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Abstract. Adaptive subgradient methods are able to leverage the
second-order information of functions to improve the regret, and have
become popular for online learning and optimization. According to
the amount of information used, adaptive subgradient methods can
be divided into diagonal-matrix version (ADA-DIAG) and full-matrix
version (ADA-FULL). In practice, ADA-DIAG is the most commonly
adopted rather than ADA-FULL, because ADA-FULL is computation-
ally intractable in high dimensions though it has smaller regret when gra-
dients are correlated. In this paper, we propose to employ techniques of
matrix approximation to accelerate ADA-FULL, and develop two meth-
ods based on random projections. Compared with ADA-FULL, at each
iteration, our methods reduce the space complexity from O(d2) to O(τd)
and the time complexity from O(d3) to O(τ2d) where d is the dimen-
sionality of the data and τ � d is the number of random projections.
Experimental results about online convex optimization show that both
methods are comparable to ADA-FULL and outperform other state-of-
the-art algorithms including ADA-DIAG. Furthermore, the experiments
of training convolutional neural networks show again that our method
outperforms other state-of-the-art algorithms including ADA-DIAG.

1 Introduction

Adaptive subgradient methods (ADAGRAD) dynamically integrate knowledge
of the geometry of data observed in earlier iterations to guide the direction of
updating [1]. Different from the conventional online methods [2], ADAGRAD
employ adaptive proximal functions to control the learning rate for each dimen-
sion, and the proximal functions are iteratively modified by the algorithm instead
of tuning manually. There are two versions of adaptive subgradient methods:
ADA-DIAG which uses a diagonal matrix to define the proximal function, and
ADA-FULL which uses a full matrix to define the proximal function. Because
ADA-FULL is computationally intractable in high dimensions, ADA-DIAG is
the most commonly studied and adopted version in practice.
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However, compared with ADA-FULL, ADA-DIAG cannot capture the cor-
relation in gradients. As a result, the regret bound of ADA-DIAG may be worse
than that of ADA-FULL when the high-dimensional data is dense and has a
low-rank structure. This dilemma prompts a question as to whether we can
design algorithms that possess the merits of two versions: i.e., the light com-
putation of ADA-DIAG and the small regret of ADA-FULL. In a recent work
[3], Krummenacher et al. presented two approximation algorithms to acceler-
ate ADA-FULL, namely ADA-LR and RADAGRAD. Although ADA-LR is
equipped with a regret bound, its space and time complexities are quadratic
in the dimensionality d, which is unacceptable when d is large. In contrast, the
space and time complexities of RADAGRAD are linear in d, but it lacks theo-
retical guarantees.

Along this line of research, this paper aims to attain theoretical guarantees,
and at the same time keeping the computations light. Note that ADA-FULL
is computationally impractical mainly due to the fact it needs to maintain a
matrix of gradient outer products, and compute its square root and inverse in
each round. Actually, similar problems have been encountered in online New-
ton step (ONS) for exponentially concave functions [4]. Recently, Luo et al.
proposed to accelerate ONS using matrix sketching methods including random
projections [5]. Motivated by previous work, we first propose to employ random
projections to construct a low-rank approximation of gradient outer products,
and manipulate this low-rank matrix in subsequent calculations. In this way, the
new algorithm, named ADA-GP, reduces the space complexity from O(d2) to
O(τd) and the time complexity from O(d3) to O(τ2d), implying both the space
and time complexities have a linear dependence on the dimensionality d.

ADA-GP achieves excellent empirical performance in our experiments. How-
ever, due to subtle independence issues, it is difficult to analyze ADA-GP theo-
retically. To circumvent this problem, we propose to replace the outer product
matrix of gradients in ADA-FULL with the outer product matrix of data, and
then develop a similar method, named ADA-DP, that applies random projec-
tions to the outer product matrix of data. The space and time complexities
of ADA-DP are similar to those of ADA-GP. Moreover, we present theoreti-
cal analysis for ADA-DP when the outer product matrix of data is low-rank,
and further extend to the full-rank case. In the experiments, we first examine
the performance of our methods on online convex optimization, and the results
demonstrate that they are highly comparable to ADA-FULL and are much more
efficient. Furthermore, we conduct experiments on training convolutional neural
networks, and show that ADA-GP outperforms ADA-DIAG and RADAGRAD.

