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Abstract To cope with changing environments, strongly adaptive algorithms that almost enjoy the optimal

performance on every time intervals have been proposed for online learning. However, the best regret bound

of existing algorithms on each time interval with length τ is O(
√
τ log T ), and their complexities are increasing

with a factor of O(log T ), where T is the time horizon. In real-world applications, T could go to infinity,

which means that even these logarithmic factors are unacceptable. In this paper, we propose to remove the

logarithmic factors of existing algorithms by utilizing prior information of environments. Specifically, we

assume a lower bound τ1 and an upper bound τ2 on how long the environment changes are given, and only

focus on the performance over time intervals with length in [τ1, τ2]. Then, we propose a new algorithm with

a refined set of intervals that can reduce the complexity and a simple weighting method that can cooperate

with our intervals set. Theoretical analysis reveals that the regret bound of our algorithm on any focused

interval is optimal up to a constant factor. Both the regret bound and the computational cost per iteration

are independent from T . Experimental results show that our algorithm outperforms the state-of-the-art

algorithm.

Keywords onling learning, strongly adaptive, changing environments, weighing method, regret bound

Citation Wan Y Y, Tu W-W, Zhang L J. Strongly Adaptive Online Learning over Partial Intervals. Sci China

Inf Sci, for review

1 Introduction

Online learning is a general framework that covers various problems such as learning with experts advice
(LEA) [1] and online convex optimization (OCO) [2]. This framework can be viewed as a repeated game
between a learner and an environment. In each round t, the learner picks a decision xt ∈ X , where
X is the decision space. Then, the environment reveals a loss function ft(x) : X 7→ R and the learner
suffers a loss ft(xt). Traditionally, the performance of the learner is measured by so-called static regret

with respect to the best fixed decision, which is defined as R(T ) =
∑T
t=1 ft(xt) − minx∈X

∑T
t=1 ft(x).

However, environments of real-world applications may change, and the best decision for different time
intervals could be different. In this case, static regret can no longer reflect the hardness of the problem [3].

Recently, strongly adaptive regret [4] has been proposed to measure the performance of the learner on
every time intervals, which is defined as

SAR(T, τ) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑
t=s

ft(xt)−min
x∈X

s+τ−1∑
t=s

ft(x)

)
(1)

for intervals of length τ , where [T ] = {1, · · · , T}. Accordingly, strongly adaptive algorithms [4, 5] have
been developed to minimize the strongly adaptive regret SAR(T, τ) for any τ . Unlike traditional algo-
rithms [6–17] being designed for a specific problem, these algorithms are meta-algorithms that can use
any online algorithm as a black-box and convert it into a strongly adaptive one. Specifically, these meta-
algorithms consist of a set of intervals, each of which is associated with an instance of the black-box,
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and a weighting method that aggregates decisions from the active instances. With an appropriate set
of intervals, in each round t, these meta-algorithms maintain O(log t) instances of the black-box. So the
complexities of these strongly adaptive algorithms are increasing with a factor of O(log t). Moreover, the
strongly adaptive regret can be decomposed as the sum of the meta regret caused by meta-algorithm and
the black-box regret. While the black-box regret could be bounded by O(

√
τ) for any length τ , the best

meta regret bound is O(
√
τ log T ) established by Jun et al. [5], which has an additional factor

√
log T .

Because of the ability to cope with changing environments, strongly adaptive algorithms are more
appropriate for real-world applications than traditional online algorithms. However, in many real-world
applications, the scale of data grows continuously and explosively, which means even logarithmic factors
O(
√

log T ) and O(log T ) cannot be ignored. Therefore, their increasing complexities and the gap between
their bounds and the optimal one are unacceptable, which significantly limits their applications. To tackle
this limitation, this paper aims to improve strongly adaptive algorithms by utilizing prior information of
environments. In many applications, the occurrence of environment changing is related to other regular
events, and is knowable to the learner. For example, in moving tag detection [18,19], the sensors used to
collect data are regularly expired and replaced by new ones, which causes that the environment changes
regularly. In recommender systems, the environment changing could be mainly caused by the change of
the purchasing behaviors of customers. According to previous studies [20–22], the purchasing behaviors
of customers could change regularly under the impact of their life stages. Without loss of generality, we
assume a lower bound τ1 and an upper bound τ2 on how long the environment changes are given as the
prior information of applications. Our proposed algorithm only focuses on the performance over time
intervals with length in [τ1, τ2], instead of every intervals.

Specifically, by utilizing this prior information, we propose a new meta-algorithm for strongly adaptive
online learning, which consists of two parts:

• A refined set of intervals, which is carefully designed to reduce the number of the instances;

• A simple weighting method, which can cooperate with our refined set of intervals.

Compared with existing meta-algorithms, we only maintain O(log (τ2/τ1)) instead of O(log t) instances of
the black-box in each round t, and reduce the meta regret bound from O(

√
τ log T ) to O(

√
τ log (τ2/τ1))

for any focused interval with length τ . Combining with appropriate black-box, we establish the following
bounds:

• SAR(T, τ) = O(
√
τ log(τ2/τ1) +

√
τ logN) for LEA where N is the number of experts, which is

better than O(
√
τ log T +

√
τ logN) of the previous work [5];

• SAR(T, τ) = O(
√
τ log(τ2/τ1) +GD

√
τ) for OCO where D is diameter of X and G is bound of any

‖∇ft(x)‖2, which is better than O(
√
τ log T +GD

√
τ) of the previous work [5].

Moreover, our meta regret and strongly adaptive regret for LEA also have problem-dependent bounds,
which could be much tighter when the loss of the competitor is small. Similarly, when the loss functions
are smooth, we can further improve our strongly adaptive regret bound for OCO to a problem-dependent
one. To verify the efficiency and effectiveness of our algorithm, we conduct numerical experiments on
LEA and OCO, respectively. The results demonstrate that our algorithm outperforms the state-of-the-art
algorithm.

2 Related Work

In this section, we only review related work in strongly adaptive regret for brevity. More related work in
static regret can be found in surveys of online learning [23–25].

To measure the performance of learner in changing environments, the pioneering work [26] proposed
adaptive regret, which is an extension of static regret and defined as

AR(T ) = max
[q,s]⊆[T ]

(
s∑
t=q

ft(xt)−min
x∈X

s∑
t=q

ft(x)

)
(2)

where [T ] = {1, · · · , T}. Accordingly, Hazan and Seshadhri [26] proposed two meta-algorithms named as
follow the leading history (FLH) with O(T ) complexity and advanced follow the leading history (AFLH)
with O(log T ) complexity to minimize the adaptive regret AR(T ). For general convex functions, with

approximate black-box, FLH and AFLH have adaptive regret bounds O(
√
T log T ) and O(

√
T log3 T ),
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Table 1 Comparison of strongly adaptive algorithms for LEA and general OCO, where previous regret bounds hold for any τ ∈ [T ]

and our bounds hold for τ ∈ [τ1, τ2].

Reference SAR(T, τ) for LEA SAR(T, τ) for OCO Number of the instances

[4] O(
√
τ log T +

√
τ logN) O(

√
τ log T +GD

√
τ) O(log t)

[5, 34] O(
√
τ log T +

√
τ logN) O(

√
τ log T +GD

√
τ) O(log t)

[37] O(
√
τ log T +

√
τ logN) O(

√
τ log T +GD

√
τ) O(log2 t)

[38] O(
√
τ log T +

√
τ logN) O(

√
τ log T +GD

√
τ) O(log T ), O(log2 t)

This work O(
√
τ log(τ2/τ1) +

√
τ logN) O(

√
τ log(τ2/τ1) +GD

√
τ) O(log (τ2/τ1))

respectively. Note that these bounds depend on T instead of the length of intervals, which make no sense
for intervals with small length such as O(

√
T ).

