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Abstract—Deep convolutional neural network models pre-
trained for the ImageNet classification task have been successfully
adopted to tasks in other domains, such as texture description and
object proposal generation, but these tasks require annotations
for images in the new domain. In this paper, we focus on a
novel and challenging task in the pure unsupervised setting:
fine-grained image retrieval. Even with image labels, fine-grained
images are difficult to classify, let alone the unsupervised retrieval
task. We propose the Selective Convolutional Descriptor Aggre-
gation (SCDA) method. SCDA firstly localizes the main object in
fine-grained images, a step that discards the noisy background
and keeps useful deep descriptors. The selected descriptors are
then aggregated and dimensionality reduced into a short feature
vector using the best practices we found. SCDA is unsupervised,
using no image label or bounding box annotation. Experiments
on six fine-grained datasets confirm the effectiveness of SCDA for
fine-grained image retrieval. Besides, visualization of the SCDA
features shows that they correspond to visual attributes (even
subtle ones), which might explain SCDA’s high mean average
precision in fine-grained retrieval. Moreover, on general image
retrieval datasets, SCDA achieves comparable retrieval results
with state-of-the-art general image retrieval approaches.

Index Terms—Fine-grained image retrieval, selection and ag-
gregation, unsupervised object localization.

I. INTRODUCTION

FTER the breakthrough in image classification using

Convolutional Neural Networks (CNN) [1], pre-trained
CNN models trained for one task (e.g., recognition or de-
tection) have also been applied to domains different from
their original purposes (e.g., for describing texture [2] or
finding object proposals [3]). Such adaptations of pre-trained
CNN models, however, still require further annotations in the
new domain (e.g., image labels). In this paper, we show that
for fine-grained images which contain only subtle differences
among categories (e.g., varieties of dogs), pre-trained CNN
models can both localize the main object and find images in
the same variety. Since no supervision is used, we call this
novel and challenging task fine-grained image retrieval.

In fine-grained image classification [4], [5], [6], [7], [&],
[9], categories correspond to varieties in the same species.
The categories are all similar to each other, only distinguished
by slight and subtle differences. Therefore, an accurate system
usually requires strong annotations, e.g., bounding boxes for
object or even object parts. Such annotations are expensive
and unrealistic in many real applications. In answer to this
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(a) Fine-grained image retrieval. Two examples (“Mallard” and “Rolls-
Royce Phantom Sedan 2012”) from the CUB200-2011 [10] and Cars [11]
datasets, respectively.

(b) General image retrieval. Two examples from the Oxford Building [12]
dataset.

Figure 1. Fine-grained image retrieval vs. general image retrieval. Fine
grained image retrieval (FGIR) processes visually similar objects as the probe
and gallery. For example, given an image of Mallard (or Rolls-Royce Phantom
Sedan 2012) as the query, the FGIR system should return images of the
same bird species in various poses, scales and rotations (or images of the
same automobile type in various colors and angles). However, general-purpose
image retrieval focuses on searching through similar images based on their
similar contents, e.g., textures and shapes of the same one building. In every
row, the first image is the query and the rest are retrieved images.

difficulty, there are attempts to categorize fine-grained images
with only image-level labels, e.g., [6], [7], [8], [9].

In this paper, we handle a more challenging but more
realistic task, i.e., Fine-Grained Image Retrieval (FGIR). In
FGIR, given database images of the same species (e.g., birds,
flowers or dogs) and a query, we should return images which
are in the same variety as the query, without resorting to any
other supervision signal. FGIR is useful in applications such as
biological research and bio-diversity protection. As illustrated
in Fig. 1, FGIR is also different from general-purpose image
retrieval. General image retrieval focuses on retrieving near-
duplicate images based on similarities in their contents (e.g.,
textures, colors and shapes), while FGIR focuses on retrieving
the images of the same types (e.g., the same species for the
animals and the same model for the cars). Meanwhile, objects
in fine-grained images have only subtle differences, and vary
in poses, scales and rotations.

To meet these challenges, we propose the Selective Con-
volutional Descriptor Aggregation (SCDA) method, which
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automatically localizes the main object in fine-grained images
and extracts discriminative representations for them. In SCDA,
only a pre-trained CNN model (from ImageNet which is not
fine-grained) is used and we use absolutely no supervision.
As shown in Fig. 2, the pre-trained CNN model first extracts
convolution activations for an input image. We propose a
novel approach to determine which part of the activations are
useful (i.e., to localize the object). These useful descriptors are
then aggregated and dimensionality reduced to form a vector
representation using practices we propose in SCDA. Finally,
a nearest neighbor search ends the FGIR process.

We conducted extensive experiments on six popular fine-
grained datasets (CUB200-2011 [10], Stanford Dogs [13],
Oxford Flowers 102 [14], Oxford-IIIT Pets [15], Aircrafts [10]
and Cars [11]) for image retrieval. Moreover, we also tested
the proposed SCDA method on standard general-purpose
retrieval datasets (INRIA Holiday [17] and Oxford Building
5K [12]). In addition, we report the classification accuracy
of the SCDA method, which only uses the image labels. Both
retrieval and classification experiments verify the effectiveness
of SCDA. The key advantages and major contributions of our
method are:

« We propose a simple yet effective approach to localize the
main object. This localization is unsupervised, without
utilizing bounding boxes, image labels, object proposals,
or additional learning. SCDA selects only useful deep
descriptors and removes background or noise, which
benefits the retrieval task.

o With the ensemble of multiple CNN layers and the
proposed dimensionality reduction practice, SCDA has
shorter but more accurate representation than existing
deep learning based methods (cf. Sec. IV). For fine-
grained images, as presented in Table III, SCDA achieves
the best retrieval results. Furthermore, SCDA also has ac-
curate results on general-purpose image retrieval datasets,
cf. Table V.

o As shown in Fig. 8, the compressed SCDA feature has
stronger correspondence to visual attributes (even subtle
ones) than the deep activations, which might explain the
success of SCDA for fine-grained tasks.

Moreover, beyond the specific fine-grained image retrieval
task, our proposed method could be treated as one kind of
transfer learning, i.e., a model trained for one task (image clas-
sification on ImageNet) is used to solve another different task
(fine-grained image retrieval). It indeed reveals the reusability
of deep convolutional neural networks.

The rest of this paper is organized as follows. Sec. II
introduces the related work about general deep image retrieval
and fine-grained image tasks. The details of the proposed
SCDA method are presented in Sec. III. In Sec. IV, for
fine-grained image retrieval, we compare our method with
several baseline approaches and three state-of-the-art general
deep image retrieval approaches. Moreover, discussion on the
quality of the SCDA feature is illustrated. Sec. V concludes
the paper.

II. RELATED WORK

We will briefly review two lines of related work: deep
learning approaches for image retrieval and research on fine-
grained images.