Finally, we would like to emphasize the difference between this work and the
recent work [3]. First, although both studies make use of random projections, our
ADA-GP and ADA-DP are much more simple than ADA-LR and RADAGRAD.
Second, our ADA-GP and ADA-DP are very efficient in the sense that their
computational complexities are linear in the dimensionality d, and ADA-DP is
equipped with theoretical guarantees. In contrast, although RADAGRAD has a
similar computational cost, it does not have theoretical justifications.
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2 Related Work

ADAGRAD. Adaptive subgradient methods use the second-order information
to tune the step size of gradient descent adaptively [1]. For sparse data, the regret
guarantee of ADAGRAD could be exponentially smaller in the dimension d than
the non-adaptive regret bound. In the following, we provide a brief introduction
of ADAGRAD. Note that the idea of ADAGRAD can be incorporated into either
primal-dual subgradient method [6] or composite mirror descent [7]. For brevity,
we take the composite mirror descent as an example.

In the t-th round, the learner needs to determine an action βt ∈ R
d and then

observes a composite function Ft(β) = ft(β) + ϕ(β) where ft and ϕ are convex.
The learner suffers loss Ft(βt), and the goal is to minimize the accumulated
loss over T iterations. Let ∂ft(β) denote the subdifferential set of function ft

evaluated at β and gt ∈ ∂ft(βt) be a particular vector in the subdifferential set.
Define the outer product matrix of gradients Gt =

∑t
i=1 gig�

i . Then, we use
the square root of Gt to construct a positive definite matrices Ht, and have the
following two choices:

Ht =
{

σId + diag(Gt)1/2 ADA-DIAG
σId + G1/2

t ADA-FULL

where σ > 0 is a parameter. The proximal term is given by Ψt(β) = 1
2 〈β,Htβ〉

and the Bregman divergence associated with Ψt is

BΨt
(x,y) = Ψt(x) − Ψt(y) − 1

2
〈∇Ψt

(y),x − y〉.

In each iteration, the composite mirror descent method updates by

βt+1 = argmin
β

{
η〈gt,β〉 + ηϕ(β) + BΨt

(β,βt)
}

= βt − ηH−1
t gt, if ϕ = 0

where η > 0 is a fixed step size. When the dimensionality d is large, ADA-FULL
is impractical because the storage cost of Gt and the running time of finding its
square root and inverse of Ht are unacceptable.

To make ADA-FULL scalable, Krummenacher et al. proposed two methods
that approximate the proximal term Ψt(β) [3]. Based on the fast randomized
singular value decomposition (SVD) [8], they presented an algorithm ADA-LR
that performs the following updates:

Gt = Gt−1 + gtg�
t

G̃t = GtΠ Random Projection

QR = G̃t QR-decomposition

B = Q�Gt

UΣV� = B SVD

βt+1 = βt − ηV(Σ1/2 + σIτ )−1V�gt

(1)
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where Π ∈ R
d×τ is the random matrix of the subsampled randomized Fourier

transform. We note that random projections are utilized in the 2nd step to gen-
erate a smaller matrix G̃t ∈ R

d×τ . It is easy to verify that the space and time
complexities of ADA-LR are respectively O(d2) and O(τd2), which are still unac-
ceptable when the d is large. To further improve the efficiency, they presented
algorithm RADAGRAD by introducing more randomized approximations, the
space and time complexities of which are respectively O(τd) and O(τ2d). Unfor-
tunately, RADAGRAD is a heuristic method and lacks theoretical guarantees.

