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1 Testing Time Speedup

• [column subset selection] Boutsidis et al. [2009]
They propose to find approximate solutions of the Column Subset Selection
Problem (CSSP) more efficiently.

• [label selection] Bi and Kwok [2013]
They address this problem by selecting a small subset of class labels that
can approximately span the original label space. This is performed by an
efficient randomized sampling procedure where the sampling probability of
each class label reflects its importance among all the labels.

• [label partition] Weston et al. [2013]
It works by first partitioning the input space, so any given example can be
mapped to a partition or set of partitions. In each partition only a subset of
labels is considered for scoring by the given label scorer.

• [label filter] Niculescu-Mizil and Abbasnejad [2017]
They propose a two step approach where computationally efficient label fil-
ters pre-select a small set of candidate labels before the base multi-class or
multi-label classifier is applied.

• [block-wise partition] Liang et al. [2018]
They propose a Block-wise Partitioning (BP) pretreatment that divides all
instances into disjoint clusters, to each of which the most frequently tagged
label subset is attached. One multi-label classifier is trained on one pair of
instance and label clusters, and the label set of a test instance is predicted by
first delivering it to the most appropriate instance cluster.

• [structure prediction & ECOC] Evron et al. [2018]
This work is based on Jasinska and Karampatziakis [2016] which can be
seen as a special case of Error-Correcting Output Coding (ECOC). In addi-
tion to the logarithmic inference time and model size benefiting from the trel-
lis graph, the authors introduce theoretical bounds for their methods follow
previous work on EOOC. Interestingly, both Jasinska and Karampatziakis
[2016] and One-Vs-Rest (OVR) can be seen as special cases of the proposed
approach.

2 Training Time Speedup

• [parallelization] Babbar and Schölkopf [2017]
They propose a large-scale distributed framework for learning one-vs-rest
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linear classifiers coupled with explicit capacity control to control model size.
By employing a double layer of parallelization, it can gain significant train-
ing speedup over SLEEC and other SOTA.

• [structure prediction on trellis] Jasinska and Karampatziakis [2016]
The authors construct a directed acyclic graph (DAG) G with O(log2 L)
edges that contains exactly L (number of labels/classes) paths from a source
vertex to a sink vertex. Every edge e in the graph is associated with a learn-
able function. Every class corresponds to a path and the model predicts the
class with the highest scoring path.

3 Model Size Reduction

• [spurious parameters removing] Babbar and Schölkopf [2017]
They propose a large-scale distributed framework for learning one-vs-rest
linear classifiers coupled with explicit capacity control to control model size.
The experiments find that the majority of model parameters are close to 0 and
can be filtered out.

• [regularizor] Yen et al. [2016]
They show that a margin-maximizing loss with `1 penalty, in case of Extreme
Classification, yields extremely sparse solution both in primal and in dual
without sacrificing the expressive power of predictor.

4 Tail Label

• [low-rank + sparse] Xu et al. [2016]
They propose to decompose the label matrix into a low-rank matrix and a
sparse one. The low-rank matrix is expected to capture the correlation be-
tween labels and the sparse one is employed to capture tail labels.

• [low-rank + sparse] Li et al. [2017]
They decompose the user-item matrix into low-rank and sparse components.

• [hamming loss] Babbar and Schölkopf [2018]
They detect tail labels by optimizing hamming-loss and designs a robust
framework to model data scarcity of tail labels.

• [propensity score] Jain et al. [2016]
They propose propensity model that promotes the accurate prediction of in-
frequent labels with high ranks.
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• [meta learning] Wang and Hebert [2016]
They learn a meta-level network that operates on the space of model param-
eters, which is specifically trained to regress many-shot model parameters
(trained on large data sets) from few-shot model parameters (trained on small
data sets).

• [transfer learning] Wang et al. [2017]
They cast the long tail classification problem as transfer learning, where
knowledge from the data-rich classes in the head of the distribution is trans-
ferred to the data-poor classes in the tail.

5 Missing Label

• [ignore] Yu et al. [2014]
They handle missing labels by training model on observed labels only which
means the position of missing entries in label matrix need be known in ad-
vance. Such formulation has elegant theoretical analysis, however, can not
capture tail label practically.

