Learning Compact Model for Large-scale Multi-label Data

Tong Wei, Yu-Feng Li

LAMDA Group Nanjing University, China

February 1, 2019

2 Methodology

3 Empirical Results

< 17 ▶

Multi-Label Learning (MLL)

Multi-Label Learning aims to annotate objects with a subset of relevant labels from the entire label set.

Multi-label objects occur in many applications, such as image tagging, recommender systems and document categorization.

Large-scale Multi-Label Learning (LMLL)

Goal

Learn a function $f(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}^K$ from *D* input features to *K* output scores that is consistent with labels $\mathbf{y} \in \{0, 1\}^K$, *K* is large.

Challenge: High-dimensionality of the label space (Wikipedia Dataset: $N \approx 10^6, D \approx 10^6, K \approx 10^6$)

Tong Wei, Yu-Feng Li (LAMDA, NJU)

< ロ > < 同 > < 回 > < 回 >

Background

Many effective approaches [*Tsoumakas et al., 2009; Zhang and Zhou TKDE'14; Babbar and Schölkopf, WSDM'17; arXiv'18*] are hard to deal with LMLL data due to large storage overhead.

A popular walk-around

Background

Many effective approaches [*Tsoumakas et al., 2009; Zhang and Zhou TKDE'14; Babbar and Schölkopf, WSDM'17; arXiv'18*] are hard to deal with LMLL data due to large storage overhead.

The task of model compression

- compress model size as much as possible
- 2 maintain competitive performance

< ロ > < 同 > < 回 > < 回 >

Model Weights Pruning

Previous work [Babbar and Schölkopf, WSDM'17, Niculescu-Mizil and Abbasnejad, AISTATS'17] filter out spurious features parameters to reduce model size.

Label Selection

Label selection methods aim to select a small subset of labels that can approximately span the original label space and subsequently model size is reduced. [Boutsidis et al., SODA'09; Bi and Kwok, ICML'13; Weston et al., KDD'13; Niculescu-Mizil and Abbasnejad, AISTATS'17].

However, they either neglect label importance or need to remove labels.

< ロ > < 同 > < 回 > < 回 >

Problem Formulation

Given a pre-trained model M, the goal is to find a compact model M with comparable performance. Such objective can be formulated as:

```
 \min_{\tilde{\mathbf{M}}} size(\mathbf{M}) 
s.t. f(\tilde{\mathbf{M}}, \mathcal{D}) \ge q^* - \epsilon
```

We consider Linear Classifier [Babbar and Schölkopf 2017; 2018; Niculescu-Mizil and Abbasnejad 2017]:

$$\min_{\tilde{\mathbf{M}}} ||\tilde{\mathbf{M}}||_{0}$$

s.t. perf($\mathbf{X}\tilde{\mathbf{M}}, \mathbf{Y}$) $\geq q^{*} - \epsilon$

Since the resultant optimization problem is difficult, we propose to solve it from label and feature parameter optimization aspects.

Intuition

Given the pre-trained model, we propose to compress it from label and feature parameter optimization aspects jointly.

Tong Wei, Yu-Feng Li (LAMDA, NJU)

Naive solution

Discard part of labels may not always preferable, i.e., lose the predictive capability for some labels.

Our solution:

```
Step-1: identify
```

less performance-influential labels

Step-2: preserve only a few dominant parameters (largest absolute value)

- We compute the impact of labels for commonly used LMLL metrics (PSP@k and PSnDCG@k).
- Since missing labels usually occur in LMLL, we show our results when labels are randomly missing.

Theorem

Suppose that relevant labels are randomly missing with probability π , the impact of the *j*-th label in terms of PSP@*k* and PSnDCG@*k* is upper bounded by $(1 - \pi)w_ju_j$.

- u_j is frequency of label j w_j is the weight of label j.
- In particular, when labels have equal weights, the correlation between impact of tail labels and common labels is $\frac{u_t}{u_c} \approx 0$.

Main Results

- The impact of labels on PSP@k and PSnDCG@k is related to label weights and label frequencies.
- Filtering out parameters for less performance-influential labels can facilitate compact model size.

- ? Challenge: How many label parameters to trim off?
- Key insight: The performance degrades proportional to # of label parameters discarded.

