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Abstract—Multi-instance learning (MIL) has been widely
applied to diverse applications involving complicated data
objects such as images and genes. However, most existing MIL
algorithms can only handle small- or moderate-sized data. In
order to deal with the large scale problems in MIL, we propose
an efficient and scalable MIL algorithm named miFV. Our
algorithm maps the original MIL bags into a new feature
vector representation, which can obtain bag-level information,
and meanwhile lead to excellent performances even with linear
classifiers. In consequence, thanks to the low computational
cost in the mapping step and the scalability of linear classifiers,
miFV can handle large scale MIL data efficiently and effectively.
Experiments show that miFV not only achieves comparable
accuracy rates with state-of-the-art MIL algorithms, but has
hundreds of times faster speed than other MIL algorithms.

Keywords-multi-instance learning; scalability; efficiency;
large scale data

I. INTRODUCTION

During the investigation of drug activity prediction [1],

the multi-instance learning (MIL) framework was formally

proposed and naturally applied to this problem. In contrast

to traditional supervised learning, MIL receives a set of bags

labeled positive or negative, rather than receiving a set of

instances which have labels. In addition, instances in the

MIL bags have no label information. The task of MIL is to

train a classifier that labels new bags, and MIL has already

been widely applied in diverse applications, e.g., image

categorization [2], text categorization [3], face detection [4],

computer-aided medical diagnosis [5], web mining [6], etc.

Over the last few years, many effective MIL algorithms

have been developed [7]. These algorithms achieve decent

accuracy rates in different MIL applications, which might

partly attribute to the fact that objects are represented as

bags in MIL, which can naturally encode the original objects.

However, directly processing and classifying the complicated

bag representation means that the complexity of MIL’s

hypothesis space also becomes much larger. This fact leads

to an undesired outcome: most existing MIL algorithms

are usually time-consuming and incapable of handling large

scale MIL problems. The real world applications of MIL,

however, consistently request scalable multi-instance learning

algorithms to handle millions of complex objects or examples

(e.g., images, genes, etc).

In order to deal with large scale MIL problems, a natural

idea is to convert the bag representation of an object to a

simpler one, i.e., a vector representation. The conversion

procedure should be very efficient and should keep as much

information as possible, in order to achieve a scalable and

accurate multi-instance learning machine. There have been

some related methods in this line of research, including the

CCE method [8] and the MILES algorithm [9]. However, as

we will empirically show in this paper, neither the efficiency

nor the accuracy of these methods is mature enough for

handling large scale multi-instance learning problems.

In this paper, we propose an efficient and scalable MIL

algorithm which is miFV (multi-instance learning based on

the Fisher Vector representation). In miFV, bags can be

mapped by its mapping function into a new feature vector

representation. The major difference between miFV and

CCE/MILES is that miFV encodes more information into the

new feature vector. Moreover, miFV is efficient to compute,

and leads to excellent results even with linear classifiers.

In consequence, thanks to the low computational cost and

scalability of the mapping function and the linear classifiers,

miFV can handle large scale MIL data efficiently. As shown

by the results in our experiments, on small- and medium-

scale MIL problems, miFV not only achieves comparable

performances with state-of-the-art MIL algorithms, but has

hundreds of, even thousands of times faster speed than these

MIL algorithms. Moreover, on large scale MIL problems,

the training process of most existing MIL algorithms did not

terminate after a few days, while miFV can finish training

within a few hours and achieve good classification accuracy.

The rest of this paper is organized as follows. In Section II,

we introduce some related work about MIL. The proposed

algorithm is presented in Section III. In Section IV, we

present our experimental results. In Section V, we conclude

the paper with discussions on future issues.

II. RELATED WORK

Many multi-instance learning algorithms have been de-

veloped during the past decade [7], to name a few: Di-

verse Density, EM-DD, Citation-kNN, MI-Kernel, miSVM

and MISVM, DD-SVM, MIBoosting, RIPPER-MI, MI-LR,

MILES, MissSVM, miGraph, MIMEL, etc. These MIL

algorithms solve MIL problems in diverse ways. For example,

miSVM [3] is a SVM based MIL method, which searches

max-margin hyperplanes to separate positive and negative

instances in bags. MIBoosting [10] was proposed as a
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boosting approach for MIL with the assumption that all

instances contribute equally and independently to a bag’s

label. miGraph [11] treats instances in bags in a non-i.i.d.

way and solves MIL problems by graph kernels. Existing

MIL algorithms have achieved satisfactory accuracy rates.