• [metric based] Jain et al. [2016]
They does not erroneously treat missing labels as irrelevant but instead pro-
vide unbiased estimates of the true loss function even when ground truth la-
bels go missing under arbitrary probabilistic label noise models. This paper
addresses this issue by developing propensity scored variants of precision@k
and nDCG@k which provide unbiased estimates of the true loss as if com-
puted on the complete ground truth without any missing labels.

• [metric based] Prabhu et al. [2018]
The above two metric based methods, designing unbiased loss functions for
XML even when labels are not fully revealed. However, missing labels in
training data can not be predicted.

• [false-negativeness approximation] Kanehira et al. [2016]
In XML, there are many false-negative examples which may severely de-
grade the performance when using AUC as the optimization objective. The
authors train an uni-class model and approximate false-negativeness of each
examples for each label. Then use false-negativeness as another penalty term
in the objective. Overall, this work is somewhat incremental, but it brings a
possible method to deal with false-negative examples.
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• [propensity score] Yang et al. [2018]
In recommender systems, since only positive feedback are observed, the au-
thors prove the evaluation metric and the recommendation algorithms are
biased toward popular items. The authors then propose an unbiased estima-
tor using inverse propensity score.

6 General XML Methods

6.1 Embedding-based Methods

• [low-rank] Yu et al. [2014]
They take a direct approach by formulating the XML problem as that of
learning a low-rank linear model. Unlike former embedding based approaches
which attempt to make training and prediction tractable by assuming that the
training label matrix is low-rank and reducing the effective number of la-
bels by projecting the high dimensional label vectors onto a low dimensional
linear subspace.

• [piecewise low-rank] Bhatia et al. [2015]
They learn a small ensemble of local distance preserving embeddings which
can accurately predict infrequently occurring (tail) labels. This allows SLEEC
to break free of the traditional low-rank assumption and boost classification
accuracy by learning embeddings which preserve pairwise distances between
only the nearest label vectors.

• [autoencoder] Yeh et al. [2017]
They perform joint feature and label embedding by deriving a deep latent
space, followed by the introduction of label-correlation sensitive loss func-
tion for recovering the predicted label outputs.

• [joint label and feature embedding in two steps] Zhang et al. [2017]
They explore the label space by building and modeling an explicit label
graph and learn non-linear embedding for both feature and label space.

• [knn embedding] Tagami [2017]
They present a novel graph embedding method called “AnnexML”. At the
training step, AnnexML constructs a knn graph of label vectors and attempts
to reproduce the graph structure in the embedding space. The prediction
is efficiently performed by using an approximate nearest neighbor search
method that efficiently explores the learned k-nearest neighbor graph in the
embedding space.
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Embedding methods have many advantages including simplicity, ease of im-
plementation, strong theoretical foundations, the ability to handle label correla-
tions, the ability to adapt to online and incremental scenarios, etc. Unfortunately,
embedding methods can also pay a heavy price in terms of prediction accuracy due
to the loss of information during the compression phase. For instance, none of the
embedding methods developed so far have been able to consistently outperform the
1-vs-rest baseline.

6.2 Tree-based Methods

• [random forest] Agrawal et al. [2013]
They develop Multi-label Random Forests to tackle problems with millions
of labels.

• [tree optimizing nDCG] Prabhu and Varma [2014]
They formulate a novel node partitioning objective which directly optimizes
an nDCG based ranking loss and which implicitly learns balanced partitions.

• [recall tree] Daume III et al. [2016]
They create a new online reduction of multi-class classification to binary
classification for which training and prediction time scale logarithmically
with the number of classes. They use an OAA-like structure to make a final
prediction, but instead of scoring every class, we only score a small subset
of O(logK) classes by dynamically builting tree to efficiently whittle down
the set of candidate classes. The goal of the tree is to maximize the recall of
the candidate set.

• [gbdt] Si et al. [2017]
They show that vanilla GBDT can easily run out of memory or encounter
near-forever running time in the XML setting, and propose a new GBDT
variant, GBDT-SPARSE, to resolve this problem by employing L0 regular-
ization. They make the crucial observation that each data point has very
few labels; based on that we solve a L0 regularized optimization problem
to enforce the prediction of each leaf node in each tree to have only a small
number (k) of nonzero elements or labels. Hence, after T trees have been
added during GBDT iterations, there will be at most Tk nonzero gradients
for any data point.