As previous mentioned, in [5], Luo et al. adopted matrix sketching methods to
accelerate ONS that also encounters the similar problems as ADA-FULL. Specif-
ically, their ONS updates by βt+1 = βt −A−1

t gt where At = αId +
∑t

i=1 ηigig�
i ,

α > 0 and ηi = O(1/
√

i) for general convex functions. We can reformulate this
update rule as

βt+1 = βt − ηH−1
t gt

where Ht = δId +
∑t

i=1
1√
i
gig�

i . To accelerate ONS, they use matrix sketching

methods to calculate a low-rank approximation of
∑t

i=1
1√
i
gig�

i . Motivated by
[5], our work employs random projections to calculate a low-rank approximation
of full matrix. But there are obviously differences between our work and this
related work. First, although both our methods and RP-SON in [5] use random
projections to approximate the full matrix, we further propose to use the outer
product matrix of data to replace the outer product matrix of gradients which
leads to ADA-DP. Note that this simple change can avoid the dependence issue
that the gradient gt depends on the random vectors. Second, the theoretical
analysis in our work is obviously different from [5]. The only common part is the
property of the random projections for low-rank data. But we further exploit the
property of the random projection for full-rank data. Third, our methods and
this related work are designed for different tasks. Our paper aims to accelerate
ADA-FULL, and this related work aims to accelerate ONS. Note that ADA-
FULL is a data dependent algorithm for general convex function and ONS is
proposed to derive a logarithmic regret for exponentially concave functions.

Random Projection. Random projection [9–11] is a simple yet powerful
dimensionality reduction method. For a data point x ∈ R

n, random projection
reduces its dimensionality to τ by R�x, where R ∈ R

n×τ is a random matrix. It
has been successfully applied to many machine learning tasks including classifi-
cation [12,13], regression [14], clustering [15,16], manifold learning [17,18] and
optimization [19,20]. Random projection can be implemented in various differ-
ent ways [21,22], and the most classical one is the Gaussian random projection,
where each entry of R is sampled from a Gaussian distribution. In this paper,
we focus on Gaussian random projection due to its nice theoretical properties
and easy implementations.
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3 Main Results

In this section, we introduce our proposed methods and theoretical results. Due
to the limitation of space, we defer the proof of theoretical results to the sup-
plementary material.

3.1 Problem Setting

To facilitate presentations, we consider the case ϕ = 0, and our methods can
be directly extended to the general case ϕ �= 0. The goal of the learner is to
minimize the regret, defined as R(T ) =

∑T
t=1 ft(βt) − ∑T

t=1 ft(β∗) where β∗ is
a fixed optimal predictor.

3.2 The Proposed ADA-GP Method

From previous discussions, we know that if one can find a low-rank matrix to
approximate Gt, then both space and time complexities of ADA-FULL can be
reduced dramatically. Random projections provide an elegant way for low-rank
matrix approximations, as explained below.

Define

A�
t = [g1, ...,gt] ∈ R

d×t, Rt = [r1, ..., rt] ∈ R
τ×t

where the i-th column of A�
t is gradient gi, and each entry of Rt is a Gaussian

random variable drawn from N (0, 1/τ) independently. Then, we have

Gt = A�
t At, E[R�

t Rt] = Id.

To accelerate the computation, we define

St = RtAt =
t∑

i=1

rig�
i ∈ R

τ×d.

Note that St can be calculated on the fly as St = St−1 + rtg�
t . When τ is large

enough, we expect R�
t Rt ≈ Id, implying

S�
t St = A�

t R�
t RtAt ≈ A�

t At = Gt.

Thus, S�
t St could be used as a low-rank approximation of Gt. The matrix Ht in

the proximal term can be redefined as

Ht = σId + (S�
t St)1/2.

Let SVD of St be St = UΣV�, then we have S�
t St = VΣ2V� and Ht = σId +

VΣV�. According to Woodbury Formula [23], we have

H−1
t = (σId + VΣV�)−1

=
1
σ

(
Id − V(σIτ + Σ)−1ΣVT

)
.
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Algorithm 1. ADA-GP
1: Input: η > 0, σ > 0, τ , S = 0τ×d,β1 = 0;
2: for t = 1, ..., T do
3: Receive gt = ∇ft(βt)
4: St = St−1 + rtg

�
t {Random Projections}

5: UΣV� = St {SVD}
6: βt+1 = βt − η

σ

(
gt − V(σIτ + Σ)−1ΣV�gt

)

7: end for

As a result, in the t-th round, our algorithm performs the following updates

St = St−1 + rtg�
t Random Projection

UΣV� = St SVD

βt+1 = βt − η

σ

(
gt − V(σIτ + Σ)−1ΣV�gt

)
.