However, most of them can only handle small- or moderate-

sized data, and only have limited scalability.

In order to deal with MIL problems more efficiently, some

researchers had tried to solve MIL by using the similarity

that represents the closeness of the bag to specific target

points in the original instance space, e.g., DD-SVM [12] and

MILES [9]. Some had tried to treat MIL as a special case

of semi-supervised learning, e.g., MissSVM [13]. However,

due to the bag representation of MIL, the complexity of the

hypothesis space of existing MIL algorithms is still too large

to learn very efficiently. And, handling large scale MIL data

is not practical yet. For example, the MILES method took

1.2 minutes (i.e., 72 seconds) to learn on the Musk2 dataset,

which is a small scale problem with only 102 bags [9].1

A more efficient MIL algorithm CCE [8] was proposed

in order to solve MIL problems with lower computational

complexity by using a histogram-based vector representation

via constructive clustering. However, the information CCE

extracts from bags is very limited when compared with the

higher-order statistics in miFV, which makes its performance

significantly worse than that of miFV. One related property

of CCE is that in order to incorporate more information from

the bag representation, CCE used an ensemble classifier

based on multiple clusterings, which significantly increases

its computational complexity and renders it incapable of

handling large scale problems.

III. THE PROPOSED ALGORITHM

In this paper, we propose a scalable multi-instance learning

algorithm, named as miFV (multi-instance learning based on

the Fisher Vector representation). The method converts the

bag representation into a vector form very efficiently, while

maintaining useful information inside the bags, as will be

verified by our experiments later in Section IV.

The FV (Fisher Vector) representation [14] is an approach

in computer vision to encode a set of local patch descriptors

extracted from one image, e.g., SIFT, into a high dimensional

vector and to pool them into an image-level signature.

Because of its efficiency, effectiveness and scalability, FV

becomes state-of-the-art approach in computer vision and

has shown excellent performances in many applications, e.g.,

large scale image retrieval and image categorization. More-

over, in these years, some studies illustrate its effectiveness

and efficiency in both theoretical and practical aspects [14].

An image is represented as a set of local patches. This

set representation is related to, but different from the bag

1As a comparison, miFV only uses less than 0.1 second on this dataset,
cf. Section IV.

representation in MIL. In a bag of MIL, every instance

has a label (although unknown during the learning process),

indicating whether it is a positive or negative instance. In a

set representation of an image, however, the local patches

do not have semantic meanings. For example, in an image

labelled as “tiger”, none of the local patches extracted from

this image can be treated as a “tiger”. However, since FV

maps a set of items into one single vector, we may borrow

ideas from FV to implement scalable multi-instance learning.

Here, we first give an introduction to the Fisher Kernel,

and then propose the miFV algorithm.2

A. Fisher Kernel Basics

The Fisher Kernel is a powerful framework which com-

bines the strengths of generative and discriminative ap-

proaches to pattern classification [15].

Let S = {st, t = 1, . . . , T} be a sample of T observations

st ∈ S . Let p be a probability density function which models

the generative process of elements in S with parameters λ.

Then the samples S can be described by the gradient vector:

GS
λ = ∇λlogp(S|λ). (1)

Intuitively, the gradient describes how the parameters

p should be modified to better fit the data S. Note that,

the dimensionality of GS
λ only depends on the number of

parameters in p, rather than on the sample size T . In other

words, it transforms a variable length set S into a fixed length

vector GS
λ , which is amenable for the mapping function Mf

in miFV to map the bags with different numbers of instances

into a fixed-length feature vector.

In [15], the Fisher Kernel (FK) was proposed to measure

the similarity between two samples S1 and S2:

KFK(S1, S2) = GS1

λ

′
F−1
λ GS2

λ , (2)

where Fλ is the Fisher information matrix of p:

Fλ = Es∼p[∇λlogp(s|λ)∇λlogp(s|λ)′]. (3)

Since Fλ is symmetric and positive definite, it has a

Cholesky decomposition F−1
λ = Lλ

′Lλ. The FK in (2) can

be rewritten explicitly as a dot-product:

KFK(S1, S2) = fS1

λ

′
fS2

λ , (4)

where

fS
λ = LλG

S
λ = Lλ∇λlogp(S|λ). (5)

The normalized gradient vector presented in (5) is the Fisher

Vector (FV). In consequence, using a non-linear kernel

machine with the KFK kernel is equivalent to using a linear

kernel machine with the FV (i.e., fS
λ ) as feature vector.