A. Deep Learning for Image Retrieval

Until recently, most image retrieval approaches were based
on local features (with SIFT being a typical example) and
feature aggregation strategies on top of these local features.
Vector of Locally Aggregated Descriptors (VLAD) [18] and
Fisher Vector (FV) [19] are two typical feature aggregation
strategies. After the success of CNN [I], image retrieval
also embraced deep learning. Out-of-the-box features from
pre-trained deep networks were shown to achieve state-of-
the-art results in many vision related tasks, including image
retrieval [20].

Some efforts (e.g., [21], [22], [23], [24], [25], [26], [27D)
studied what deep descriptors can be used and how to use
them in image retrieval, and have achieved satisfactory re-
sults. In [21], to improve the invariance of CNN activations
without degrading their discriminative ability, they proposed
the multi-scale orderless pooling (MOP-CNN) method. MOP-
CNN firstly extracts CNN activations from the fully con-
nected layers for local patches at multiple scale levels, and
performed orderless VLAD [18&] pooling of these activations
at each level separately, and finally concatenated the features.
After that, [22] has extensively evaluated the performance of
such features with and without fine-tuning on related dataset.
This work has shown that PCA-compressed deep features
can outperform compact descriptors computed on traditional
SIFT-like features. Later, [23] found that using sum-pooling
to aggregate deep features on the last convolutional layer
leads to better performance, and proposed the sum-pooled
convolutional (SPoC) features. Based on that, [25] applied
weighting both spatially and per channel before sum-pooling
to create a final aggregation. [27] proposed a compact image
representation derived from the convolutional layer activations
that encodes multiple image regions without the need to re-
feed multiple inputs to the network. Very recently, the authors
of [26] investigated several effective usages of CNN activa-
tions on both image retrieval and classification. In particular,
they aggregated activations of each layer and concatenated
them into the final representation, which achieved satisfactory
results.

However, these approaches directly used the CNN activa-
tions/descriptors and encoded them into a single representa-
tion, without evaluating the usefulness of the obtained deep
descriptors. In contrast, our proposed SCDA method can select
only useful deep descriptors and remove background or noise
by localizing the main object unsupervisedly. Meanwhile,
we have also proposed several good practices of SCDA for
retrieval tasks. In addition, the previous deep learning based
image retrieval approaches were all designed for general image
retrieval, which is quite different from fine-grained image
retrieval. As will be shown by our experiments, state-of-the-art
general image retrieval approaches do not work well for the
fine-grained image retrieval task.
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Figure 2. Pipeline of the proposed SCDA method. An input image with arbitrary resolution is fed into a pre-trained CNN model, and extracted as an order-3
convolution activation tensor. Based on the activation tensor, SCDA firstly selects the deep descriptors by locating the main object in fine-grained images
unsupervisedly. Then, it pools the selected deep descriptors into the SCDA feature as the whole image representation. In the figure, (b)-(e) show the process
of selecting useful deep convolutional descriptors, and the details can be found in Sec. III-B1. (This figure is best viewed in color.)

Additionally, several variants of image retrieval were studied
in the past few years, e.g., multi-label image retrieval [28],
sketch-based image retrieval [29] and medical CT image
retrieval [30]. In this paper, we will focus on the novel and
challenging fine-grained image retrieval task.

B. Fine-Grained Image Tasks

Fine-grained classification has been popular in the past
few years, and a number of effective fine-grained recognition
methods have been developed in the literature [4], [5], [6], [7],
(81, [91.

We can roughly categorize these methods into three groups.
The first group, e.g., [31], [8], attempted to learn a more
discriminative feature representation by developing powerful
deep models for classifying fine-grained images. The second
group aligned the objects in fine-grained images to eliminate
pose variations and the influence of camera position, e.g., [5].
The last group focused on part-based representations. How-
ever, because it is not realistic to obtain strong annotations
(object bounding boxes and/or part annotations) for a large
number of images, more algorithms attempted to classify fine-
grained images using only image-level labels, e.g., [0], [7], [8],
[9].

All the previous fine-grained classification methods needed
image-level labels (others even needed part annotations) to
train their deep networks. Few works have touched unsu-
pervised retrieval of fine-grained images. Wang et al. [32]
proposed Deep Ranking to learn similarity between fine-
grained images. However, it requires image-level labels to
build a set of triplets, which is not unsupervised and cannot
scale well for large scale image retrieval tasks.

One related research to FGIR is [33]. The authors of [33]
proposed the fine-grained image search problem. [33] used
the bag-of-word model with SIFT features, while we use pre-
trained CNN models. Beyond this difference, a more important
difference is how the database is constructed.

[33] constructed a hierarchical database by merging sev-
eral existing image retrieval datasets, including fine-grained
datasets (e.g., CUB200-2011 and Stanford Dogs) and general
image retrieval datasets (e.g., Oxford Buildings and Paris).
Given a query, [33] first determines its meta class, and then

does a fine-grained image search if the query belongs to the
fine-grained meta category. In FGIR, the database contains
images of one single species, which is more suitable in fine-
grained applications. For example, a bird protection project
may not want to find dog images given a bird query. To our
best knowledge, this is the first attempt to fine-grained image
retrieval using deep learning.

III. SELECTIVE CONVOLUTIONAL DESCRIPTOR
AGGREGATION

In this section, we propose the Selective Convolutional
Descriptor Aggregation (SCDA) method. Firstly, we will in-
troduce the notations used in this paper. Then, we present the
descriptor selection process, and finally, the feature aggrega-
tion details will be described.

A. Preliminary

The following notations are used in the rest of this paper.
The term “feature map” indicates the convolution results of
one channel; the term “activations” indicates feature maps of
all channels in a convolution layer; and the term “descriptor”
indicates the d-dimensional component vector of activations.
“pool;” refers to the activations of the max-pooled last con-
volution layer, and “fcg” refers to the activations of the last
fully connected layer.

Given an input image I of size H x W, the activations of a
convolution layer are formulated as an order-3 tensor 1" with
h x w x d elements, which include a set of 2-D feature maps
S={S.}(n=1,...,d). S, of size h x w is the n-th feature
map of the corresponding channel (the n-th channel). From
another point of view, 7" can be also considered as having hxw
cells and each cell contains one d-dimensional deep descriptor.
We denote the deep descriptors as X = {m(w») }, where (i, )
is a particular cell (i € {1,...,h},j € {1,...,w},x; ) €
R?). For instance, by employing the popular pre-trained VGG-
16 model [34] to extract deep descriptors, we can geta 7 X 7 X
512 activation tensor in pooly if the input image is 224 x 224.
Thus, on one hand, for this image, we have 512 feature maps
(i.e., Sy,) of size 7 X 7; on the other hand, 49 deep descriptors
of 512-d are also obtained.
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B. Selecting Convolutional Descriptors

What distinguishes SCDA from existing deep learning-
based image retrieval methods is: using only the pre-trained
model, SCDA is able to find useful deep convolutional fea-
tures, which in effect localizes the main object in the image
and discards irrelevant and noisy image regions. Note that
the pre-trained model is not fine-tuned using the target fine-
grained dataset. In the following, we propose our descriptor
selection method, and then present quantitative and qualitative
localization results.