To overcome this limitation, Daniely et al. [4] proposed strongly adaptive regret SAR(T, τ) defined
in (1) and argued that an algorithm is strongly adaptive if for every environments, it has SAR(T, τ) =
O (poly(log T ) R(τ)), where R(τ) is the minimax regret bound for time intervals with length τ and
R(τ) = O (

√
τ) for general convex functions [27]. Compared with adaptive regret, strongly adaptive regret

is a refined measure, because it emphasizes the dependency on the interval length, which is meaningful
even for intervals with small length. For general convex functions, Daniely et al. [4] proposed the first
strongly adaptive meta-algorithm and established a meta regret bound as O(

√
τ log T ). The two key

parts of the meta-algorithm are:

• The geometric covering (GC) intervals defined as J =
⋃
j∈N∪{0} Jj , where Jj = {[i·2j , (i+1)·2j−1] :

i ∈ N};
• The weighting method, which is an extension of multiplicative weights (MW) [28] in the sleeping

expert setting [29].

According to the definition and illustration of J shown in Figure 1, it is easy to verify that any time t
is contained by at most O(log t) intervals, which is equal to the number of instances of the black-box. By
respectively choosing MW and online gradient descent [2] as the black-box, Daniely et al. [4] established
SAR(T, τ) = O(

√
τ log T +

√
τ logN) for LEA and SAR(T, τ) = O(

√
τ log T + GD

√
τ) for OCO. Later,

Jun et al. [5] proposed a new meta-algorithm named as coin betting for changing environment (CBCE)
by replacing MW with coin betting (CB) [30], which reduces the meta regret bound to O(

√
τ log T ) and

could accordingly improve the strongly adaptive regret bound for both LEA and OCO. Recently, Zhang
et al. [31] utilized the smoothness of loss functions to improve the strongly adaptive regret bound for
OCO to a problem-dependent bound by choosing AdaNormalHedge [32] and scale-free online gradient
descent (SOGD) [33] as the weighting method and the black-box, respectively.

However, the number of instances maintained by all the previous methods increases at least as O(log t),
which is unacceptable, especially for real-world applications where T could go to infinity. To accelerate
these algorithms, Wang et al. [34] proposed a series of algorithms that reduce the number of gradient
evaluation from O(log t) to 1 by carefully designing surrogate losses [35]. Although their algorithms
are much more efficient than previous strongly adaptive algorithms when the evaluation of gradients is
expensive, they only partially overcame the limitation of complexity because the number of the instances
is still O(log t). Moreover, for general convex functions, the factor

√
log T in the strongly adaptive regret

bounds of previous algorithms [5, 34] also limits their applications.

We also note that strongly adaptive algorithms for exponentially concave and strongly convex functions
have been proposed by Hazan and Seshadhri [26] and Zhang et al. [36] respectively. Recently, Zhang et
al. [37] further proposed a universal algorithm to minimize the strongly adaptive regret for different
types of convex functions. Although their algorithm enjoys the same strongly adaptive regret as that
of CBCE [5], it needs to maintain O(log2 t) instances in each round t. Moreover, Zhang et al. [38] have
proposed two algorithms to simultaneously minimize the strongly adaptive regret and dynamic regret,
where the latter is another performance measure for changing environments [2]. However, in each round
t, the first algorithm needs to maintain O(log T ) instances, and the second algorithm needs to maintain
O(log2 t) instances. In this paper, we focus on general convex functions and the strongly adaptive regret.
To facilitate comparisons, the strongly adaptive regret and the computational complexity of different
strongly adaptive algorithms for LEA and general OCO are summarized in Table 1.
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·
J0 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] · · ·
J1 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ · · ·
J2 [ ] [ ] [ ] [ · · ·
J3 [ ] [ · · ·
J4 [ · · ·

Figure 1 Illustration of GC intervals, where each interval is denoted by [ ].

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·
I2 [ ] [ ] [ ] [ ] [ · · ·
I3 [ ] [ ] [ · · ·
I4 [ ] [ · · ·

Figure 2 The refined set of intervals where τ1 = 4 and τ2 = 16.

3 Main Results

In this section, we present our algorithm for changing environments and the corresponding theoretical
results.

3.1 Algorithms

From previous studies [4,5], we know that strongly adaptive algorithms are composed of a set of intervals,
which decides the starting and ending time of instances of the black-box, and a weighting method that
weights these instances according to their performance in the history. To ensure the performance on
time intervals with length in [τ1, τ2], we propose a new strongly adaptive algorithm with a refined set of
intervals and a simple weighting method, as explained below.

The Set of Intervals I. To ensure the optimal performance on every intervals, the key property of
GC intervals J is that any interval can be partitioned into a finite sequences of disjoint and consecutive
intervals in J (Lemma 5 of Daniely et al. [4]). Because we only focus on intervals with length in [τ1, τ2], it
is reasonable to remove unnecessary intervals from J while keep a similar property for focused intervals.
Specifically, we define a smaller set of intervals

I =
⋃

j=dlog τ1e,··· ,dlog τ2e

Ij (3)

where Ij =
{

[i · 2j + 1, (i+ 1) · 2j ] : i ∈ N ∪ {0}
}
.

Comparing GC intervals J with our I, the most obvious difference is that the length of intervals in
I is bounded in

[
2dlog τ1e, 2dlog τ2e

]
, instead of being unbounded in J . Furthermore, because the absence

of intervals shorter than τ1 affects the partition of intervals, our I only ensures that any focused interval
can be contained by two disjoint and consecutive intervals in it. Figure 2 gives an illustration of our I
with τ1 = 4, τ2 = 16. We maintain an instance BI of the black-box B during each time interval I ∈ I and
define the active set at time t as

Active(t) = {I ∈ I : t ∈ I} . (4)

In each round t = 1, · · · , T , each instance BI ,∀I ∈ Active(t) is working to generate a decision. To
aggregate decisions from active instances, we regard these instances as experts and utilize appropriate
methods to weight these experts.

The Weighting Method. To cooperate with GC intervals, AdaNormalHedge [32], CB [30] and
MW [28] have been extended to the sleeping expert setting by Zhang et al. [31], Jun et al. [5] and
Daniely et al. [4], respectively. Comparing these methods, we prefer to choose AdaNormalHedge to co-
operate with our refined set of intervals I, because it achieves a problem-dependent regret bound which
could be used to establish a problem-dependent bound for strongly adaptive regret and is more tighter
than the regret bounds of MW and CB that are related to the length of interval, when the loss of the
competitor is small.
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Algorithm 1 Modified AdaNormalHedge

1: Input: Active interval I = [q, s], number of experts N
2: for t = q, · · · , s do

3: cIt (i) = W
(∑t−1

k=q g̃
I
k(i),

∑t−1
k=q |g̃Ik(i)|

)
and xIt (i) ∝ [cIt (i)]+,∀i ∈ [N ]

4: Receive loss vector `t ∈ [0, 1]N

5: ∀i ∈ [N ], g̃It (i) =

{
〈`t,xIt 〉 − `t(i), c

I
t (i) > 0

[〈`t,xIt 〉 − `t(i)]+, c
I
t (i) 6 0

6: end for

Let N be the number of experts, and `t(i) ∈ [0, 1] be the loss of expert i in the t-th round. AdaNor-
malHedge is mainly composed of the potential function defined as

Φ(x, y) = exp

(
[x]2+
3y

)
(5)

where Φ(0, 0) = 1, [x]+ = max(x, 0) and the weight function with respect to this potential defined as

W (x, y) =
1

2
(Φ(x+ 1, y + 1)− Φ(x− 1, y + 1)) . (6)

In the t-th round, AdaNormalHedge sets and normalizes the weight of expert i as

xt(i) ∝ ct(i) = W
(
Git−1, S

i
t−1

)
(7)

where Git−1 =
∑t−1
k=1(〈`k,xk〉 − `k(i)) is the regret with respect to expert i over the first t− 1 iterations

and Sit−1 =
∑t−1
k=1 |〈`k,xk〉− `k(i)| is the cumulative magnitude of the instantaneous regret over the first

t− 1 iterations. For brevity, we define g̃t(i) = 〈`t,xt〉 − `t(i).
According to the definition of potential function (5), it is easy to derive an upper bound of Git as

Git 6
√

3Sit ln Φ(Git, S
i
t). However, because our I only ensures that any focused interval can be contained

by two disjoint and consecutive intervals in it, to cooperate with I, we need to bound the absolute value
of Git. To this end, we redefine the potential function (5) with slight modifications as

Φ(x, y) = exp

(
x2

3y

)
(8)

where Φ(0, 0) = 1 and |Git| =
√

3Sit ln Φ(Git, S
i
t). The weight function with respect to the new potential

function is still defined as (6) and the weight of each expert i is still set as ct(i) = W
(
Git−1, S

i
t−1

)
.