2The code of miFV is available at http://lamda.nju.edu.cn/code SMIL.ashx
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B. Representing Bags with Fisher Vectors

Here we treat a bag Xi as a sample S mentioned above.

In the traditional multi-instance learning assumption, the

instances in bags are independently and identically distributed.

In the same way, the st’s from S are generated independently

by p. Thus, a natural choice of p is a Gaussian Mixture Model

(GMM). We can estimate the parameters of the GMM p on

the training bags using Maximum Likelihood Estimation

(MLE). Pseudo code of miFV is shown in Algorithm 1.

We denote the parameters of the K-component GMM

by λ = {ωk,μk,Σk, k = 1, . . . ,K}, where ωk, μk and

Σk are respectively the mixture weight, mean vector and

covariance matrix of the kth Gaussian. In what follows,

for a bag Xi = {xi1, . . . ,xij , . . . ,xi,ni}, let L(Xi|λ) =
logp(Xi|λ). Because of the independence assumption and

the GMM model, we can rewrite this equation as follows:

L(Xi|λ) =
ni∑
j=1

logp(xij |λ) =
ni∑
j=1

log
K∑

k=1

ωkpk(xij |λ),
(6)

where the component pk denotes the kth Gaussian:

pk(xij |λ) =
exp{− 1

2 (xij − μk)
′
Σ−1

k (xij − μk)}
(2π)D/2|Σk|1/2

. (7)

In addition, the mixture weights are subject to the constraint:

∀k : ωk ≥ 0,
∑K

k=1
ωk = 1, (8)

to ensure that p(xij |λ) is a valid distribution. As assumed

in [16], the covariance matrices are diagonal and σ2
k is the

variance vector.

In the following, we describe how the mapping function

Mf in the miFV algorithm maps a bag into a Fisher Vector.

The gradients of a single instance xij w.r.t. the parameters

of the GMM model, λ = {ωk,μk,Σk}, can be presented as

∇ωk
logp(xij |λ) = γj(k)− ωk, (9)

∇μk
logp(xij |λ) = γj(k)

(
xij − μk

σ2
k

)
, (10)

∇σk
logp(xij |λ) = γj(k)

[
(xij − μk)

2

σ3
k

− 1

σk

]
, (11)

where γj(k) is the soft assignment, which is also the

probability for xij generated by the kth Gaussian:

γj(k) = p(k|xij , λ) =
ωkpk(xij |λ)∑K
t=1 ωtpt(xij |λ)

. (12)

Note that, the division and exponentiation of vectors should

be understood as term-by-term operations in (10)-(12).

After obtaining the gradients, the remaining step is to

compute Lλ. The methods proposed in [16] [14] supply

us a closed form of Lλ and meanwhile it can be solved

Algorithm 1 The miFV algorithm

1: Input:
2: Training data {(X1, y1), . . . , (Xi, yi), . . . , (XNB

, yNB
)}

3: Train:
4: Estimate parameters λ = {ωk,μk,Σk} of the GMM

p on the training bags with MLE

5: for i = 1 to NB do
6: Map the bag Xi into a FV fXi

λ ←Mf (Xi, p)

7: [fXi

λ ]j ← sign([fXi

λ ]j)
√
|[fXi

λ ]j |
8: fXi

λ ← fXi

λ / ‖ fXi

λ ‖2
9: end for

10: Use new training set {(fX1

λ , y1), . . . , (f
XNB

λ , yNB
)}

to learn a classifier F
11: Test:
12: for all test bags Xi′ (i

′ ∈ {1, 2, . . . , N ′
B}) do

13: Map the bag Xi′ into a FV f
Xi′
λ ←Mf (Xi′ , p)

14: [f
Xi′
λ ]j ← sign([f

Xi′
λ ]j)

√
|[fXi′

λ ]j |
15: f

Xi′
λ ← f

Xi′
λ / ‖ fXi′

λ ‖2
16: end for
17: Output the prediction F(fXi′

λ )

efficiently. Thus, the normalized gradients are presented as

following [16] [14]:

fXi
ωk

=
1√
ωk

∑ni

j=1
(γj(k)− ωk) , (13)

fXi
μk

=
1√
ωk

∑ni

j=1
γj(k)

(
xij − μk

σk

)
, (14)

fXi
σk

=
1√
ωk

∑ni

j=1
γj(k)

1√
2

[
(xij − μk)

2

σ2
k

− 1

]
. (15)

Recall that the dimension of the instances in bag Xi is d.