1) Descriptor Selection: After obtaining the pooly activa-
tions, the input image I is represented by an order-3 tensor
T, which is a sparse and distributed representation [35], [36].
The distributed representation argument claims that concepts
are encoded by a distributed pattern of activities spread across
multiple neurons [37]. In deep neural networks, a distributed
representation means a many-to-many relationship between
two types of representations (i.e., concepts and neurons): Each
concept is represented by a pattern of activity distributed over
many neurons, and each neuron participates in the represen-
tation of many concepts [35], [36].

In Fig. 3, we show some images taken from five fine-
grained datasets, CUB200-2011 [10], Stanford Dogs [|3],
Oxford Flowers 102 [14], Aircrafts [16] and Cars [11]. We
randomly sample several feature maps from the 512 fea-
ture maps in pool; and overlay them to original images
for better visualization. As can be seen from Fig. 3, the
activated regions of the sampled feature map (highlighted in
warm color) may indicate semantically meaningful parts of
birds/dogs/flowers/aircrafts/cars, but can also indicate some
background or noisy parts in these fine-grained images.

In addition, the semantic meanings of the activated regions
are quite different even for the same channel. For example, in
the 464th feature map for birds on the right side, the activated
region in the first image indicates the Pine Warbler’s tail
and the second does the Black-capped Vireo’s head. In the
274th feature map for dogs, the first indicates the German
Shepherd’s head, while the second even has no activated region
for the Cockapoo, except for a part of noisy background.
The other examples of flowers, aircrafts and cars have the
same characteristics. In addition, there are also some activated
regions representing the background, e.g., the 19th feature map
for Pine Warbler and the 418th one for German Shepherd.
Fig. 3 conveys that not all deep descriptors are useful, and
one single channel contains at best weak semantic information
due to the distributed nature of this representation. Therefore,
selecting and using only useful deep descriptors (and removing
noise) is necessary. However, in order to decide which deep
descriptor is useful (i.e., containing the object we want to
retrieve), we cannot count on any single channel individually.

We propose a simple yet effective method (shown in Fig. 2),
and its quantitative and qualitative evaluation will be demon-
strated in the next section. Although one single channel is not
very useful, if many channels fire at the same region, we could
expect this region to be an object rather than the background.
Therefore, in the proposed method, we add up the obtained
pool; activation tensor through the depth direction. Thus, the

Algorithm 1 Finding connected components in binary images

Require: A binary image /;
1: Select one pixel p as the starting point;
2: while True do
3:  Use a flood-fill algorithm to label all the pixels in the con-
nected component containing p;
if All the pixels are labeled then
Break;
end if
Search for the next unlabeled pixel as p;
end while
return Connectivity of the connected components, and their
corresponding size (pixel numbers).

0 XNk

h x w x d 3-D tensor becomes an h x w 2-D tensor, which
we call the “aggregation map”, i.e., A = Zi:l S, (where S,
is the n-th feature map in pools). For the aggregation map A,
there are h x w summed activation responses, corresponding to
h x w positions. Based on the aforementioned observation, it
is straightforward to say that the higher activation response
of a particular position (,7), the more possibility of its
corresponding region being part of the object. Additionally,
fine-grained image retrieval is an unsupervised problem, in
which we have no prior knowledge of how to deal with
it. Consequently, we calculate the mean value a of all the
positions in A as the threshold to decide which positions
localize objects: the position (7, j) whose activation response
is higher than @ indicates the main object, e.g., birds, dogs or
aircrafts, might appear in that position. A mask map M of the
same size as A can be obtained as:

1 if A; j>a
M; ;= o, (D
’ 0 otherwise

where (7, j) is a particular position in these h x w positions.

In Fig. 3, the figures in the second last column for each
fine-grained datasets show some examples of the mask maps
for birds, dogs, flowers, aircrafts and cars, respectively. For
these figures, we first resize the mask map M using the
bicubic interpolation, such that its size is the same as the
input image. We then overlay the corresponding mask map
(highlighted in red) onto the original images. Even though the
proposed method does not train on these datasets, the main
objects (e.g., birds, dogs, aircrafts or cars) can be roughly
detected. However, as can be seen from these figures, there
are still several small noisy parts activated on a complicated
background. Fortunately, because the noisy parts are usually
smaller than the main object, we employ Algorithm 1 to collect
thAg largest connected component of M, which is denoted as
M, to get rid of the interference caused by noisy parts. In the
last column, the main objects are kept by M, while the noisy
parts are discarded, e.g., the plant, the cloud and the grass.

Therefore, we use M to select useful and meaningful deep
convolutional descriptors. The descriptor @ ; ;) should be kept
when ]\Aj,] = 1, while J\ZJ = 0 means the position (i, )
might have background or noisy parts:

F= {wu,j)IAZ-,j = 1} : )
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Figure 3. Sampled feature maps of fine-grained images from five fine-grained datasets (CUB200-2011, Stanford Dogs, Oxford Flowers, Aircrafts and Cars).
Although we resize the images for better visualization, our method can deal with images of any resolution. The first column of each subfigure are the input
images, and the randomly sampled feature maps are the following four columns. The last two columns are the mask maps M and the corresponding largest
connected component M. The selected regions are highlighted in red with the black boundary. (The figure is best viewed in color.)

where F' stands for the selected descriptor set, which will
be aggregated into the final representation for retrieving fine-
grained images. The whole convolutional descriptor selection
process is illustrated in Fig. 2b-2e.

2) Qualitative Evaluation: In this section, we give the
qualitative evaluation of the proposed descriptor selection
process. Because four fine-grained datasets (i.e., CUB200-
2011, Stanford Dogs, Aircrafts and Cars) supply the ground-
truth bounding box for each image, it is desirable to evaluate
the proposed method for object localization. However, as
seen in Fig. 3, the detected regions are irregularly shaped.
So, the minimum rectangle bounding boxes which contain
the detected regions are returned as our object localization
predictions.

We evaluate the proposed method to localize the whole-
object (birds, dogs, aircrafts or cars) on their test sets. Ex-
ample predictions can be seen in Fig. 4. From these figures,
the predicted bounding boxes approximate the ground-truth
bounding boxes fairly accurately, and even some results are
better than the ground truth. For instance, in the first dog

image shown in Fig. 4, the predicted bounding box can cover
both dogs; and in the third one, the predicted box contains
less background, which is beneficial to retrieval performance.
Moreover, the predicted boxes of Aircrafts and Cars are almost
identical to the ground-truth bounding boxes in many cases.
However, since we utilize no supervision, some details of
the fine-grained objects, e.g., birds’ tails, cannot be contained
accurately by the predicted bounding boxes.