However, with the new potential function, the value of ct(i) could be negative, which motivates the

following two modifications. First, to ensure xt ∈ ∆N where ∆N = {x :
∑N
i=1 x(i) = 1}, the normalized

weight is redefined as xt(i) ∝ [ct(i)]+. Second, to ensure
∑N
i=1 g̃t(i)ct(i) 6 0 that is essential for upper

bounding Φ(Git, S
i
t), we redefine

g̃t(i) =

{
〈`t,xt〉 − `t(i), ct(i) > 0

[〈`t,xt〉 − `t(i)]+, ct(i) 6 0
(9)

and recall Git−1 =
∑t−1
k=1 g̃k(i), Sit−1 =

∑t−1
k=1 |g̃k(i)|. We call this new algorithm as modified AdaNor-

malHedge and summarize its detailed procedures in Algorithm 1, where the superscript I is used to
distinguish its instances on different intervals.

Based on the modified AdaNormalHedge, we proposed our weighting method that can aggregate de-
cisions from active instances of the black-box. The potential function and the corresponding weight
function are still defined as (8) and (6), respectively. To calculate the weight wIt of each decision xIt
generated by instance BI , we further define

RIt =
t∑

k=1

I[k∈I]r̃Ik, CIt =
t∑

k=1

I[k∈I]|r̃Ik|, r̃Ik =

{
fk(xk)− fk(xIk), wIk > 0

[fk(xk)− fk(xIk)]+, w
I
k 6 0

(10)
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Algorithm 2 Strongly Adaptive Online Learning over Partial Intervals

1: Input: A black-box algorithm B, prior information τ1, τ2
2: I =

⋃
j Ij , j = dlog τ1e, dlog τ1e+ 1, · · · , dlog τ2e

3: for t = 1, 2, · · · , T do

4: wIt = W
(∑t−1

k=1 I[k∈I]r̃Ik,
∑t−1
k=1 I[k∈I]|r̃Ik|

)
and pIt ∝ [wIt ]+, ∀I ∈ Active(t)

5: Run BI to generate xIt ∈ X , ∀I ∈ Active(t)
6: xt =

∑
I∈Active(t) p

I
tx

I
t

7: Observe the loss ft(x
I
t ) ∈ [0, 1], ∀I ∈ Active(t) and ft(xt)

8: ∀I ∈ Active(t),

r̃It =

{
ft(xt)− ft(xIt ), wIt > 0

[ft(xt)− ft(xIt )]+, wIt 6 0
9: end for

Algorithm 3 Scale-free Online Gradient Descent

1: Input: Active interval I = [q, s] and parameters δ, α
2: Initialize xIq ∈ X arbitrarily
3: for t = q, · · · , s do

4: ηIt = α/
√
δ +

∑t
i=q ‖∇fi(xIi )‖22

5: xIt+1 = argmin
x∈X

‖x− (xIt − ηIt∇ft(xIt ))‖22
6: end for

for I ∈ I, where I[k∈I] = 1 if k ∈ I, and I[k∈I] = 0 if k /∈ I. Then, in each round t,∀I ∈ Active(t),
the weight is calculated as wIt = W (RIt−1, C

I
t−1) and normalized as pIt ∝ [wIt ]+. Finally, the decision of

meta-algorithm is calculated as

xt =
∑

I∈Active(t)

pItx
I
t . (11)

The detailed procedures of our meta-algorithm are summarized in Algorithm 2 and this algorithm is
named as strongly adaptive online learning over partial intervals (SAOL-PI).

Remark. With our refined I, any time t is contained in only one interval in each Ij , where j =
dlog τ1e, dlog τ1e+ 1, · · · , dlog τ2e. As a result, our Algorithm 2 only needs to maintain O(log(τ2/τ1))
instances in each round t, which is better than the increasing factor O(log t) of previous algorithms.
Even if we do not get accurate prior information in some cases, we can simply set τ1 = 1 and τ2 = T in
Algorithm 2, and the complexity reduces to that of previous algorithms.

3.2 General Regret Bounds

Following previous studies [4, 5], we introduce the following assumption.

Assumption 1. The loss function ft is general convex and 0 6 ft(x) 6 1, for any t.

We first bound the meta regret of our Algorithm 2 with respect to an instance BI as below.

Theorem 1. (General Meta Regret Bound) Under Assumption 1, for any I ∈ I and [q, s] ⊆ I,
Algorithm 2 with the black-box B satisfies

s∑
t=q

ft(xt)−
s∑
t=q

ft(x
I
t ) 6 2

√
c|I| (12)

where c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1).

Compared with the meta regret bound O(
√
|I| log T ) of Jun et al. [5], our improved bound in Theorem 1

is independent from T and can yield a number of improvements for different problems by choosing an
appropriate black-box for our Algorithm 2.

For brevity, we take LEA and OCO as examples. First, for LEA where ft(x) = 〈`t,x〉 and X = ∆N ,
we choose the modified AdaNormalHedge shown in Algorithm 1 as the black-box of Algorithm 2. Before
establishing a regret bound for LEA, we bound the regret of Algorithm 1 in the following lemma.
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Lemma 1. For any I ∈ I, [q, s] ⊆ I and x ∈ ∆N , Algorithm 1 satisfies

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6 2
√
c̃(|I|)|I| (13)

where c̃(x) = 3 ln(N(3 + ln(1 + x))/2).

Then, combining Theorem 1 and Lemma 1, we can obtain the following corollary.

Corollary 1. Let c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1) and c̃(x) = 3 ln(N(3 + ln(1 + x))/2). Under the
setting of LEA, for any x ∈ X and I = [q, s] with length |I| ∈ [τ1, τ2], our Algorithm 2 using Algorithm 1
as its black-box satisfies

s∑
t=q

ft(xt)−
s∑
t=q

ft(x) 6 4
√

2|I|c+ 4
√

2|I|c̃(2|I|). (14)

Second, for OCO, we choose SOGD [33] shown in Algorithm 3 as the black-box of Algorithm 2 and
further introduce the following two common assumptions.

Assumption 2. The domain X is convex and ‖x− y‖2 6 D for any x ∈ X ,y ∈ X .

Assumption 3. The gradient satisfies ‖∇ft(x)‖2 6 G for any x ∈ X and t.

Under Assumptions 1, 2 and 3, we bound the regret of SOGD in the following lemma.

Lemma 2. Under Assumptions 1, 2 and 3, for any I ∈ I, [q, s] ⊆ I and x ∈ X , Algorithm 3 with
δ > 0, α = D/

√
2 satisfies

s∑
t=q

ft(x
I
t )− ft(x) 6

√
2D
√
δ +G2|I|. (15)

Then, combining Theorem 1 and Lemma 2, we can obtain the following corollary.

Corollary 2. Let c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1). Under Assumptions 1, 2 and 3, for any x ∈ X and
I = [q, s] with length |I| ∈ [τ1, τ2], our Algorithm 2 using Algorithm 3 with δ > 0 and α = D/

√
2 as its

black-box satisfies

s∑
t=q

ft(xt)−
s∑
t=q

ft(x) 6 4
√

2|I|c+ 2
√

2D
√
δ + 2G2|I|. (16)

Note that the parameter δ > 0 is used to avoid the operation of being divided by 0. So it is reasonable
to choose a small value such as δ = 10−4 that does not affect the regret bound in Corollary 2.

Remark. Corollary 1 shows that our Algorithm 2 with the modified AdaNormalHedge is a strongly
adaptive algorithm for LEA, and enjoys

SAR(T, τ) 6 O(
√
τ log(τ2/τ1) +

√
τ logN) (17)

for τ ∈ [τ1, τ2]. Corollary 2 shows that our Algorithm 2 with SOGD is a strongly adaptive algorithm for
OCO, and enjoys

SAR(T, τ) 6 O(
√
τ log(τ2/τ1) +GD

√
τ) (18)

for τ ∈ [τ1, τ2]. Compared with the bounds of Jun et al. [5], our bounds are better when log(τ2/τ1) is a
small constant. When there is no prior knowledge, we set τ1 = 1 and τ2 = T , then the log(τ2/τ1) term
reduces to log T and we recover their bounds.