(B)

A D M A A A M M

We locate discriminative feature parameters and discard spurious ones.

$$\min_{\tilde{\mathbf{M}}} ||\tilde{\mathbf{Y}} - \mathbf{Y}^*||_F^2 + \lambda ||\tilde{\mathbf{M}}||_0$$

s.t. $\tilde{\mathbf{Y}} = \mathbf{X}\tilde{\mathbf{M}}; \mathbf{Y}^* = \mathbf{X}\mathbf{M}$

Inspired by [Zhao and Yu, JMLR'06], an approximate solution can be obtained by setting feature parameters that lie in range [-λ, λ] to 0. We compare our proposed method (POP) with pure Binary Relevance (BR).

Data set		PSP@1	PSP@3	PSP@5	PSnDCG@1	PSnDCG@3	PSnDCG@5	Model size
bibtex	BR	50.70	53.66	59.34	50.70	52.71	55.80	1.15 M
	Pop	50.71	53.30	58.86	50.71	52.39	55.41	0.59 M
delicious	BR	32.14	33.59	33.43	32.14	33.32	33.28	7.18 M
	Pop	32.08	33.59	33.47	32.08	33.30	33.29	1.26 M
eurlex	BR	39.93	45.86	49.74	39.93	44.24	46.83	156.38 M
	Pop	40.06	46.02	49.91	40.06	44.42	47.01	20.18 M
wiki10	BR	13.57	13.10	13.96	13.60	13.82	13.97	23.50 GB
	Pop	13.53	13.10	13.46	13.53	13.65	13.67	67.50 M

• Avg. model size reduction > 50%

• Avg. performance loss < 0.5%

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

vs. State-of-the-arts

Data set		FastXML	LEML	SLEEC	DISMEC	PD-Sparse	Рор
delicious	Model size	71.29 M	2.26 M	7.34 M	-	0.25 M	1.26 M
	PSP@1	32.35	30.73	32.11	-	25.22	32.08
	PSP@3	34.51	32.43	33.21	-	24.63	33.59
	PSP@5	35.43	33.26	33.83	-	23.85	33.47
	PSnDCG@1	32.35	30.73	32.11	-	25.22	32.08
	PSnDCG@3	34.00	32.01	32.93	-	24.80	33.30
	PSnDCG@5	34.73	32.66	33.41	-	24.25	33.29
eurlex	Model size	194.40 M	34.31 M	245.49 M	79.86 M	25.00 M	20.18 M
	PSP@1	26.62	24.10	34.25	41.20	38.28	40.06
	PSP@3	34.16	27.20	39.83	45.40	42.00	46.02
	PSP@5	38.96	29.09	42.76	49.30	44.89	49.91
	PSnDCG@1	26.62	24.10	34.25	41.20	38.28	40.06
	PSnDCG@3	32.07	26.37	38.35	44.30	40.96	43.55
	PSnDCG@5	35.23	27.62	40.30	46.90	42.84	47.01
wiki10	Model size	501.47 M	506.88 M	924.60 M	880.00 M	-	67.50 M
	PSP@1	9.80	9.41	11.14	13.60	-	13.53
	PSP@3	10.17	10.07	11.86	13.10	-	13.10
	PSP@5	10.54	10.55	12.40	13.80	-	13.46
	PSnDCG@1	9.80	9.41	11.14	13.60	-	13.53
	PSnDCG@3	10.08	9.90	11.68	13.20	-	13.65
	PSnDCG@5	10.33	10.24	12.06	13.60	-	13.67

- ✓ POP achieves top 2 results in 17/21 cases.
- ✓ vs. DiSMEC: 10× smaller size on wiki10.
- ✓ vs. SLEEC: avg. 9× smaller size.
- ✓ vs. FastXML: avg: 10× smaller size.

 ✓ vs. LEML/PD-Sparse: POP consistently outperformances.

- 24

The best and the second best results are in bold.

Parameter Sensitivity Study

with respect to ϵ

We study how different values of ϵ impact the predictive accuracy and model size.

Observations

) POP filters out more than 80% model parameters when $\epsilon = 1$.

Predictive accuracy goes down very slowly as ϵ becomes bigger.

Tong Wei, Yu-Feng Li (LAMDA, NJU)

• Problem: Learning compact model for large-scale multi-label data

Method:

- The impact of labels on PSP@k and PSnDCG@k is related to the label weights and label frequencies
- We propose POP to compress the model size by jointly performing label and feature parameter optimization

Empirical results:

- Superb predictive accuracy on large-scale multi-label data
- Much smaller model size compared with state-of-the-arts

Thank you

Tong Wei weit@lamda.nju.edu.cn

Image: A matrix and a matrix