3) Quantitative Evaluation: We also report the results in
terms of the Percentage of Correctly Localized Parts (PCP)
metric for object localization in Table I. The reported metrics
are the percentage of whole-object boxes that are correctly
localized with a >50% IOU with the ground-truth bounding
boxes. In this table, for CUB200-2011, we show the PCP
results of two fine-grained parts (i.e., head and torso) reported
in some previous part localization based fine-grained classi-
fication algorithms [38], [4], [5]. Here, we first compare the
whole-object localization rates with that of fine-grained parts
for a rough comparison. In fact, the forso bounding box is
highly similar to that of the whole-object in CUB200-2011.
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Figure 4. Random samples of predicted object localization bounding box. Each row contains ten representative object localization bounding box results for
four fine-grained datasets, respectively. The ground-truth bounding box is marked as the red dashed rectangle, while the predicted one is marked in the solid

yellow rectangle. (The figure is best viewed in color.)

By comparing the results of PCP for rorso and our whole-
object, we find that, even though our method is unsupervised,
the localization performance is just slightly lower or even
comparable to that of these algorithms using strong super-
visions, e.g., ground-truth bounding box and parts annotations
(even in the test phase). For Stanford Dogs, our method
can get 78.86% object localization accuracy. Moreover, the
results of Aircrafts and Cars are 94.91% and 90.96%, which
validates the effectiveness of the proposed unsupervised object
localization method.

Additionally, in our proposed method, the largest connected
component M of the obtained mask map is kept. We further
investigate how this filtering step affects object localization
performance by removing this processing. Then, based on
M, the object localization results based on these datasets
are: 45.18%, 68.67%, 59.83% and 79.36% for CUB200-2011,
Stanford Dogs, Aircrafts and Cars, respectively. The localiza-
tion accuracy based on M is much lower than the accuracy
based on M, which proves the effectiveness of obtaining the
largest connected component. Besides, we also consider these
drops through the relation to the size of the ground truth
bounding boxes. From this point of view, Fig. 5 shows the
percentage of the whole images covered by the ground truth
bounding boxes on four fine-grained datasets, respectively. It
is obvious that most ground truth bounding boxes of CUB200-
2011 and Aircrafts are less than 50% size of the whole images.
Thus, for the two datasets, the drops are large. However,
for Cars, as shown in Fig. 5d, the percentage’s distribution
approaches a normal distribution. For Stanford Dogs, a few
ground truth bounding boxes cover less than 20% image size
or covering more than 80% image size. Therefore, for these
two datasets, the effect of removing the largest connected
component processing could be small.

What’s more, because our method does not require any
supervision, a state-of-the-art unsupervised object localization
method, i.e., [39], is conducted as the baseline. [39] uses off-
the-shelf region proposals to form a set of candidate bounding
boxes for objects. Then, these regions are matched across

450 600
400
500
350
300 400
250
300
200
150 200
100
100
50
o o
o 02 04 06 08 1 o 02 04 08 08 1

(a) CUB200-2011

(b) Stanford Dogs

450 600

400
500

350
300 400

250
300

200
150 200

100
100

50
0 o

o 02 04 08 [ 1 1 ) 02 04 06 08 1 1

2

2

(c) Aircrafts (d) Cars

Figure 5. Percentage of the whole images covered by the ground truth
bounding boxes on four fine-grained datasets. The vertical axis is the number
of images, and the horizontal axis is the percentage.

images using a probabilistic Hough transform that evaluates
the confidence for each candidate correspondence considering
both appearance and spatial consistency. After that, domi-
nant objects are discovered and localized by comparing the
scores of candidate regions and selecting those that stand
out over other regions containing them. As [39] is not a
deep learning based method, most of its localization results
on these fine-grained datasets are not satisfactory, which are
reported in Table I. Specifically, for many images of Aircrafts,
[39] returns the whole images as the corresponding bounding
boxes predictions. While, as shown in Fig. 5c, only a small
percentage of ground truth bounding boxes approach the whole
images, which could explain why the unsupervised localization
accuracy on Aircrafts of [39] is much worse than ours.
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Table I
COMPARISON OF OBJECT LOCALIZATION PERFORMANCE ON FOUR FINE-GRAINED DATASETS.
Train phase Test phase .
Dataset Method BBox [ Pars T BBox [ Parts Head | Torso | Whole-object
Strong DPM [38] v v v 43.49 | 75.15 -
Part-based R-CNN with BBox [4] v v v 68.19 | 79.82 -
CUB200-2011 Deep LAC [5] v v v 74.00 | 96.00 -
Part-based R-CNN [4] v v 61.42 | 70.68 -
Unsupervised object discovery [39] - - 69.37
Ours - - 76.79
Unsupervised object discovery [39] - - 36.23
Stanford Dogs Ours B B 78.86
. Unsupervised object discovery [39] - - 42.11
Aircrafts Ours - - 94.91
Unsupervised object discovery [39] - - 93.05
Cars Ours - - 90.96
C. Aggregating Convolutional Descriptors Table II

After the selection process, the selected descriptor set
P = {w(i,jﬂ]\zd = 1? is obtained. In the following, we
compare several encoding or pooling approaches to aggregate
these convolutional features, and then give our proposal.

« Vector of Locally Aggregated Descriptors (VLAD) [18]
is a popular encoding approach in computer vision.
VLAD uses k-means to find a codebook of K centroids
{e1,...,cx} and maps x(; ;) into a single vector v(; jy =
[0 o 0Ty —cp O} € REXd where ¢y, is the
closest centroid to x(; ;). The final representation of F'
is Zi,j V(i,j5)-

o Fisher Vector (FV) [19]. The encoding process of FV
is similar to VLAD. But it uses a soft assignment (i.e.,
Gaussian Mixture Model) instead of using k-means for
pre-computing the codebook. Moreover, FV also includes
second-order statistics.

« Pooling approaches. We also try two traditional pooling
approaches, i.e., global average-pooling and max-pooling,
to aggregate the deep descriptors, i.e.,

1
Pavg = N Zi,j L(i,5) 5

Pmax = Hg‘?xw(v,]) )
)

where pave and prax are both 1 X d dimensional. N is
the number of the selected descriptors.

After encoding or pooling the selected descriptor set F'
into a single vector, for VLAD and FV, the square root
normalization and ¢5-normalization are followed; for max- and
average-pooling methods, we do ¢3-normalization (the square
root normalization did not work well). Finally, the cosine
similarity is used for nearest neighbor search. We use two
datasets to demonstrate which type of aggregation method is
optimal for fine-grained image retrieval. The original training
and testing splits provided in the datasets are used. Each
image in the testing set is treated as a query, and the training
images are regarded as the gallery. The top-k mAP retrieval
performance is reported in Table II.

For the parameter choice of VLAD/FV, we follow the
suggestions reported in [40]. The number of clusters in VLAD
and the number of Gaussian components in FV are both set to

COMPARISON OF DIFFERENT ENCODING OR POOLING APPROACHES FOR
FGIR. THE BEST RESULT OF EACH COLUMN IS MARKED IN BOLD.