(2)

The detailed procedure is summarized in Algorithm1, and named as adaptive
online learning with gradient projection (ADA-GP).

Remark. First, it is easy to verify the time and space complexities of our ADA-
GP is O(τd) and O(τ2d), respectively. Thus, both of them are linear in the
dimensionality d. Second, comparing (2) with (1), we observe that our updating
rules are much more simple than those of ADA-LR. Note that the RADAGRAD
algorithm of [3] is even more complicated than ADA-LR.

3.3 The Proposed ADA-DP Method

Although ADA-GP performs very well in our experiments, it is difficult to estab-
lish a regret bound due to dependence issues. To be specific, the gradient gt

depends on the random vectors [r1, · · · , rt−1], and as a result, standard concen-
tration inequalities cannot be directly applied [24].

To avoid the aforementioned problem, we propose a strategy to get ride
of the dependence issues and the new algorithm is equipped with theoretical
guarantees. We consider the case ft(βt) = l(β�

t xt) where xt is a data vector.
Then, we assume the data points x1, . . . ,xt are independent from our algorithm.
The key idea is to replace the outer product matrix of gradients Gt with the
outer product matrix of data Xt =

∑t
i=1 xix�

i . Accordingly, Ht will be defined
as σId + X1/2

t . To accelerate computations, our problem becomes finding a low-
rank approximation of Xt.

Let C�
t = [x1, ...,xt] ∈ R

d×t, where each column is a data vector. Similar to
ADA-GP, we define

St = RtCt =
t∑

i=1

rix�
i ∈ R

τ×d
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Algorithm 2. ADA-DP
1: Input: η > 0, σ > 0, τ , S = 0τ×d,β1 = 0;
2: for t = 1, ..., T do
3: Receive xt and gt = ∇ft(βt) = l′(β�

t xt)xt

4: St = St−1 + rtx
�
t {Random Projections}

5: UΣV� = St {SVD}
6: βt+1 = βt − η

σ

(
gt − V(σIτ + Σ)−1ΣV�gt

)

7: end for

where Rt ∈ R
τ×t is the Gaussian random matrix. In this case, since Rt is inde-

pendent of Ct, we have

E[S�
t St] = C�

t E[R�
t Rt]Ct = C�

t Ct = Xt

which means S�
t St is an unbiased estimation of Xt.

The rest steps are similar to that of ADA-GP. The detailed procedure is sum-
marized in Algorithm 2, named as adaptive online learning with data projection
(ADA-DP). It is obvious that the computation cost of ADA-DP is almost the
same as that of ADA-GP. Thus, both the space and time complexities of ADA-
DP are linear in d.

The main advantage of ADA-DP is that it has formal theoretical guarantees.
We first consider the case that the data matrix CT is low-rank, and have the
following theorem regarding the regret of Algorithm2.

Theorem 1. Let r 	 d be the rank of CT , and 0 < δ < 1 be the confidence
parameter. Assume each entry of rt ∈ R

τ is a Gaussian random variable drawn
from N (0, 1/τ) independently, τ = Ω( r+log(T/δ)

ε2 ) and σ ≥ 0, then ADA-DP
ensures

R(T ) ≤ σ

2η
‖β∗‖22 +

1
2η

max
t≤T

‖β∗ − βt‖22tr(X1/2
T )

+
2η√
1 − ε

max
t≤T

l′(β�
t xt)2tr(X

1/2
T ) +

ε

2η
max
t≤T

‖β∗ − βt‖22
T∑

t=1

‖X1/2
t ‖

with probability at least 1 − δ.