3.3 Problem-dependent Regret Bounds

It is worth mentioning that the meta regret of our Algorithm 2 also enjoys a problem-dependent bound
in the following theorem.
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Theorem 2. (Problem-dependent Meta Regret Bound) Under Assumption 1, for any I ∈ I and
[q, s] ⊆ I, Algorithm 2 with the black-box B satisfies

s∑
t=q

ft(xt)−
s∑
t=q

ft(x
I
t ) 6 2c+ 2

√√√√2c
s∑
t=1

I[t∈I]ft(xIt ) (19)

where c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1).

Because of
∑s
t=1 I[t∈I]ft(xIt ) 6 |I|, the upper bound in Theorem 2 is comparable with that in Theorem 1

in the worst case and could be much smaller when the loss of the competitor is small. According to
Theorem 2, we can improve the upper bounds in Corollary 1 and Corollary 2 to problem-dependent ones.

Specifically, for LEA, with more careful analysis, we can improve the upper bound in Lemma 1 to the
following problem-dependent bound.

Lemma 3. For any I ∈ I, [q, s] ⊆ I and x ∈ ∆N , Algorithm 1 satisfies

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6 2c̃(|I|) + 2

√√√√2c̃(|I|)
s∑
t=1

I[t∈I]ft(x) (20)

where c̃(x) = 3 ln(N(3 + ln(1 + x))/2).

Combining (19) with (20), we further obtain the following regret bound without introducing any
additional assumption.

Corollary 3. Let c = 3 ln(2τ2(3+ln(1+2τ2))/τ1) and c̃(x) = 3 ln(N(3+ln(1+x))/2). Under the setting
of LEA, for any x ∈ ∆N and I = [q, s] with length |I| ∈ [τ1, τ2], our Algorithm 2 using Algorithm 1 as
its black-box satisfies

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6 a(I) + b(I)

√√√√ s∑
t=q′

ft(x). (21)

where q′ = b q−1
2j c · 2j + 1, j = dlog |I|e, a(I) = 4c+ 8

√
2cc̃(2j) + 4c̃(2j) and b(I) = 4

√
2c+ 4

√
c̃(2j).

Remark. We first note that a(I) = O(log(τ2/τ1)+logN) and b(I) = O(
√

log(τ2/τ1)+
√

logN) where we
treat the double logarithmic factors as constant following [32]. Therefore, the upper bound in Corollary 3
is on the order of

O

(
√

log(τ2/τ1) +
√

logN)

√√√√ s∑
t=q′

ft(x)

 . (22)

Because of s − q′ + 1 6 2j+1 6 4|I|, we have
√∑s

t=q′ ft(x) 6
√∑s

t=q′ 1 = O(
√
|I|), which means that

the above upper bound is comparable to the upper bound in Corollary 1 in the worst case. Moreover,

when the loss of the competitor is small,
√∑s

t=q′ ft(x), which is a relaxation of
√∑s

t=q ft(x), could be

much smaller than O(
√
|I|) in Corollary 1.

To achieve a problem-dependent regret bound for OCO, inspired by previous studies [31,39], we further
introduce the following assumption about the smoothness of the loss functions.

Assumption 4. For any t, the loss function ft is H-smooth, that is, for all x,x′ ∈ X

‖∇ft(x)−∇ft(x′)‖2 6 H‖x− x′‖2. (23)

Then, we bound the regret of Algorithm 3 in the following lemma.

Lemma 4. Under Assumptions 1, 2 and 4, for any I ∈ I, [q, s] ⊆ I and x ∈ X , Algorithm 3 with
δ > 0, α = D/

√
2 satisfies

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6 8HD2 +D

√√√√2δ + 8H
s∑
t=1

I[t∈I]ft(x). (24)
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Combining (19) with (24), we can obtain the following regret bound.

Corollary 4. Let c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1). Under Assumptions 1, 2 and 4, for any x ∈ X
and I = [q, s] with length |I| ∈ [τ1, τ2], our Algorithm 2 using Algorithm 3 with δ > 0, α = D/

√
2 as its

black-box satisfies

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6 ã(I) + b̃(I)

√√√√ s∑
t=q′

ft(x). (25)

where q′ = b q−1
2j c · 2j + 1, j = dlog |I|e, ã(I) = 6c+ 56HD2 + 6D

√
2δ and b̃(I) = 4

√
2c+ 4

√
HD2.

Remark. Similar as a(I) and b(I) in Corollary 3, we note that ã(I) = O(log(τ2/τ1) + HD2) and

b̃(I) = O(
√

log(τ2/τ1) +
√
HD2). Therefore, the upper bound in Corollary 4 is on the order of

O

(
√

log(τ2/τ1) +
√
HD2)

√√√√ s∑
t=q′

ft(x)

 (26)

which is comparable to the upper bound in Corollary 2 in the worst case and could be much tighter when
the loss of the competitor is small.

4 Theoretical Analysis

Due to the limitation of space, we only provide the proof of Theorems 1 and 2, and the omitted proofs
can be found in the supplementary material.

4.1 Proof of Theorems 1 and 2

We first introduce an essential lemma about the property of our potential function (8), which is a variant
of Lemma 5 in Luo and Schapire [32].

Lemma 5. For any I ∈ I and t ∈ I, Algorithm 2 has

Φ(RIt , C
I
t ) 6 Φ(RIt−1, C

I
t−1) + wIt r̃

I
t +

|r̃It |
2(CIt−1 + 1)

. (27)

For any I ∈ I, there must be an integer i > 0 such that I ⊆ [i · 2dlog τ2e + 1, (i + 1) · 2dlog τ2e], due
to the definition of I. Therefore, we define I ′ = {I ′ ∈ I : I ′ ⊆ [t1, t2]}, where t1 = i · 2dlog τ2e + 1 and
t2 = (i+ 1) · 2dlog τ2e. Repeatedly applying Lemma 5, for any k ∈ I, we have∑

I′=[q′,s′]∈I′
Φ(RI

′

k∧s′ , C
I′

k∧s′)

6
∑

I′=[q′,s′]∈I′

(
Φ(RI

′

k∧s′−1, C
I′

k∧s′−1) + wI
′

k∧s′ r̃
I′

k∧s′ +
|r̃I′k∧s′ |

2(CI
′
k∧s′−1 + 1)

)

6|I ′|+
k∑

t=t1

∑
I′∈I′

I[t∈I′]r̃I
′

t w
I′

t +
∑

I′=[q′,s′]∈I′

k∧s′∑
i=q′

|r̃I′i |
2(CI

′
i−1 + 1)

6|I ′|+
k∑

t=t1

∑
I′∈I′

I[t∈I′]r̃I
′

t w
I′

t +
∑

I′=[q′,s′]∈I′

s′∑
i=q′

|r̃I′i |
2(CI

′
i−1 + 1)

(28)

where k ∧ s′ = min(k, s′). It is easy to verify that

|I ′| =
dlog τ2e∑
j=dlog τ1e

2dlog τ2e

2j
= 2dlog τ2e−dlog τ1e+1 − 1 6

4τ2
τ1
. (29)
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Moreover, because of pI
′

t ∝ [wI
′

t ]+, for any t ∈ [t1, t2],we have∑
I′∈I′

I[t∈I′]r̃I
′

t w
I′

t

=
∑

I′∈I′:I[t∈I′]w
I′
t >0

[wI
′

t ]+(ft(xt)− ft(xI
′

t )) +
∑

I′∈I′:I[t∈I′]w
I′
t 60

I[t∈I′]wI
′

t [ft(xt)− ft(xI
′

t )]+

6

 ∑
I′∈Active(t)

[wI
′

t ]+

 ∑
I′∈I′:I[t∈I′]w

I′
t >0

pI
′

t (ft(xt)− ft(xI
′

t )) 6 0

(30)

where the last inequality is due to Active(t) ⊆ I ′, xt =
∑
I′∈Active(t) p

I′

t x
I′

t and Jensen’s inequality. To

bound the last term in (28), we further introduce the following lemma.