. . CUB200-2011 | Stanford Dogs

Approach Dimension topl | tops topl | tops
VLAD (k=2) 1,024 55.92 | 62.51 | 69.28 | 74.43
VLAD (k=128) 6,5536 55.66 | 62.40 | 68.47 | 75.01
Fisher Vector (k=2) 2,048 52.04 | 59.19 | 68.37 | 73.74
Fisher Vector (k=128) 131,072 | 45.44 | 53.10 | 61.40 | 67.63
avgPool 512 56.42 | 63.14 | 73.76 | 78.47
maxPool 512 58.35 | 64.18 | 70.37 | 75.59

[ avg&maxPool | 1,024 | 59.72 | 65.79 | 74.86 | 719.24

2. As shown in the table, larger values lead to lower accuracy.
Moreover, we find the simpler aggregation methods such
as global max- and average-pooling achieve better retrieval
performance comparing with the high-dimensional encoding
approaches. These observations are also consistent with the
findings in [23] for general image retrieval. The reason why
VLAD and FV do not work well in this case is related
to the rather small number of deep descriptors that need
to be aggregated. The average number of deep descriptors
selected per image for CUB200-2011 and Stanford Dogs is
40.12 and 46.74, respectively. Then, we propose to concatenate
the global max-pooling and average-pooling representations,
“avg&maxPool”, as our aggregation scheme. Its performance
is significantly and consistently higher than the others. We
use the “avg&maxPool” aggregation as “SCDA feature” to
represent the whole fine-grained image.

D. Multiple Layer Ensemble

As studied in [41], [42], the ensemble of multiple layers
boosts the final performance. Thus, we also incorporate an-
other SCDA feature produced from the relus o layer which is
three layers in front of pooly in the VGG-16 model [34].

Following pool;, we get the mask map My, , from relus_s.
Its activations are less related to the semantic meaning than
those of pools. As shown in Fig. 6 (c), there are many noisy
parts. However, the bird is more accurately detected than
pool;. Therefore, we combine Mpool5 and My, , together to
get the final mask map of relus s. Mp0015 is firstly upsampled
to the size of My, ,. We keep the descriptors when their
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(d) Mpool,; n Mre

(c) M of relus_o

lus_2

Figure 6. The mask map and its corresponding largest connected component
of pools, and the mask map and the final mask map (i.e., Mp0015 N Mielus )
of relus_». (The figure is best viewed in color.) -

position in both Mpool5 and Mep; , are 1, which are the final
selected relus o descriptors. The aggregation process remains
the same. Finally, we concatenate the SCDA features of relus_o
and pool; into a single representation, denoted by “SCDA™”":

SCDA™ «— [SCDApool,; @ X SCDAely; , ] 3)

where o is the coefficient for SCDAy, ,. It is set to 0.5
for FGIR. After that, we do the ¢, normalization on the
concatenation feature. In addition, another SCDA™T of the
horizontal flip of the original image is incorporated, which
is denoted as “SCDA_ﬂip*” (4,096-d). Additionally, we also
try to combine features from more different layers, e.g., pooly.
However, the retrieval performance improved slightly (about
0.01%~0.04% top-1 mAP), while the feature dimensionality
became much larger than the proposed SCDA features.

IV. EXPERIMENTS AND RESULTS

In this section, we firstly describe the datasets and the
implementation details of the experiments. Then, we report
the fine-grained image retrieval results. We also test our pro-
posed SCDA method on two general-purpose image retrieval
datasets. As additional evidence to prove the effectiveness
of SCDA, we report the fine-grained classification accuracy
by fine-tuning the pre-trained model with image-level labels.
Finally, the main observations are summarized.

A. Datasets and Implementation Details

For fine-grained image retrieval, the empirical evaluation is
performed on six benchmark fine-grained datasets, CUB200-
2011 [10] (200 classes, 11,788 images), Stanford Dogs [13]
(120 classes, 20,580 images), Oxford Flowers 102 [14] (102
classes, 8,189 images), Oxford-IIIT Pets [15] (37 classes,
7,349 images), Aircrafts [16] (100 classes, 10,000 images) and
Cars [11] (196 classes, 16,185 images).

Additionally, two standard image retrieval datasets (INRIA
Holiday [17] and Oxford Building 5K [12]) are employed for
evaluating the general-purpose retrieval performance.

In experiments, for the pre-trained deep model, the publicly
available VGG-16 model [34] is employed to extract deep con-
volutional descriptors using the open-source library MatConv-
Net [43]. For all the retrieval datasets, the subtracted mean
pixel values for zero-centering the input images are provided
by the pre-trained VGG-16 model. All the experiments are
run on a computer with Intel Xeon E5-2660 v3, 500G main
memory, and an Nvidia Tesla K80 GPU.

B. Fine-Grained Image Retrieval Performance

In the following, we report the results for fine-grained
image retrieval. We compare the proposed method with several
baseline approaches and three state-of-the-art general image
retrieval approaches, SPoC [23], CroW [25] and R-MAC [27].
The top-1 and top-5 mAP results are reported in Table III.

Firstly, we conduct the SIFT descriptors with Fisher Vector
encoding as the handcrafted-feature-based retrieval baseline.
The parameters of SIFT and FV used in experiments fol-
lowed [33]. The feature dimension is 32,768. Its retrieval per-
formance on CUB200-2011, Stanford Dogs, Oxford Flowers
and Oxford Pets is significantly worse than the deep learning
methods/baselines. But, the retrieval results on rigid bodies
like aircrafts and cars are good, while they are still worse than
deep learning retrieval methods. In addition, we also feed the
ground truth bounding boxes to replace the whole images. As
shown in Table III, because the ground truth bounding boxes
of these fine-grained images just contain the main objects,
“SIFT_FV_gtBBox” achieves significantly better performance
than that of the whole images.

For the fcg baseline, because it requires the input images at a
fixed size, the original images are resized to 224 x 224 and then
fed into VGG-16. Similar to the SIFT baseline, we also feed
the ground truth bounding boxes to replace the whole images.
The fcg feature of the ground truth bounding box achieves
better performance. Moreover, the retrieval results of the fcg
feature using the bounding boxes predicted by our method
are also shown in Table III, which are slightly lower than the
ground-truth ones. This observation validates the effectiveness
of our method’s object localization once again.

For the pooly baseline, the pooly descriptors are extracted
directly without any selection process. We pool them by
both average- and max-pooling, and concatenate them into
a 1,024-d representation. As shown in Table III, the perfor-
mance of pooly is better than “fcg_im”, but much worse than
the proposed SCDA feature. In addition, VLAD and FV is
employed to encode the selected deep descriptors, and we
denote the two methods as “selectVLAD” and “selectFV”
in Table III. The features of selectVLAD and selectFV have
larger dimensionality, but lower mAP in the retrieval task.

State-of-the-art general image retrieval approaches, e.g.,
SPoC, CroW and R-MAC, can not get satisfactory results
for fine-grained images. Hence, general deep learning image
retrieval methods could not be directly applied to FGIR.