We can find that fXi
ωk

in (13) is a scalar, while fXi
μk

and

fXi
σk

are d-dimensional vectors. Thus, the FV fXi

λ which

can describe a bag Xi should be concatenated by fXi
ωk

, fXi
μk

and fXi
σk

, for all k = 1, . . . ,K Gaussian components. In

the following, each element of fXi

λ is sign square rooted

by [fXi

λ ]j ← sign([fXi

λ ]j)
√
|[fXi

λ ]j | [14]. Then the new

feature vector fXi

λ is subsequently L2-normalized. Thus, the

mapping function Mf maps the bag Xi into a (2d+ 1)K-

dimensional normalized FV, i.e., fXi

λ .

Finally, we feed (fXi

λ , yi) to a standard supervised learner,

e.g., a support vector machine, to learn a classification model

F . A bag Xi′ in the testing set will be firstly mapped into

a new feature vector f
X′

i

λ by Mf . Then, we can get the

bag-level prediction via F(fX′
i

λ ).

C. Efficiency and Scalability of miFV

As illustrated in the previous section, FV is efficient to

compute. Moreover, there is no need to use costly kernels
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to implicitly project these very high-dimensional gradient

vectors into a still higher dimensional space [16], [14]. Hence,

it leads to excellent accuracy rates even with linear classifiers.

In the same way, miFV based on the FV representation is also

computed efficiently to represent the bags with the FVs. In

addition, linear SVM and stochastic gradient descent methods

can solve large scale classification problems with a huge

number of instances and features very efficiently. Because

it is difficult to make formal complexity analysis of this

complex framework, we empirically validate the efficiency

and scalability of miFV in our experiments.

IV. EXPERIMENTS

A. Data Sets and Experimental Setup

Our experiments are performed on five MIL benchmark

data sets, four moderate-sized data sets for image and

document classification, and finally one large scale data set

for video annotation. On these data sets, we compare miFV

with six state-of-the-art MIL algorithms: MIWrapper [17],

CCE [8], EM-DD [18], miSVM [3], MIBoosting [10] and

miGraph [11]. In addition, Simple-MI is also a baseline

method [7], which represents a bag with the mean vector of

all the instances in that bag. For Simple-MI and miFV, we

take LIBLINEAR as the final linear classifier.

We first evaluate miFV on five benchmark data sets

popularly used in the studies of MIL, including Musk1,

Musk2, Elephant, Fox and Tiger. In addition, two famous

categories, i.e., Course and Faculty, in WebKB are used in

experiments. More details of these data sets can be found

in [19]. On each of the seven data sets above, we run ten

times 10-fold cross validation and report the average results.

As image categorization is one of the most successful

applications of MIL, two image data sets (1000-Image
and 2000-Image) for classification are also used in our

experiments. We treat each image as a bag and employ

the SBN bag generator [20] to extract instances/patches from

each bag/image. For these image data sets, we use the same

experimental routine as described in [11]. The experiment is

repeated five times and the average results are reported.

Finally, we use a well known and large scale data set

in computer vision, i.e., the development (DEV) set of

TRECVID 2005 for the video annotation task, to validate

the scalability of miFV. The data set contains 61901 sub-

shots associated with one or more concepts in the 39

concepts. We treat each sub-shot as a bag and each frame

in one sub-shot as an instance. Each bag/sub-shot obtains

11 instances/keyframes of 1000-dimention. We split the data

set into three parts, i.e., training data, validation data and

test data. These three parts have 40616, 9331 and 11954

bags, respectively. For each concept, if we treat it as the

positive label, then the other concepts become the negative

ones. Thus, we can get 39 MIL datasets, which are sub-

problems of the original dataset. For each subdataset, we build

Table I
DETAILED CHARACTERISTICS OF THE DATA SETS. NOTE THAT, BECAUSE

WE USE THE ONE-AGAINST-ONE STRATEGY FOR THE 1000-Image AND

2000-Image DATA SETS, “� POSITIVE” (“� NEGATIVE”) FOR THEM

PRESENTS THE NUMBER OF POSITIVE (NEGATIVE) BAGS IN EACH ROUND.