Lemma 6. (Lemma 14 of Gaillard et al. [40]) Let a0 > 0 and a1, · · · , am ∈ [0, 1] be real numbers
and let f : (0,+∞) 7→ [0,+∞) be a nonincreasing function. Then

m∑
i=1

aif

i−1∑
j=0

aj

 6 f(a0) +

∫ ∑m
j=0 aj

a0

f(x)dx. (31)

Applying Lemma 6 with f(x) = 1/x, for any I ′ = [q′, s′] ∈ I ′, we have

s′∑
i=q′

|r̃I′i |
(CI

′
i−1 + 1)

6 1 +

∫ 1+CI′
s′

1

1

x
dx = 1 + ln(1 + CI

′

s′ ). (32)

Substituting (29), (30) and (32) into (28), we have∑
I′=[q′,s′]∈I′

Φ(RI
′

k∧s′ , C
I′

k∧s′) 6
4τ2
τ1

+
1

2

∑
I′=[q′,s′]∈I′

(1 + ln(1 + CI
′

s′ ))

6
4τ2(3 + ln(1 + t2 − t1 + 1))

2τ1

6
2τ2(3 + ln(1 + 2τ2))

τ1
= exp(c/3)

(33)

where c = 3 ln(2τ2(3 + ln(1 + 2τ2))/τ1). According to the definition and I ∈ I ′, we further have

|RIk| =
√

3CIk ln Φ(RIk, C
I
k) 6

√
3CIk ln

∑
I′=[q′,s′]∈I′

Φ(RI
′
k∧s′ , C

I′
k∧s′) 6

√
cCIk . (34)

Then, for any [q, s] ⊆ I, we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x
I
t ) 6

s∑
t=q

r̃It =
s∑
t=1

I[t∈I]r̃It −
q−1∑
t=1

I[t∈I]r̃It

6|RIs −RIq−1| 6 |RIs |+ |RIq−1| 6 2
√
cCIs .

(35)

It is easy to obtain (12) in Theorem 1 due to CIs 6 |I|.
For brevity, let LIk =

∑k
t=1 I[t∈I]ft(xIt ) for any k ∈ I. To prove (19) in Theorem 2, we note that for

any k ∈ I

CIk =
k∑
t=1

I[t∈I]|r̃It | =
k∑
t=1

I[t∈I](r̃It + 2[−r̃It ]+)

= RIk + 2
k∑
t=1

I[t∈I][−r̃It ]+ 6 RIk + 2LIk.

(36)
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where the last inequality is due to [−r̃It ]+ = ft(x
I
t ) − fi(xt) 6 ft(x

I
t ) when r̃It < 0 and [−r̃It ]+ = 0 6

ft(x
I
t ) when r̃It > 0. Plugging the above inequality into (34) and taking square on both sides, we have

(RIk)2 6 cRIk + 2cLIk which implies that

|RIk| 6
c+

√
c2 + 8cLIk

2
6 c+

√
2cLIk. (37)

Replacing the last inequality in (35) with the above inequality, we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x
I
t ) 6|RIs |+ |RIq−1|

62c+ 2
√

2cLIs.

(38)

4.2 Proof of Lemma 5

Lemma 5 can be derived by following the proof of Lemma 5 in Luo and Schapire [32] with slight modifi-
cations to deal with our potential function (8). We include this proof for completeness.

It is easy to derive that

Φ(RIt−1 + r, CIt−1 + |r|) = exp

(
(RIt−1 + r)2

3
(
CIt−1 + |r|

)) (39)

as a function of r is convex on r ∈ [−1, 0] and r ∈ [0, 1] respectively, due to

(RIt−1 + r)2

CIt−1 + |r| = (CIt−1 + r) +
(RIt−1 − CIt−1)2

CIt−1 + r
+ 2(RIt−1 − CIt−1) (40)

when r ∈ [0, 1] and

(RIt−1 + r)2

CIt−1 + |r| = (CIt−1 − r) +
(RIt−1 + CIt−1)2

CIt−1 − r
− 2(RIt−1 + CIt−1) (41)

when r ∈ [−1, 0].
Furthermore, we define a function h(r) = Φ(RIt−1 + r, CIt−1 + |r|) − wIt r, and it is also convex on

r ∈ [−1, 0] and r ∈ [0, 1], respectively. According to the definition of weight function (6), we have

h(1) = Φ(RIt−1 + 1, CIt−1 + |1|)− wIt
= Φ(RIt−1 + 1, CIt−1 + |1|)− 1

2

(
Φ(RIt−1 + 1, CIt−1 + 1)− Φ(RIt−1 − 1, CIt−1 + 1)

)
=

1

2

(
Φ(RIt−1 + 1, CIt−1 + 1) + Φ(RIt−1 − 1, CIt−1 + 1)

)
.

(42)

Similarly, we have

h(−1) =
1

2

(
Φ(RIt−1 + 1, CIt−1 + 1) + Φ(RIt−1 − 1, CIt−1 + 1)

)
= h(1). (43)

Due to the property of convex functions, we have

h(r) 6

{
(1− r)h(0) + rh(1), r ∈ [0, 1];

(1 + r)h(0)− rh(−1), r ∈ [−1, 0].
(44)

Therefore, when h(0) > h(1) = h(−1), we have h(r) 6 h(0), which implies

Φ(RIt−1 + r, CIt−1 + |r|) 6 Φ(RIt−1, C
I
t−1) + wIt r (45)

for r ∈ [−1, 1]. When h(0) 6 h(1) = h(−1), we have

h(r) 6max{h(0) + (h(0)− h(−1))r, h(0) + (h(1)− h(0))r} = h(0) + (h(1)− h(0))|r|. (46)
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To bound h(1)− h(0), we further define a function as

g(R) =(Φ(R+ 1, CIt−1 + 1) + Φ(R− 1, CIt−1 + 1))− 2Φ(R,CIt−1). (47)

It is easy to verify

h(1)− h(0) =
1

2
g(RIt−1) (48)

which implies that h(1) − h(0) can be bounded by the maximum of 1
2g(RIt−1). Therefore, we introduce

the following lemma, which is derived from the proof of Lemma 2 of Luo and Schapire [41].

Lemma 7. Let F (s) = exp
(

(s+1)2

3a

)
+ exp

(
(s−1)2

3a )
)
− 2 exp

(
s2

3(a−1)

)
, where a > 1 is a constant, the

derivatives of F (s) satisfy 
F ′(s) > 0, s < 0;

F ′(s) = 0, s = 0;

F ′(s) 6 0, s > 0.

(49)

When CIt−1 > 0, applying Lemma 7, we have that g′(0) = 0, g′(R) > 0 for R < 0 and g′(R) 6 0 for
R > 0, which implies that g(0) is the maximum. So, when CIt−1 > 0, we have

h(1)− h(0) =
1

2
g(RIt−1) 6

1

2
g(0) = exp

(
1

3(CIt−1 + 1)

)
− 1 6

1

2(CIt−1 + 1)
(50)

where the last inequality is due to ex − 1 6 ez−1
z x for x ∈ [0, z]. It is easy to verify that this inequality

(50) still holds when CIt−1 = 0, because CIt−1 = 0 implies RIt−1 = 0. Combining (50) with (46), for
r ∈ [−1, 1], we have

Φ(RIt−1 + r, CIt−1 + |r|) 6 Φ(RIt−1, C
I
t−1) + wIt r +

|r|
2(CIt−1 + 1)

. (51)

Finally, combining the fact r̃It ∈ [−1, 1] with (45) and (51), we complete the proof.

5 Experiments

In this section, we perform numerical experiments on LEA and OCO to verify the efficiency and effective-
ness of our proposed algorithm. We compare our SAOL-PI with CBCE [5] that enjoys the best strongly
adaptive regret bound. Following Jun et al. [5], we set the prior weight over instances BI to uniform
distribution for CBCE.