We also report the results of SCDA" and SCDA_flip™
on these six fine-grained datasets in Table III. In general,



ACCEPTED BY IEEE TIP

SCDA_flip" is the best amongst the compared methods.
Comparing these results with the ones of SCDA, we find
the multiple layer ensemble strategy (cf. Sec. III-D) could
improve the retrieval performance, and furthermore horizontal
flip boosts the performance significantly. Therefore, if your
retrieval tasks prefer a low dimensional feature representa-
tion, SCDA is the optimal choice, or, the post-processing on
SCDA_flip™ features is recommended.

1) Post-Processing: In the following, we compare several
feature compression methods on the SCDA_ﬂipJr feature: (a)
Singular Value Decomposition (SVD); (b) Principal Compo-
nent Analysis (PCA); (c) PCA whitening (its results were
much worse than other methods and are omitted) and (d)
SVD whitening. We compress the SCDA_flip™ feature to
256-d and 512-d, respectively, and report the compressed
results in Table IV. Comparing the results shown in Ta-
ble III and Table IV, the compressed methods can reduce
the dimensionality without hurting the retrieval performance.
SVD (which does not remove the mean vector) has slightly
higher rates than PCA (which removes the mean vector). The
“512-d SVD+whitening” feature can achieve better retrieval
performance: 2%~4% higher than the original SCDA_flip™*
feature on CUB200-2011 and Oxford Flowers, and signif-
icantly 7%~13% on Aircrafts and Cars. Moreover, “512-
d SVD+whitening” with less dimensions generally achieves
better performance than other compressed SCDA features.
Therefore, we take it as our optimal choice for FGIR. In the
following, we present some retrieval examples based on “512-
d SVD+whitening”.

In Fig. 7, we show two successful retrieval results and two
failure cases for each fine-grained dataset, respectively. As
shown in the successful cases, our method can work well
when the same kind of birds, animals, flowers, aircrafts or
cars appear in different kinds of background. In addition, for
these failure cases, there exist only tiny differences between
the query image and the returned ones, which can not be
accurately detected in this pure unsupervised setting. We can
also find some interesting observations, e.g., the last failure
case of the flowers and pets. For the flowers, there are two
correct predictions in the top-5 returned images. Even though
the flowers in the correct predictions have different colors with
the query, our method can still find them. For the pets’ failure
cases, the dogs in the returned images have the same pose as
the query image.

C. Quality and Insight of the SCDA Feature

In this section, we discuss the quality of the proposed SCDA
feature. After SVD and whitening, the former distributed
dimensions of SCDA have more discriminative ability, i.e.,
directly correspond to semantic visual properties that are use-
ful for retrieval. We use five datasets (CUB200-201 1, Stanford
Dogs, Oxford Flowers, Aircrafts and Cars) as examples to
illustrate the quality. We first select one dimension of “512-d
SVD+whitening”, and then sort the value of that dimension in
the descending order. Then, we visualize images in the same
order, which is shown in Fig. 8.

Images of each column have some similar “attributes”, e.g.,
living in water and opening wings for birds; brown and white

heads and similar looking faces for dogs; similar shaped
inflorescence and petals with tiny spots for flowers; similar
poses and propellers for aircrafts; similar point of views
and motorcycle types for cars. Obviously, the SCDA feature
has the ability to describe the main objects’ attributes (even
subtle attributes). Thus, it can produce human-understandable
interpretation manuals for fine-grained images, which might
explain its success in fine-grained image retrieval. In addition,
because the values of the compressed SCDA features might be
positive, negative and zero, it is meaningful to sort these values
either in the descending order (shown in Fig. 8), or ascending
order. The images returned in ascending also exhibit some
similar visual attributes.

D. General Image Retrieval Results

For further investigation of the effectiveness of the proposed
SCDA method, we compare it with three state-of-the-art
general image retrieval approaches (SPoC [23], CroW [25] and
R-MAC [27]) on the INRIA Holiday [17] and Oxford Building
5K [12] datasets. Following the protocol in [22], [23], for
the Holiday dataset, we manually fix images in the wrong
orientation by rotating them by +90 degrees, and report the
mean average precision (mAP) over 500 and 55 queries for
Holiday and Oxford Building 5K, respectively.

In the experiments of these two general image retrieval
datasets, we use the SCDA and SCDA_Aflip features, and com-
press them by SVD whitening. As shown by the results pre-
sented in Table V, the compressed SCDA_{flip (512-d) achieves
the highest mAP among the proposed ones. In addition,
comparing with state-of-the-arts, the compressed SCDA_flip
(512-d) is significantly better than SPoC [23], CroW [25],
and comparable with the R-MAC approach [27]. Therefore,
the proposed SCDA not only significantly outperforms the
general image retrieval state-of-the-art approaches for fine-
grained image retrieval, but can also obtain comparable results
for general-purpose image retrieval tasks.

E. Fine-Grained Classification Results

In the end, we compare with several state-of-the-art fine-
grained classification algorithms to validate the effectiveness
of SCDA from the classification perspective.

In the classification experiments, we adopt two strategies to
fine-tune the VGG-16 model with only the image-level labels.
One strategy is directly fine-tuning the pre-trained model of
the original VGG-16 architecture by adding the horizontal flips
of the original images as data augmentation. After obtaining
the fine-tuned model, we extract the SCDA_ﬂipJr as the whole
image representations and feed them into a linear SVM [44]
to train a classifier.

The other strategy is to build an end-to-end SCDA architec-
ture. Before each epoch, the masks M of pools and relus 5 are
extracted first. Then, we implement the selection process as
an element-wise product operation between the convolutional
activation tensor 7' and the mask matrix M. Therefore, the
descriptors located in the object region will remain, while the
other descriptors will become zero vectors. In the forward
pass of the end-to-end SCDA, we select the descriptors of
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Table 111
COMPARISON OF FINE-GRAINED IMAGE RETRIEVAL PERFORMANCE. THE BEST RESULT OF EACH COLUMN IS IN BOLD.
. . CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets Aircrafts Cars