Dataset � attribute
� bag

� instance
� positive � negative � total

Musk1 166 47 45 92 476

Musk2 166 39 63 102 6,598

Elephant 230 100 100 200 1,220

Fox 230 100 100 200 1,320

Tiger 230 100 100 200 1,391

Course 320 674 674 1,348 3,528

Faculty 361 795 795 1,590 4,248

1000-Image 121 100 100 1,000 3,000

2000-Image 121 100 100 2,000 3,000

TRECVID 2005 1,000 – – 61,901 680,911

0 2 4 6 8

miFV

miGraph

MIBoosting

miSVM

EM−DD

CCE

MIWrapper

Simple−MI

Rank

Figure 1. Friedman test results.

a binary classifier five times with five random balanced under-

samplings to solve the class imbalance problem. Detailed

characteristics of these data sets are summarized in Table I.

B. Accuracy Comparison

We first report the comparison results on the nine MIL data

sets (i.e., all data sets except for TRECVID 2005) in Table II.

As shown in the table, miFV achieves the best or the second

best performance in almost all the cases. To have an overall

evaluation of the performances of the algorithms over these

nine data sets, we performed the Friedman test. As shown

in Figure 1, the average rank of miFV on these data sets is

1st, and miFV performs significantly better than Simple-MI,

MIWrapper, CCE, EM-DD and miSVM. Meanwhile, it can

achieve comparable performances with two state-of-the-art

MIL algorithms, i.e., MIBoosting and miGraph.

C. Efficiency Comparison

Because our goal is to handle large scale MIL problems,

it is crucial to study the efficiency of the proposed algorithm.

We only report the time cost of training time in Figure 2. The

time cost of test time has almost identical trend of training

time. Note that the vertical axes are shown in log-scale in
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Table II
COMPARISON RESULTS (MEAN±STD.) ON 9 DATA SETS. THE HIGHEST AVERAGE ACCURACY OF EACH COLUMN IS MARKED IN BOLD AND WITH •; THE

SECOND HIGHEST ONE OF EACH COLUMN IS JUST IN BOLD.

Algorithm

Data set
Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

Simple-MI .832±.123 .853±.111 .801±.088 .546±.092 .778±.092 .896±.007 .910±.008 .844±.090 .818±.099

MIWrapper .849±.106 .796±.106 .827±.088 .582±.102 .770±.092 .929±.009 .906±.004 .847±.086 .831±.092

CCE .831±.027 .713±.024 .793±.021 .599±.027 .760±.012 .936±.006 .934±.006 .805±.102 .801±.095

EM-DD .849±.098 .869±.108 .771±.098 .609±.101 .730±.096 .538±.120 .410±.008 .741±.145 .739±.139

miSVM .874±.120 .836±.088 .822±.073 .582±.102 .789±.089 .915±.010 .915±.014 .854±.148 .849±.139

MIBoosting .837±.120 .790±.088 .827±.073 .638±.102 • .784±.089 .938±.019 .941±.017 .910±.060 • .898±.063 •
miGraph .889±.073 .903±.086 • .869±.078 • .616±.079 .801±.083 .980±.001 • .854±.006 .896±.070 .896±.072

miFV .909±.089 • .884±.094 .852±.081 .621±.109 .813±.083 • .968±.009 .961±.007 • .899±.070 .882±.070

Table III
RESULTS OF THE TRECVID 2005 DATA SET. NOTE THAT, THE BEST

RESULT OF EACH CRITERION IS MARKED IN BOLD; THE OTHER MIL
ALGORITHMS, I.E., CCE, EM-DD, miSVM, MIBoosting AND miGraph,

COULD NOT RETURN RESULTS IN 48 HOURS.

mi.p.↑ mi.r.↑ mi.f.↑ ma.p.↑ ma.r.↑ ma.f.↑
Simple-MI .229 .725 .348 .249 .710 .350

MIWrapper .243 .733 .365 .273 .718 .372

miFV .275 .723 .398 .325 .706 .412

these figures. All the experiments are performed on a machine

with 4×3.10 GHz CPUs and 8GB main memory.