• [random forest] Siblini et al. [2018]
(i) It exploits a random forest strategy which not only randomly reduces both
the feature and the label spaces to obtain diversity but also replaces random
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selections with random projections to preserve more information; (ii) it uses
a novel low-complexity splitting strategy which avoids the resolution of a
multi-objective optimization problem at each node.

Table 1: A summary of the advantages and disadvantages of XML meth-
ods. 3 and 7 indicate a significant superiority and inferiority to other methods
respectively. Fields are left blank if the corresponding method could be adapted to
deal with that scenario but is not able to achieve outstanding performance.

Method
Metric Training

time
Testing

time
Model

size
Predictive
Accuracy

Tail
label

Missing
label

Embedding-based 3

Tree-based 3

Binary Relevance 7 7 7 3

7 Commonly Used XML Performance Measures

7.1 P@k

Top-k precision is a commonly used ranking based performance measure in XML
and has been widely adopted for ranking tasks [Prabhu and Varma, 2014; Bhatia
et al., 2015]. In Top-k precision, only a few top predictions of an instance will
be considered. For each instance xi, the Top-k precision is defined for a predicted
score vector ŷi ∈ RL and ground truth label vector yi ∈ {−1, 1}L as

P@k :=
1

k

∑
l∈rankk(ŷ)

yl, (1)

where rankk(ŷi) returns the indices of k largest value in ŷi ranked in descending
order.

7.2 nDCG@k

nDCG@k is another commonly used ranking based performance measure and is
defined as

nDCG@k :=
DCG@k∑min(k,‖y‖0)

l=1
1

log(l+1)

, (2)

where DCG@k :=
∑

l∈rankk(ŷ)
yl

log(l+1) and ||y||0 returns the 0-norm of the true-
label vector.
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7.3 PSP@k

Propensity scored variants of such losses, including precision@k and nDCG@k,
are developed and proved to give un- biased estimates of the true loss function
even when ground truth labels go missing under arbitrary probabilistic label noise
models [Jain et al., 2016].

PSP@k :=
1

k

∑
l∈rankk(ŷ)

yl

pl
(3)

pl is the propensity score for label l which helps in making metrics unbiased.

7.4 PSnDCG@k

PSDCG@k :=
∑

l∈rankk(ŷ)

yl

pl log(l + 1)
(4)

where PSnDCG@k := PSDCG@k∑k
l=1

1
log(l+1)

8 Dig into the Data

8.1 Dataset Statistics

The detail statistics of commonly used XML datasets are listed in Table 2.

Table 2: Data sets statistics

Data set
Train
N

Features
D

Labels
L

Test
M

Avg. labels
per point

Avg. points
per label

Bibtex 4,880 1,836 159 2,515 2.40 111.71
Delicious 12,920 500 983 3,185 19.03 311.61
EUR-Lex 15,539 5,000 3,993 3,809 5.31 25.73
Wiki10 14,146 101,938 30,938 6,616 18.64 8.52
DeliciousLarge 196,606 782,585 205,443 100,095 75.54 72.29
WikiLSHTC-325K 1,778,351 1,617,899 325,056 587084 17.4 3.2
Wiki-500K 1,813,391 2,381,304 501,070 783743 24.7 4.7
Amazon-670K 490,499 135,909 670,091 153025 3.9 5.4

8.2 Raw Feature & Label of Dataset

8.2.1 Amazon Dataset

On Amazon dataset, each instance represents an item (usually a book) identified
with an unique item id.
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Raw Instance Feature: The raw instance feature are website contents (usually,
the instance feature we use in experiments except in deep learning are processed
using NLP techniques, such as one-hot encoding), assume the items are books,
including book id, title, author, consumer reviews and other informations. The
webpage of a book on Amazon is shown in Figure 1.

Raw Label: The meta-label of this web page is the categories that this page
belongs to, such as Politics, Social Sciences, Politics, Government.

Figure 1: Webpage of an instance on Amazon dataset.

8.2.2 Wikipedia Dataset

On Wikipedia dataset, each instance represents a web page on Wikipedia web site.
Raw Instance Feature: The raw instance feature are website contents. The

webpage about ”PHP” is shown in Figure 2.
Raw Label: The meta-label of this web page is the categories that this page

belongs to, such as programming language, PHP.
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