Method Dimension topl | top5 topl | top5 topl | topd topl | topd topl | top5 topl | topd
SIFT_FV 32,768 5.25 8.07 12.58 | 16.38 || 30.02 | 36.19 17.50 | 24.97 || 30.69 | 37.44 19.30 | 24.11
SIFT_FV_gtBBox 32,768 9.98 14.29 15.86 | 21.15 - - - - 38.70 | 46.87 || 34.47 | 40.34
fcg_im 4,096 39.90 | 48.10 || 66.51 | 72.69 || 55.37 | 60.37 82.26 | 86.02 || 28.98 | 35.00 19.52 | 25.77
fcg_gtBBox 4,096 47.55 | 55.34 70.41 | 76.61 - - - - 34.80 | 41.25 30.02 | 37.45
fcg_predBBox 4,096 45.24 | 53.05 || 68.78 | 74.09 || 57.16 | 62.24 85.55 | 88.47 || 3042 | 36.50 || 22.27 | 29.24
pooly 1,024 57.54 | 63.66 || 69.98 | 75.55 || 70.73 | 74.05 85.09 | 87.74 || 47.37 | 53.61 3488 | 41.86
selectFV 2,048 52.04 | 59.19 || 68.37 | 73.74 || 70.47 | 73.60 85.04 | 87.09 || 48.69 | 54.68 || 35.32 | 41.60
selectVLAD 1,024 55.92 | 62.51 69.28 | 7443 || 73.62 | 76.86 85.50 | 87.94 || 50.35 | 56.37 || 37.16 | 43.84
SPoC (w/o cen.) 256 3479 | 42.54 || 48.80 | 55.95 || 71.36 | 74.55 60.86 | 67.78 || 37.47 | 43.73 || 29.86 | 36.23
SPoC (with cen.) 256 39.61 | 47.30 || 48.39 | 55.69 || 65.86 | 70.05 64.05 | 71.22 || 42.81 | 48.95 || 27.61 | 33.88
CroW 256 5345 | 59.69 || 62.18 | 68.33 || 73.67 | 76.16 76.34 | 80.10 || 53.17 | 58.62 || 44.92 | 51.18
R-MAC 512 5224 | 59.02 || 59.65 | 66.28 || 76.08 | 78.19 76.97 | 81.16 || 48.15 | 54.94 || 46.54 | 52.98
SCDA 1,024 59.72 | 65.79 || 74.86 | 79.24 || 75.13 | 77.70 87.63 | 89.26 || 53.26 | 58.64 || 38.24 | 45.16
SCDAT 2,048 59.68 | 65.83 || 74.15 | 78.54 || 75.98 | 78.49 87.99 | 89.49 || 53.53 | 59.11 38.70 | 45.65
SCDA_flipt 4,096 60.65 | 66.75 || 74.95 | 79.27 || 77.56 | 79.77 88.19 | 89.65 || 54.52 | 59.90 || 40.12 | 46.73

Table IV
COMPARISON OF DIFFERENT COMPRESSION METHODS ON “SCDA_FLIPt”.
. . CUB200-2011 Stanford Dogs Oxford Flowers Oxford Pets Aircrafts Cars

Method Dimension topl [ top5 topl [ top5 topl [ top5 topl [ top5 topl [ top5 topl [ top5
PCA 256 60.48 | 66.55 || 74.63 | 79.09 || 76.38 | 79.32 87.82 | 89.75 || 52.75 | 58.24 || 37.94 | 44.54

512 60.37 | 66.78 || 74.76 | 79.27 || 77.15 | 79.50 87.46 | 89.71 54.13 | 59.36 || 39.26 | 45.85

SVD 256 60.34 | 66.57 || 74.79 | 79.27 || 76.79 | 79.32 87.84 | 89.79 || 52.90 | 58.20 || 38.04 | 44.57

512 60.41 | 66.82 || 74.72 | 79.26 || 77.10 | 79.48 87.41 | 89.72 || 54.13 | 59.38 || 39.36 | 45.91

SVD--whitenin 256 62.29 | 68.16 || 71.57 | 76.68 || 80.74 | 82.42 85.47 | 87.99 || 59.02 | 64.85 || 50.14 | 56.39
Wit & 512 62.13 | 68.13 || 71.07 | 76.06 || 81.44 | 82.82 8523 | 87.62 || 61.21 | 66.49 || 53.30 | 59.11

Table V racy of our method (“SCDA (f.t.)”) is comparable or even

COMPARISON OF GENERAL IMAGE RETRIEVAL PERFORMANCE. THE BEST
RESULT OF EACH COLUMN IS MARKED IN BOLD.

[ Method | Dim. [ Holiday | Oxford Building ]
SPoC (w/o cen.) [23] 256 80.2 58.9
SPoC (with cen.) [23] 256 78.4 65.7
CroW [25] 256 83.1 65.4
R-MAC [27] 512 92.6 66.9
Method of [26] 9,664 84.2 71.3
SCDA 1,024 90.2 61.7
SCDA _flip 2,048 90.6 62.5
SCDA_flip (SVD whitening) 256 91.6 66.4
SCDA_flip (SVD whitening) 512 92.1 67.7

pools and relus o as aforementioned, and then, both max- and
average-pool (followed by /5 normalization) the selected de-
scriptors into the corresponding SCDA feature. After that, the
SCDA features of pools and relus_s are concatenated, which is
the so called “SCDA™”, as the final representation of the end-
to-end SCDA model. Then, a classification (fc+softmax) layer
is added for end-to-end training. Because the partial derivative
of the mask is zero, it will not affect the backward processing
of the end-to-end SCDA. After each epoch, the masks will be
updated based on the learned SCDA model in the last epoch.
When end-to-end SCDA converges, the SCDA_flip™ is also
extracted.

For both strategies, the coefficient a of SCDA_flip™ is set to
1 to let the classifier to learn and then select important dimen-
sions automatically. The classification accuracy comparison is
listed in Table VI.

For the first fine-tuning strategy, the classification accu-

better than the algorithms trained with strong supervised
annotations, e.g., [4], [5]. For these algorithms using only
image-level labels, our classification accuracy is comparable
with the algorithms using similar fine-tuning strategies ([6],
[71, [°]), but still does not perform as well as those using
more powerful deep architectures and more complicated data
augmentations [8], [31]. For the second fine-tuning strategy,
even though “SCDA (end-to-end)” obtains a slightly lower
classification accuracy than “SCDA (f.t.)”, the end-to-end
SCDA model contains the least number of parameters (i.e.,
only 15.53M), which attributes to no fully connected layers in
the architecture.

Thus, our method has less dimensions and is simple to
implement, which makes SCDA more scalable for large-
scale datasets without strong annotations and is easier to
generalize. In addition, the CroW [25] paper presented the
classification accuracy on CUB200-2011 without any fine-
tuning (56.5% by VGG-16). We also experiment on the 512-d
SCDA feature (only contains the max-pooling part this time
for fair comparison) without any fine-tuning. The classification
accuracy on that dataset is 73.7%, which outperforms their
performance by a large margin.

F. Additional Experiments on Completely Disjoint Classes

For further investigating the generalization ability of the
proposed SCDA method, we additionally conduct experiments
on a recently released fine-grained dataset for biodiversity
analysis, i.e., the Moth dataset [45]. This dataset includes
2,120 moth images of 675 highly similar classes, which are
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Figure 7. Some retrieval results of six fine-grained datasets. On the left, there are two successful cases for each datasets; while on the right, there are failure
cases. The first image in each row is the query image. Wrong retrieval results are marked by red boxes. (The figure is best viewed in color.)

completely disjoint with the images of ImageNet. In Table VII,
we present the retrieval results of SCDA and other baseline
methods. Because there are several classes in Moth have
less than five images per class, we only report the top-1
mAP results. Consistent with the observations in Sec. IV-B,
SCDA _flip™ still outperforms other baseline methods, which
proves the proposed method could generalize well.