Obviously, except for Simple-MI, miFV is the most

efficient MIL algorithm on all the data sets. EM-DD is the

most time-consuming one, followed by miSVM. For CCE,

because it trains an ensemble of classifiers based on multiple

clusterings, it is not efficient enough and even worse than

EM-DD and miGraph on the four moderate-sized data sets.

Compared with the accuracy-wise comparable algorithms,

i.e., MIBoosting and miGraph, miFV has hundreds of times

faster speed. Especially for the four moderate-sized data

sets, the efficiency of miFV is more prominent than other

state-of-the-art MIL algorithms.

D. Scalability

Here, we present the results of the large scale data set

(TRECVID 2005) in Table III. Because this data set contains

39 subdatasets, we evaluate the general performances on six

commonly used criteria: micro-averaged precision (mi.p.),

micro-averaged recall (mi.r.), micro-averaged F-score (mi.f.),

macro-averaged precision (ma.p.), macro-averaged recall
(ma.r.) and macro-averaged F-score (ma.f.). We can find

that miFV achieves the best performance on four criteria,

especially on mi.f. and ma.f. in Table III. Due to their high

computational complexity, the other five MIL algorithms

could not return result in 48 hours, even for 25% sampling

examples of the original training data. By contrast, miFV

can return results in several hours.

E. Parameter Analysis

In practice, before using the mapping function in miFV, we

can use Principal Component Analysis (PCA) to reduce noise

within the original instances in bags, or reduce dimension

of them if necessary. In addition, as aforementioned, miFV

has one important parameter, i.e., the number of Gaussian

components. In this section, we report the results of miFV

with different parameter values in Table IV. We first fix the

value of PCA energy on 1.0. As shown in Table IV, miFV

can achieve the best performance in most cases when the

number of Gaussian components is 1. Then, the value of the

number of centroids is fixed. For the two image data sets,

miFV achieves the best performance when we do not use

PCA. However it can get the best performance when PCA is

used on the two document classification data sets. That may

be related to the noises in the document data sets, which can

be overcome by using PCA to get better performance.

V. CONCLUSION

Multi-instance learning has achieved great success in

applications with complicated objects such as image and

gene categorization. However, existing MIL algorithms are

usually time-consuming to deal with large scale problems.

In this paper, we propose an efficient and scalable MIL

algorithm, i.e., miFV, which transforms the bag form of MIL

into a new feature vector representation. On one hand, miFV

has hundreds of, even thousands of times faster speed than

state-of-the-art MIL algorithms; on the other hand, miFV can

achieve comparable performances with other MIL algorithms.

In the future, it will be interesting to consider introducing

label information into the bag re-representation process.
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Figure 2. Comparison of mean time cost of trainning time on nine data sets. The time cost of test time has almost identical trend of training time.

Table IV
PARAMETER ANALYSIS RESULTS (MEAN±STD.) ON NINE DATA SETS. THE HIGHEST AVERAGE ACCURACY OF EACH COLUMN IS MARKED IN BOLD.

� of centers
Data set

Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

1 .875±.106 .861±.106 .852±.081 .560±.099 .789±.091 .943±.008 .930±.010 .879±.075 .875±.072
2 .909±.089 .864±.096 .829±.091 .542±.096 .765±.097 .932±.008 .923±.013 .899±.070 .882±.070
3 .888±.098 .844±.123 .806±.093 .538±.128 .712±.107 .932±.009 .919±.009 .881±.070 .879±.073
4 .889±.897 .835±.113 .781±.096 .554±.113 .708±.115 .932±.008 .921±.016 .882±.068 .877±.073
5 .864±.104 .831±.131 .764±.109 .531±.122 .686±.107 .930±.006 .922±.012 .881±.073 .878±.070

PCA energy
Data set

Musk1 Musk2 Elephant Fox Tiger Course Faculty 1000-Image 2000-Image

1.0 .909±.089 .864±.096 .829±.091 .542±.096 .765±.097 .932±.008 .923±.013 .899±.070 .882±.070
0.9 .840±.116 .843±.116 .851±.079 .595±.103 .795±.084 .968±.009 .960±.008 .836±.107 .833±.097
0.8 .763±.117 .752±.126 .836±.087 .621±.109 .813±.086 .964±.010 .959±.005 .793±.094 .798±.095

[3] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support
Vector Machines for Multiple-Instance Learning,” in Advances
in Neural Information Processing Systems 15. Cambridge,
MA: MIT Press, 2003, pp. 561–568.