5.1 Learning with Experts Advice

In the setting of LEA, we set T = 1e7 and N = 10. Following Jun et al. [5], we first draw loss
`t(i),∀t = 1, 2, · · · , 1e7 for each expert i independently from [0, 1] by uniform sampling. Then, we
consider two kinds of changing environments including a fixed frequency setting and a varying frequency
setting. In the fixed frequency setting, for t ∈ [2(i− 1) · 1e6 + 1, 2i · 1e6] where i = 1, 2, · · · , 5, we reduce
loss of expert i by `t(i) = [`t(i)−0.5]+ and reduce loss of expert i−1 by `t(i−1) = [`t(i−1)−0.3]+ when
i−1 > 0. As a result, during time interval [2(i−1) ·1e6+1, 2i ·1e6], where i = 1, 2, · · · , 5, the best expert
is i, which changes after each 2e6 rounds. In the varying frequency setting, for t ∈ [si · 1e6 + 1, si+1 · 1e6]
where si = i · (i−1)/2 and i = 1, 2, 3, 4, we reduce loss of expert i by `t(i) = [`t(i)−0.5]+ and reduce loss
of expert i−1 by `t(i−1) = [`t(i−1)−0.3]+ when i−1 > 0. In this way, the best expert is i during time
interval [si · 1e6 + 1, si+1 · 1e6], where i = 1, 2, 3, 4, which changes without a fixed frequency. To utilize
the prior information, for our SAOL-PI, we set τ1 = 1e6, τ2 = 2e6 in the fixed frequency setting, and set
τ1 = 1e6, τ2 = 4e6 in the varying frequency setting. For each meta-algorithm, we use our Algorithm 1 as
the black-box. We repeat the experiment 50 times and report the average results of all algorithms.

Figures 3 and 4 show the comparison of moving average loss with window size 1e4 and cumulative
running time among different algorithms in the above two settings, respectively. Compared with CBCE,
we observe that our SAOL-PI has smaller loss when the shift has settled down and is very stable.
Furthermore, our SAOL-PI achieves 7.0 times speed-up in the fixed frequency setting and 5.4 times
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(b) Comparison of cumulative running time

Figure 3 Experimental results for learning with experts advice in the fixed frequency setting.
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(b) Comparison of cumulative running time

Figure 4 Experimental results for learning with experts advice in the varying frequency setting.

speed-up in the varying frequency setting, and these ratios will increase with T due to the O(log T )
complexity of CBCE. We also note that when the environment changes, our SAOL-PI may catch up
with it slower than CBCE in the beginning, because CBCE maintains more instances of the black-box.
However, from Figures 3(a) and 4(a), we observe that SAOL-PI converges much faster, and its loss
becomes smaller than that of CBCE very quickly.

5.2 Online Convex Optimization

Then, we consider the problem of online logistic regression with two real-world datasets from LIBSVM
repository [42]: HIGGS and SUSY. At each round t = 1, 2, · · · , T , the leaner receives a single example
(zt, yt) and suffers the logistic loss ft(x) = β ln(1 + exp(−ytx>zt)), where zt ∈ Rd, yt ∈ {−1, 1} and
β is a constant. According to the size of each dataset, we have T = 1.1e7, d = 28 for HIGGS and
T = 5e6, d = 18 for SUSY.

Following Wang et al. [34], a scenario of changing environments is created for each dataset, as follows.
• For HIGGS, we flip the labels of samples in t ∈ [2(i−1)·1e6+1, 2i·1e6], i = 2, 4 and t ∈ [1e7+1, 1.1e7]

as yt = −yt.
• For SUSY, we flip the labels of samples in t ∈ [2e6 + 1, 4e6] as yt = −yt.

In this way, the optimal predictor will change after each 2e6 rounds. To make Assumptions 1, 2 and 3
satisfied, we first bound the convex domain in a d-dimensional ball with radius 10, which means ‖x−y‖2 6
D = 20 for any x ∈ X ,y ∈ X . Then, we set β = 1/5 and cap the loss ft(x) above at 1 to ensure ft(x) ∈
[0, 1]. We further normalize each data zt by zt = zt/‖zt‖2, which leads to ‖∇ft(x)‖2 6 G = β = 1/5.
We set τ1 = 1e6 and τ2 = 2e6 for our SAOL-PI. For each meta-algorithm, we use Algorithm 3 as the
black-box and set δ = 10−4, α = D/

√
2 = 10

√
2. We repeat the experiment 50 times with random

permutations of each dataset and report the average results of all algorithms.

Figures 5 and 6 show the comparison of moving average loss with window size 1e4 and cumulative
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Figure 5 Experimental results for online logistic regression on HIGGS.
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Figure 6 Experimental results for online logistic regression on SUSY.

running time among different algorithms on HIGGS and SUSY, respectively. We find that our SAOL-
PI has smaller loss when the shift has settled down, and is much faster than CBCE on both datasets.
Specifically, our SAOL-PI achieves 6.3 times speed-up on HIGGS and 4.9 times speed-up on SUSY, and
these ratios will increase with T due to the O(log T ) complexity of CBCE.

6 Conclusions

In this paper, we propose an improved strongly adaptive algorithm by utilizing prior information. Given
the lower bound τ1 and upper bound τ2 on how long the environment changes, in each round t, our
SAOL-PI only need to maintain O(log(τ2/τ1)) instances of the black-box, which could be far less than
O(log t) needed by previous strongly adaptive algorithms. Theoretical analysis shows that the regret
bound of our meta-algorithm on any time interval with length τ ∈ [τ1, τ2] is O(

√
τ log(τ2/τ1)), which

is better than O(
√
τ log T ) established by CBCE. Furthermore, we improve the meta regret bound to a

problem-dependent one, which could be much tighter when the loss of the competitor is small. Numerical
experiments demonstrate the efficiency and effectiveness of our proposed algorithm.
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Appendix A Proof of Lemmas 1 and 3
Because the weighting method used in Algorithm 2 can be reduced to the modified AdaNormalHedgeg shown in Algorithm 1 by

keeping all experts active, Theorems 1 and 2 can also be reduced to Lemmas 1 and 3, respectively. Following the proof of Theorems 1

and 2, for any i ∈ [N ], it is easy to verify that

s∑
t=q

〈`t,xIt 〉 −
s∑
t=q

`t(i) 6 2
√
c̃(|I|)|I| (A1)

and

s∑
t=q

〈`t,xIt 〉 −
s∑
t=q

`t(i) 6 2c̃(|I|) + 2

√√√√2c̃(|I|)
s∑
t=1

I[t∈I]`t(i) (A2)

where c̃(|I|) = 3 ln
N(3+ln(1+|I|))

2 . Because of x ∈ ∆N , multiplying both sides of (A1) by x(i) and summing over N , we have

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) =
s∑
t=q

〈`t,xIt 〉 −
s∑
t=q

〈`t,x〉 6 2
√
c̃(|I|)|I|.

Similarly, multiplying both sides of (A2) by x(i) and summing over N , we have

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) =
s∑
t=q

〈`t,xIt 〉 −
s∑
t=q

〈`t,x〉

62c̃(|I|) + 2
√

2c̃(|I|)
N∑
i=1

x(i)

√√√√ s∑
t=1

I[t∈I]`t(i)

62c̃(|I|) + 2
√

2c̃(|I|)

√√√√ N∑
i=1

x(i)
s∑
t=1

I[t∈I]`t(i)

62c̃(|I|) + 2

√√√√2c̃(|I|)
s∑
t=1

I[t∈I]ft(x)

(A3)

where the second inequality is due to Jensens inequality.

Appendix B Proof of Lemmas 2 and 4
The regret bound of SOGD over the interval I has been analyzed by Orabona and Pal [33] for online linear optimization and further

refined by Zhang et al. [31] for online convex optimization with smooth loss functions. However, we need to bound the regret over

any subinterval [q, s] ⊆ I, which requires additional analysis. For the sake of completeness, we include the detailed proof.

For brevity, let x̂It+1 = xIt − η
I
t∇ft(x

I
t ) and assume I = [t1, t2]. Because ft is convex function, for any x ∈ X , we have

ft(x
I
t )− ft(x) 6〈∇ft(xIt ),x

I
t − x〉 =

1

ηIt
〈xt − x̂

I
t+1,xt − x〉

=
1

2ηIt

(
‖xIt − x‖22 − ‖x̂

I
t+1 − x‖22 + ‖xIt − x̂

I
t+1‖

2
2

)
6

1

2ηIt

(
‖xIt − x‖22 − ‖x

I
t+1 − x‖22

)
+
ηIt
2
‖∇ft(xIt )‖22.