Remark. Theorem 1 means that we can set the number of random projections
as τ = Ω̂(r) when the data matrix is low-rank.

When the data matrix is full-rank, Theorem1 is inappropriate because it
implies the number of random projections is on the order of the dimensionality.
Let λi(·) be the i-th largest eigenvalue of a matrix. For the full-rank case, we
further establish the following theorem to bound the regret of Algorithm2.

Theorem 2. Let c ≥ 1/32, σ ≥ √
α > 0, σ2

ti = λi(C�
t Ct), r̃t =

∑
i

σ2
ti

α+σ2
ti
,

r̃∗ = max
1≤t≤T

r̃t, σ2
∗1 = max

1≤t≤T
σ2

t1, and 0 < δ < 1. Assume each entry of rt ∈ R
τ
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is an independent random Gaussian variable drawn from N (0, 1/τ), τ ≥
r̃∗σ2

∗1
cε2(α+σ2

∗1)
log 2dT

δ and then ADA-RP ensures

R(T ) ≤ σ

2η
‖β∗‖22 +

1
2η

max
t≤T

‖β∗ − βt‖22tr(X1/2
T )

+
2η√
1 − ε

max
t≤T

l′(β�
t xt)2tr(X

1/2
T ) +

ε

2η
max
t≤T

‖β∗ − βt‖22
T∑

t=1

‖X1/2
t ‖

+
√

εαT

η
max
t≤T

‖β∗ − βt‖22.

with probability at least 1 − δ.

Remark. Following [20], we introduce the quantity r̃t to measure the effective
rank of the data matrix Ct. When the eigenvalues of C�

t Ct decrease rapidly, r̃t

could be significantly smaller than d, even when Ct is full-rank. Compared with
Theorem 1, the upper bound in this theorem contains an additional term caused
by the approximation error of full-rank matrices. Note that Theorem2 means
that we can set the number of random projections as τ = Ω̂(maxt r̃t) when the
data matrix has low effective rank.

Note that our methods and theories can be extended to the general case
ϕ �= 0. We just need to replace the updating rule as

βt+1 = argmin
β

{
η〈gt,β〉 + ηϕ(β) + BΨt

(β,βt)
}
.

Although the updating of βt+1 may not have closed-form solution, the compu-
tational cost of H−1

t can still be reduced dramatically. The regret bound remains
on the same order.

4 Experiments

In this section, we conduct numerical experiments to demonstrate the efficiency
and effectiveness of our methods.

4.1 Online Convex Optimization

First, we compare our two methods against ADA-FULL, ADA-DIAG, RADA-
GRAD [3] and RP-SON [5] on a synthetic data, which is approximately low-
rank. Let β∗ = β̂∗/‖β̂∗‖2 where each entry of β̂∗ is drawn independently from
N (0, 1). We consider the problem of online regression where ft(β) = |β�xt −yt|
and yt = β�

∗ xt. We generate a regression dataset with T = 10000 and d = 500.
In order to meet the requirement of low-rankness, each data point xt is sampled
independently from a Gaussian distribution N (μ,Σ) where μ = 1 and Σ has
rapidly decaying eigenvalues λj(Σ) = λ0j

−α with α = 2 and λ0 = 100.
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Fig. 1. The left is the comparison of regret among different algorithms on the synthetic
data, and the right is the comparison of running time

Fig. 2. The left is the comparison of test accuracy among different algorithms on
Gisette dataset, and the right is the comparison of mistakes during training

The parameters η and σ are searched in {1e−4, 1e−3, · · · , 100}, and we
choose the best values for each algorithm. For fairness, all the algorithms are
running with the same permutations of the function sequence. For ADA-GP,
ADA-DP, RADAGRAD and RP-SON, their results are averaged over 5 runs.
Figure 1 shows the regret and running time of different algorithms where we set
τ = 10 for methods using random projections. The regret of our two methods
are very close and better than ADA-DIAG, RADAGRAD and RP-SON, which
indicates our methods approximate ADA-FULL very well. Moreover, our two
methods are obviously faster than ADA-FULL according to the comparison of
running time.

