RADAGRAD is outper-
formed by ADA-DIAG in term of test accuracy on Epsilon as
shown in Figure 3(d). It means that our ADA-FD has better
ability to approximate ADA-FULL than RADAGRAD.
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Figure 3: The comparison of mistakes and test accuracy among d-
ifferent algorithms on Epsilon for primal-dual subgradient (PDS)
method and composite mirror descent (CMD) method

4.3 Non-convex Optimization in CNN
Besides convex optimization, ADA-DIAG incorporated into
composite mirror descent method has also been applied to
non-convex optimization such as training neural networks
and has performed well. Therefore, we take convolutional
neural networks (CNN) as an example and compare ADA-
FD against ADA-DIAG, RADAGRAD and FD-SON on train-
ing the classical neural networks. We consider a 4-layer CNN
from Keras examples directory 1, which contains two 3 × 3
convolutional layers and one fully connected layer (128 hid-
den units followed by 0.5 dropout). The activation function
is ReLU. The first convolutional layer generates 32 channel-
s, and the second convolutional layer generates 64 channels
followed by 2 × 2 max-pooling and 0.25 dropout. The fi-
nal layer is a softmax layer and the objective is cross-entropy
loss. We use this simple and standard architecture to perform
classification on the MNIST [LeCun et al., 1998], CIFAR10
[Krizhevsky, 2009] and SVHN datasets [Netzer et al., 2011].

Parameters η and δ of all algorithms are searched in
{1e−8, 1e−7, · · · , 1}, and we choose the best values for each
algorithm. Following Krummenacher et al. [2016], we only
consider applying ADA-FD, RADAGRAD and FD-SON to the
convolutional layers, and other layers are still trained with
ADA-DIAG. To reduce the computational cost, we set the s-
ketching size τ = 20 for all datasets. For all algorithms, we
run 5 times with batch size 128 and report the average results.
Figure 4 shows the comparison of training loss and test accu-
racy during training among different algorithms. We find that
our ADA-FD outperforms ADA-DIAG, RADAGRAD and FD-
SON on all datasets when applied to training CNN. We note
that RADAGRAD is outperformed by ADA-DIAG in term of
training loss on CIFAR10 as shown in Figure 4(c). This re-

1https://github.com/keras-team/keras/blob/master/examples
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Figure 4: The comparison of training loss and test accuracy among
different algorithms

sult once again validates that our ADA-FD has better ability
to approximate ADA-FULL than RADAGRAD.

5 Conclusions

In this paper, we present ADA-FD to approximate ADA-FULL
using frequent directions. According to the type of subgradi-
ent methods, we develop two efficient methods. The time and
space complexities of both algorithms are linear in the dimen-
sionality d, which means our methods have similar efficiency
compared to ADA-DIAG. Furthermore, according to our the-
oretical analysis, our methods enjoy the regret bound close
to that of ADA-FULL when the outer product matrix of gradi-
ents is approximately low-rank. Numerical experiments show
that our ADA-FD outperforms ADA-DIAG, RADAGRAD and
FD-SON and is close to ADA-FULL.
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