(B1)
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For any [q, s] ⊆ I = [t1, t2], summing the inequalities of iterations during [q, s], we have

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6
1

2ηIq
‖xIq − x‖22 +

s∑
t=q+1

(
1

ηIt
−

1

ηIt−1

)
‖xIt − x‖22

2
+

1

2

s∑
t=q

η
I
t ‖∇ft(x

I
t )‖22

6
D2

2ηIq
+

s∑
t=q+1

(
1

ηIt
−

1

ηIt−1

)
D2

2
+

1

2

s∑
t=1

η
I
t ‖∇ft(x

I
t )‖22

=
D2

2ηIs
+

1

2

s∑
t=t1

η
I
t ‖∇ft(x

I
t )‖22

(B2)

where the second inequality is due to Assumption 2. To bound
∑s
t=t1

ηIt ‖∇ft(x
I
t )‖22, we introduce the following lemma.

Lemma 8. (Lemma 3.5 of Auer et al. [6]) Let a1, · · · , aT and δ be non-negative real numbers. Then

T∑
t=1

at√
δ +

∑t
i=1 ai

6 2


√√√√δ +

T∑
t=1

at −
√
δ

 (B3)

where 0/
√

0 = 0.

According to the definition of ηIt shown in Algorithm 3 and Lemma 8, we have

s∑
t=t1

η
I
t ‖∇ft(x

I
t )‖22 = α

s∑
t=t1

‖∇ft(xIt )‖22√
δ +

∑t
i=t1

‖∇fi(xIi )‖22
6 2α

√√√√δ +

s∑
t=t1

‖∇ft(xIt )‖22. (B4)

Substituting (B4) and α = D/
√

2 into (B2), we have

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6
√

2D

√√√√δ +
s∑

t=t1

‖∇ft(xIt )‖22. (B5)

When Assumption 3 is satisfied, we have ‖∇ft(x)‖2 6 G for any x ∈ X and t. Combining with s− t1 + 1 6 |I|, it is easy to obtain

(15) in Lemma 2 from (B5).

To further utilize the smoothness shown in Assumption 4, we introduce the self-bounding property of smooth functions.

Lemma 9. (Lemma 3.1 of Srebro et al. [39]) For an H-smooth and nonnegative function f : X 7→ R,

‖∇f(x)‖2 6
√

4Hf(x), ∀x ∈ X . (B6)

According to Lemma 9, Assumptions 1 and 4, we have

‖∇ft(x)‖22 6 4Hft(x), ∀x ∈ X . (B7)

Combining (B5) and (B7), we have

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6
√

2D

√√√√δ + 4H
s∑

t=t1

ft(xIt ) 6
√

8HD2

√√√√ δ

4H
+

s∑
t=t1

ft(xIt ). (B8)

To replace
∑s
t=t1

ft(x
I
t ) with

∑s
t=t1

ft(x), we use the following lemma.

Lemma 10. (Lemma 19 of Shalev-Shwartz [7]) Let x, b, c ∈ R+. Then,

x− c 6 b
√
x⇒ x− c 6 b

2
+ b
√
c. (B9)

Note that (B8) holds for any [q, s] ⊆ I = [t1, t2], which implies δ

4H
+

s∑
t=t1

ft(x
I
t )

−
 δ

4H
+

s∑
t=t1

ft(x)

 6
√

8HD2

√√√√ δ

4H
+

s∑
t=t1

ft(xIt ). (B10)

Applying Lemma 10 into the above inequality, we have

s∑
t=t1

ft(x
I
t )−

s∑
t=t1

ft(x) 68HD
2

+
√

8HD2

√√√√ δ

4H
+

s∑
t=t1

ft(x)

=8HD
2

+D

√√√√2δ + 8H
s∑

t=t1

ft(x).

(B11)

Then, if
∑q−1
t=t1

ft(x
I
t )−

∑q−1
t=t1

ft(x) > 0, from the above inequality, it is easy to obtain

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6 8HD
2

+D

√√√√2δ + 8H
s∑

t=t1

ft(x). (B12)
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In the case
∑q−1
t=t1

ft(x
I
t )−

∑q−1
t=t1

ft(x) < 0, from (B8), we have

s∑
t=q

ft(x
I
t )−

s∑
t=q

ft(x) 6
√

8HD2

√√√√ δ

4H
+

s∑
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ft(xIt )

6
√

8HD2

√√√√√ δ

4H
+

q−1∑
t=t1

ft(x) +

s∑
t=q

ft(xIt )

(B13)

which implies  δ

4H
+

q−1∑
t=t1

ft(x) +

s∑
t=q

ft(x
I
t )

−
 δ

4H
+
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ft(x) +

s∑
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ft(x)
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√
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√√√√√ δ

4H
+
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s∑
t=q

ft(xIt ).

(B14)

Applying Lemma 10 again, we have δ

4H
+

q−1∑
t=t1

ft(x) +

s∑
t=q

ft(x
I
t )

−
 δ

4H
+

q−1∑
t=t1

ft(x) +

s∑
t=q

ft(x)



68HD
2

+
√

8HD2

√√√√√ δ

4H
+

q−1∑
t=t1

ft(x) +
s∑
t=q

ft(x)

=8HD
2

+D

√√√√2δ + 8H
s∑

t=t1

ft(x).

(B15)

Combining (B12) and (B15) and
∑s
t=t1

ft(x) =
∑s
t=1 I[t∈I]ft(x), we complete the proof for (24) in Lemma 4.

Appendix C Proof of Lemma 7
Lemma 7 is derived from the proof of Lemma 2 of Luo and Schapire [41], and we include its proof for completeness.

Let h(s, c) =
∂ exp(s2/c)

∂s = 2s
c exp

(
s2

c

)
. Taking the derivative of F (s), we have

F
′
(s) = h(s+ 1, c) + h(s− 1, c)− 2h(s, c

′
) (C1)

where c = 3a, c′ = 3(a− 1). Then, applying Taylor expansion to h(s+ 1, c) and h(s− 1, c) around s, and h(s, c′) around c, we have

F
′
(s) =

∞∑
k=1

1

k!

∂kh(s, c)

∂sk
+
∞∑
k=1

(−1)k

k!

∂kh(s, c)

∂sk
− 2

∞∑
k=1

(c′ − c)k

k!

∂kh(s, c)

∂ck

=2
∞∑
k=1

(
1

(2k)!

∂2kh(s, c)

∂s2k
−

(−3)k

k!

∂kh(s, c)

∂ck

)
.

(C2)

To further analyze F ′(s), we introduce the following two lemmas.

Lemma 11. (Lemma 3 of Luo and Schapire [41]) Let h(s, c) = 2s
c exp

(
s2

c

)
. The partial derivatives of h(s, c) satisfy

∂kh(s, c)

∂ck
= exp

(
s2

c

)
k∑
j=0

(−1)
k
αk,j ·

s2j+1

ck+j+1

∂2kh(s, c)

∂s2k
= exp

(
s2

c

)
k∑
j=0

βk,j ·
s2j+1

ck+j+1

(C3)

where αk,j and βk,j are recursively defined as

αk+1,j = αk,j−1 + (k + j + 1)αk,j

βk+1,j = 4βk,j−1 + (8j + 6)βk,j + (2j + 3)(2j + 2)βk,j+1

(C4)

with initial values α0,0 = β0,0 = 2.

Lemma 12. (Lemma 4 of Luo and Schapire [41]) Let αk,j and βk,j be defined as in (C4). Then
βk,j
(2k)!

6
(d)kαk,j

k! holds for

all k > 0 and j ∈ {0, · · · , k} when d > 3.

Substituting (C3) into (C2), we have

F
′
(s) = 2 exp

(
s2

c

) ∞∑
k=1

k∑
j=0

s2j+1

ck+j+1

(
βk,j

(2k)!
−

(3)kαk,j

k!

)
. (C5)

Note that exp
(
s2/c

)
> 0 and c = 3a > 0. Then, applying Lemma 12 with d = 3, we complete the proof.
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Appendix D Proof of Corollary 1

Because τ1 6 |I| 6 τ2, we have 2dlog τ1e−1 < τ1 6 |I| 6 τ2 6 2dlog τ2e. Therefore, we can find a j ∈ {dlog τ1e, dlog τ1e +

1, · · · , dlog τ2e} such that 2j−1 < |I| 6 2j .