Second, following [1], we perform online classification with the squared hinge
loss (i.e., ft(β) = 1

2

(
max

(
0, 1 − ytβ

�xt

))2) to evaluate the performance of our
methods. In each round, the learning algorithm receives a single example and
ends with a single pass through the training data. There are two metrics to
measure the performance: the online mistakes and the offline accuracy on the
testing data.

We conduct numerical experiments on a real world dataset from LIBSVM
repository [25]: Gisette which is high-dimensional (i.e. d = 5000) and dense.
Similar as before, parameters η and σ are searched in {1e−4, 1e−3, · · · , 10} and
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{2e−4, 2e−3, · · · , 20}, and we choose the best values for each algorithm. To
reduce the computational cost, we set the number of projections τ = 10 for
methods using random projections. We omit the result of ADA-FULL, because
it is too slow.

For training data, we generate 5 random permutations, and report the aver-
age result. Figure 2 shows the comparison of test accuracy and mistakes among
different algorithms. From Fig. 2, we have some conclusions as following. First,
the performance of ADA-DIAG is much worse than all the other methods, which
means only keeping a diagonal matrix is insufficient to capture the second-order
information. Second, our two methods, ADA-GP and ADA-DP, are better than
RADAGRAD and RP-SON. Third, ADA-GP and ADA-DP are close to ADA-
FULL, which indicates that random projections cause little adverse affect on the
performance.

4.2 Non-convex Optimization in Convolutional Neural Networks

Recently, ADA-DIAG becomes popular for non-convex optimization such as
training neural networks, and Krummenacher et al. also show that RADAGRAD
performs well for training neural networks [3]. Therefore, we also examine the
performance of our method on training convolutional neural networks (CNN).
Because the convolutional layer does not meet the case ft(βt) = l(β�

t xt), we
only perform ADA-GP on training CNN. We use the simple and standard archi-
tecture shown in Fig. 3 to perform classification on the MNIST [26], CIFAR10
[27] and SVHN [28] datasets.

Fig. 3. The 4-layer CNN architecture used in our experiment

Parameters η of all algorithms and δ of ADA-GP and RADAGRAD are
searched in {1e−4, 1e−3, · · · , 1}. For ADA-DIAG, δ is set to 1e−8 as it is typi-
cally recommended. We choose the best values for each algorithm. Following as
[3], we only consider applying ADA-GP and RADAGRAD to the convolutional
layer, and other layers are still trained with ADA-DIAG for all datasets. For all
algorithms, we run 5 times with batch size 128 and report the average results.
Figure 4 shows the comparison of training loss and test accuracy during training
among different algorithms where we set τ = 20. We find that ADA-GP obviously
improves the performance of ADA-DIAG on all datasets, and note that RADA-
GRAD is outperformed by ADA-DIAG in term of training loss on CIFAR10.
This results shows that ADA-GP is a better approximation of ADA-FULL than
RADAGRAD.
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Fig. 4. The comparison of training loss (top row) and test accuracy (bottom row)
among different algorithms

5 Conclusions and Future Work

In this paper, we present ADA-GP and ADA-DP to approximate ADA-FULL
using random projections. The time and space complexities of both algorithms
are linear in the dimensionality d, and thus they are able to accelerate the
computation significantly. Furthermore, according to our theoretical analysis,
the number of random projections in ADA-DP is on the order of the low rank or
low effective rank. Numerical experiments on online convex optimization show
that our methods outperform ADA-DIAG, RADAGRAD and RP-SON and are
close to ADA-FULL. And experiments on training convolutional neural networks
show that ADA-GP outperforms ADA-DIAG and RADAGRAD.

Besides random projection, there exist other ways for low-rank matrix
approximations, such as matrix sketching [11]. In the future, we will investigate
different techniques to approximate ADA-FULL.
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JiangsuSF (BK20160658), YESS (2017QNRC001), and the Collaborative Innovation
Center of Novel Software Technology and Industrialization.
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