[4] C. Zhang and P. Viola, “Multi-Instance Learning Pruning for
Learning Efficient Cascade Detectors,” in Advances in Neural
Information Processing Systems 20. Cambridge, MA: MIT
Press, 2008, pp. 1681–1688.

[5] G. Fung, M. Dundar, B. Krishnapuram, and R. B. Rao,
“Multiple Instance Learning for Computer Aided Diagnosis,”
in Advances in Neural Information Processing Systems 19.
Cambridge, MA: MIT Press, 2007, pp. 425–432.

[6] B. Li, W. Xiong, and W. Hu, “Web Horror Image Recognition
based on Context-Aware Multi-Instance Learning,” in Proc.
IEEE 11th Int’l Conf. Data Mining, Vancouver, Canada, 2011,
pp. 1158–1163.

[7] J. Amores, “Multiple Instance Classification: Review, Taxon-
omy and Comparative Study,” Artificial Intelligence, vol. 201,
pp. 81–105, 2013.

[8] Z.-H. Zhou and M.-L. Zhang, “Solving Multi-Instance Prob-
lems with Classifier Ensemble based on Constructive Clus-
tering,” Knowledge and Information Systems, vol. 11, pp.
155–170, 2007.

[9] Y. Chen, J. Bi, and J.-Z. Wang, “MILES: Multiple-Instance
Learning via Embedded Instance Selection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 12,
pp. 1931–1947, 2006.

[10] X. Xu and E. Frank, “Logistic Regression and Boosting for
Labeled Bags of Instances,” in Proc. 8th Pacific-Asia Conf.
Knowledge Discovery and Data Mining, Sydney, Australia,
2004, pp. 272–281.

[11] Z.-H. Zhou, Y.-Y. Sun, and Y.-F. Li, “Multi-Instance Learning
by Treating Instances As Non-I.I.D. Samples,” in Proc. 26th
Int’l Conf. Machine Learning, Montreal, Canada, 2009, pp.
1249–1256.

[12] Y.-X. Chen and J. Z. Wang, “Image Categorization by Learning
and Reasoning with Regions,” J. Machine Learning Research,
vol. 5, pp. 913–939, 2004.

[13] Z.-H. Zhou and J.-M. Xu, “On the Relation between Multi-
Instance Learning and Semi-Supervised Learning,” in Proc.
24th Int’l Conf. Machine Learning, Corvallis, OR, 2007, pp.
1167–1174.

[14] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image
Classification with the Fisher Vector: Theory and Practice,”
Int’l J. Computer Vision, vol. 105, no. 3, pp. 222–245, 2013.

[15] T. Jaakkola and D. Haussler, “Exploiting Generative Models in
Discriminative Classifiers,” in Advances in Neural Information
Processing Systems 11. Cambridge, MA: MIT Press, 1999,
pp. 487–493.

[16] F. Perronnin and C. Dance, “Fisher Kernels on Visual Vocabu-
laries for Image Categorization,” in Proc. IEEE Computer
Society Conf. Computer Vision and Pattern Recognition,
Minneapolis, Minnesota, 2007, pp. 1–8.

[17] E. T. Frank and X. Xu, “Applying propositional learning
algorithms to multi-instance data,” University of Waikato,
Department of Computer Science, University of Waikato,
Hamilton, NZ, Tech. Rep., 2003.

[18] Q. Zhang and S. A. Goldman, “EM-DD: An Improved
Multiple-Instance Learning Technique,” in Proc. 16th IEEE
Int’l Conf. Data Eng., San Diego, California, USA, 2000, pp.
233–243.

[19] D. Zhang, J. He, and R. Lawrence, “MI2LS: Multi-Instance
Learning from Multiple Information Sources,” in Proc. 19th
ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining, Chicago, Illinois, 2013, pp. 149–157.

[20] O. Maron and A. L. Ratan, “Multiple-Instance Learning
for Natural Scene Classification,” in Proc. 18th Int’l Conf.
Machine Learning, Williamstown, MA, 2001, pp. 425–432.

1042