Then, because of |I| 6 2j , there must be an integer k > 0 such that

k · 2j + 1 6 q 6 s 6 (k + 2) · 2j (D1)

where [k · 2j + 1, (k + 2) · 2j ] can be divided as two consecutive intervals

I1 = [k · 2j + 1, (k + 1) · 2j ] and I2 = [(k + 1) · 2j + 1, (k + 2) · 2j ]. (D2)

Due to j ∈ {dlog τ1e, dlog τ1e+1, · · · , dlog τ2e}, we have I1 ∈ I and I2 ∈ I. If [q, s] ⊆ Iv, v ∈ {1, 2}, according to (12) in Theorem 1

and (13) in Lemma 1, for any x ∈ X , we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x)

=
s∑
t=q

ft(xt)−
s∑
t=q

ft(x
Iv
t ) +

s∑
t=q

ft(x
Iv
t )−

s∑
t=q

ft(x)

62

√
3|Iv| ln

2τ2(3 + ln(1 + 2τ2))

τ1
+ 2

√
3|Iv| ln

N(3 + ln(1 + |Iv|))
2

.

(D3)

If q ∈ I1 and s ∈ I2, similarly, due to (12) in Theorem 1 and (13) in Lemma 1, for any x ∈ X , we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x)

=
∑

t∈I1:t>q

(ft(xt)− ft(x)) +
∑

t∈I2:t6s

(ft(xt)− ft(x))

62

√
3|I1| ln

2τ2(3 + ln(1 + 2τ2))

τ1
+ 2

√
3|I1| ln

N(3 + ln(1 + |I1|))
2

+ 2

√
3|I2| ln

2τ2(3 + ln(1 + 2τ2))

τ1
+ 2

√
3|I2| ln

N(3 + ln(1 + |I2|))
2

.

(D4)

The proof is completed with |I1| = |I2| 6 2|I|.

Appendix E Proof of Corollary 2

We complete the proof by replacing (13) used in the proof of Corollary 1 with (15) in Lemma 2.

Appendix F Proof of Corollary 3

It is easy to verify 2dlog |I|e−1 < |I| 6 2dlog |I|e. For brevity, let j = dlog |I|e, k = b q−1

2j
c and q′ = k · 2j + 1. We have

k · 2j + 1 6 q 6 (k + 1) · 2j (F1)

where the first inequality is due to k 6 q−1

2j
and the second inequality is due to k + 1 = d q

2j
e > q

2j
, which implies q ∈

[k · 2j + 1, (k + 1) · 2j ]. Combining with s− q + 1 = |I| 6 2j , we further have

k · 2j + 1 6 q 6 s < (k + 2) · 2j (F2)

which implies s ∈ [k · 2j + 1, (k + 1) · 2j ] or s ∈ [(k + 1) · 2j + 1, (k + 2) · 2j ]. For brevity, let I1 = [k · 2j + 1, (k + 1) · 2j ] and

I2 = [(k + 1) · 2j + 1, (k + 2) · 2j ]. Moreover, because of |I| ∈ [τ1, τ2], we have

j = dlog |I|e ∈ {dlog τ1e, dlog τ1e+ 1, · · · , dlog τ2e} (F3)

which implies that I1 ∈ I and I2 ∈ I.

For s ∈ Iv where v ∈ {1, 2}, according to (20) in Lemma 3, for any x ∈ ∆N , we have

s∑
t=1

I[t∈Iv ]

(
ft(x

Iv
t )− ft(x)

)
62c̃(|Iv|) + 2

√√√√2c̃(|Iv|)
s∑
t=1

I[t∈Iv ]ft(x)

64c̃(|Iv|) +
s∑
t=1

I[t∈Iv ]ft(x).

(F4)
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If s ∈ I1, according to (19) in Theorem 2 and (20) in Lemma 3, for any x ∈ ∆N , we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x)

=
s∑
t=q

ft(xt)−
s∑
t=q

ft(x
I1
t ) +

s∑
t=q

ft(x
I1
t )−

s∑
t=q

ft(x)

62c+ 2

√√√√2c
s∑
t=1

I[t∈I1]ft(x
I1
t ) + 2c̃(|I1|) + 2

√√√√2c̃(|I1|)
s∑
t=1

I[t∈I1]ft(x)

62c+ 2

√√√√2c

(
4c̃(|I1|) + 2

s∑
t=1

I[t∈I1]ft(x)

)
+ 2c̃(|I1|) + 2

√√√√2c̃(|I1|)
s∑
t=1

I[t∈I1]ft(x)

62c+ 4
√

2cc̃(|I1|) + 2c̃(|I1|) +

(
4
√
c+ 2

√
2c̃(|I1|)

)√√√√ s∑
t=q′

ft(x)

=
a(I)

2
+
b(I)
√

2

√√√√ s∑
t=q′

ft(x)

(F5)

where the second inequality is due to (F4) and the last equality is due to |I1| = 2j and the definitions of a(I) and b(I). Similarly,

if s ∈ I2, for any x ∈ ∆N , we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x) =
∑

t∈I1:t>q

(ft(xt)− ft(x)) +
∑

t∈I2:t6s

(ft(xt)− ft(x))

6
a(I)

2
+
b(I)
√

2

√√√√√q′+2j∑
t=q′

ft(x) +
a(I)

2
+
b(I)
√

2

√√√√ s∑
t=q′+2j+1

ft(x)

6a(I) + b(I)

√√√√ s∑
t=q′

ft(x)

(F6)

where the last inequality is due to Cauchy-Schwarz inequality.

Appendix G Proof of Corollary 4
Let j = dlog |I|e, k = b q−1

2j
c, q′ = k · 2j + 1, I1 = [k · 2j + 1, (k + 1) · 2j ] and I2 = [(k + 1) · 2j + 1, (k + 2) · 2j ]. From the proof of

Corollary 3, we have I1, I2 ∈ I, q ∈ I1 and s ∈ I1 ∪ I2. For s ∈ Iv where v ∈ {1, 2}, according to (24) in Lemma 4, for any x ∈ X ,

we have

s∑
t=1

I[t∈Iv ]

(
ft(x

Iv
t )− ft(x)

)
68HD

2
+D

√√√√2δ + 8H
s∑
t=1

I[t∈Iv ]ft(x)

610HD
2

+D
√

2δ +
s∑
t=1

I[t∈Iv ]ft(x).

(G1)

If s ∈ I1, according to (19) in Theorem 2 and (24) in Lemma 4, for any x ∈ X , we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x) =
s∑
t=q

ft(xt)−
s∑
t=q

ft(x
I1
t ) +

s∑
t=q

ft(x
I1
t )−

s∑
t=q

ft(x)

62c+ 2

√√√√2c
s∑
t=1

I[t∈I1]ft(x
I1
t ) + 8HD

2
+D

√√√√2δ + 8H
s∑
t=1

I[t∈I1]ft(x).

(G2)

Then, combining the above inequality with (G1), we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x)62c+ 2

√√√√2c

(
10HD2 +D

√
2δ + 2

s∑
t=1

I[t∈I1]ft(x)

)
+ 8HD

2

+D

√√√√2δ + 8H

s∑
t=1

I[t∈I1]ft(x)

62c+ 2

√
2c(10HD2 +D

√
2δ) + 8HD

2
+D
√

2δ

+
(

4
√
c+
√

8HD2
)√√√√ s∑

t=q′
ft(x)

63c+ 28HD
2

+ 3D
√

2δ +
b̃(I)
√

2

√√√√ s∑
t=q′

ft(x)

6
ã(I)

2
+
b̃(I)
√

2

√√√√ s∑
t=q′

ft(x)

(G3)
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where the last two inequalities are due to the definitions of b̃(I) and ã(I).

Similarly, if s ∈ I2, for any x ∈ X , we have

s∑
t=q

ft(xt)−
s∑
t=q

ft(x) =
∑

t∈I1:t>q

(ft(xt)− ft(x)) +
∑

t∈I2:t6s

(ft(xt)− ft(x))

6
ã(I)

2
+
b̃(I)
√

2

√√√√√q′+2j∑
t=q′

ft(x) +
ã(I)

2
+
b̃(I)
√

2

√√√√ s∑
t=q′+2j+1

ft(x)

6ã(I) + b̃(I)

√√√√ s∑
t=q′

ft(x)

(G4)

where the last inequality is due to Cauchy-Schwarz inequality.
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