G. Computational Time Comparisons

In this section, we compare the inference speeds of our
SCDA with other methods. Because the methods listed in
Table VIII can handle arbitrary image resolutions, different
fine-grained data sets have different speeds. Specifically, much
larger image will cause the GPUs out of memory. Thus,
according to the original image scaling, we resize the im-
ages until min(im_height,im_width) = 700 pixels, when
min(im_height, im_width) > 700. As the speeds reported
in Table VIII, it is understandable that the speed of SCDA
is lower than that of pools. In general, SCDA has the com-
parable computational speeds with CroW, and is significantly

faster than R-MAC. But, its speed is slightly lower (about
1 frame/sec) than SPoC. In practice, if your retrieval tasks
prefer high accuracy, SCDA_flip™ is recommended. While, if
you prefer efficiency, SCDA is scalable enough for handling
large scale fine-grained datasets. Meanwhile, SCDA will bring
good retrieval accuracy (cf. Table III).

H. Summary of Experimental Results

In the following, we summarize several empirical obser-
vations of the proposed selective convolutional descriptor
aggregation method for FGIR.

o Simple aggregation methods such as max- and average-
pooling achieved better retrieval performance than high-
dimensional encoding approaches. The proposed SCDA
representation concatenated both the max- and average-
pooled features, which achieved the best retrieval perfor-
mance as reported in Table II and Table III.

o Convolutional descriptors performed better than the rep-
resentations of the fully connected layer for FGIR. In
Table III, the representations of “pools”, “selectFV”



ACCEPTED BY IEEE TIP

12

Figure 8. Quality demonstrations of the SCDA feature. From the top to bottom of each column, there are six returned original images in the descending
order of one sorted dimension of “256-d SVD+whitening”. (Best viewed in color and zoomed in.)

Table VI

COMPARISON OF CLASSIFICATION ACCURACY ON SIX FINE-GRAINED DATASETS. THE “SCDA (F.T.)” DENOTES THE SCDA FEATURES ARE EXTRACTED
FROM THE DIRECTLY FINE-TUNED VGG-16 MODEL. THE “SCDA (END-TO-END)” REPRESENTS THE SCDA FEATURES ARE FROM THE FINE-TUNED

END-TO-END SCDA MODEL.
Method 1’31}1;2: ‘pk;;i:'s BTlsz;l\) hlf:lis Model f Para. Dim. || Birds | Dogs | Flowers | Pets | Aircrafts | Cars
PB R-CNN with BBox [4] v v v Alex-Netx 3 173.03M | 12,288 || 76.4 - - - - -
Deep LAC [5] v v v Alex-Netx 3 173.03M | 12,288 || 80.3 - - - - -
PB R-CNN [4] v v Alex-Netx 3 173.03M | 12,288 || 73.9 - - - - -
Two-Level [6] VGG-16x1 135.07M | 16,384 || 77.9 - - - - -
Weakly supervised FG [9] VGG-16x1 135.07M | 262,144 || 79.3 | 80.4 - - - -
Constellations [7] VGG-19x1 140.38M | 208,896 || 81.0 | 68.6! 953 |91.6 - -
Bilinear [8] VGG-16 and VGG-M | 73.67TM | 262,144 || 84.0 - - - 83.9 91.3
Spatial Transformer Net [31] ST-CNN (inception) x4 | 62.68M 4,096 || 84.1 - - - -
SCDA (f.t.) VGG-16x1 135.07M 4,096 || 80.5 | 78.7 92.1 |91.0 79.5 85.9
SCDA (end-to-end) VGG-16 (w/o FCs)x1 | 15.53M 4,096 || 80.1 | 77.4 90.2 |90.3 78.6 85.1

7 reported the result of the Birds dataset using VGG-19, while the result of Dogs is based on the Alex-Net model.

Table VII
COMPARISON OF RETRIEVAL PERFORMANCE ON THE Moth DATASET [45].

THE BEST RESULT IS MARKED IN BOLD. NOTE THAT, BECAUSE THERE ARE
SEVERAL FINE-GRAINED CATEGORIES OF Moth CONTAINING LESS THAN

Table VIIT
COMPARISONS OF INFERENCE SPEEDS (FRAMES/SEC) ON SIX
FINE-GRAINED IMAGE DATASETS.

FIVE IMAGES FOR EACH CATEGORY, WE HERE ONLY REPORT THE TOP-1

MAP RESULTS.

Method | Dimension [[ Top-1 mAP |
fcg_im 4,096 42.52
pooly 1,024 42.67
selectFV 2,048 40.33
selectVLAD 1,024 42.41
SPoC (with cen.) 256 42.96
CroW 256 50.78
R-MAC 512 45.38
SCDA 1,024 4748
SCDA™ 2,048 49.78
SCDA_ﬂip+ 4,096 50.52
SCDA_ﬂip+ (SVD whitening) 256 54.96
SCDA_ﬂip+ (SVD whitening) 512 57.19

and “selectVLAD” are all based on the convolutional
descriptors. No matter what kind of aggregation methods
they used, their top-k retrieval results are (significantly)
better than the fully connected features.

Selecting descriptors is beneficial to both fine-grained
image retrieval and general-purposed image retrieval.
As the results reported in Table III and Table V, the
proposed SCDA method achieved the best results for

Method | Birds | Dogs | Flowers | Pets | Aircrafts | Cars |
pools 9.54 | 9.01 6.15 10.31 2.92 5.81
SPoC (w/o cen.) | 8.70 | 8.77 5.92 10.10 2.76 5.46
SPoC (with cen.) | 8.40 | 8.62 5.78 10.10 2.72 5.49
CroW 7.81 | 7.04 5.26 7.75 2.60 4.72
R-MAC 422 | 452 3.00 5.05 1.93 3.62
SCDA 9.09 | 7.81 4.85 9.61 2.05 4.16
SCDA™ 746 | 6.66 | 334 | 7.14 | 111 |235
SCDA_ﬂip+ 3.80 | 3.48 1.81 3.83 0.55 1.19

FGIR, meanwhile was comparable with general image
retrieval state-of-the-art approaches.

e The SVD whitening compression method can not only

reduce the dimensions of the SCDA feature, but also
improve the retrieval performance, even by a large margin
(cf. the results of Aircrafts and Cars in Table 1V).
Moreover, the compressed SCDA feature had the ability
to describe the main objects’ subtle attributes, which is
shown in Fig. 8.

V. CONCLUSIONS

In this paper, we proposed to solely use a CNN model
pre-trained on non-fine-grained tasks to tackle the novel
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and difficult fine-grained image retrieval task. We proposed
the Selective Convolutional Descriptor Aggregation (SCDA)
method, which is unsupervised and does not require additional
learning. SCDA first localized the main object in fine-grained
image unsupervised with high accuracy. The selected (local-
ized) deep descriptors were then aggregated using the best
practices we found to produce a short feature vector for a
fine-grained image. Experimental results showed that, for fine-
grained image retrieval, SCDA outperformed all the baseline
methods including general image retrieval state-of-the-arts.
Moreover, these features of SCDA exhibited well-defined
semantic visual attributes, which may explain why it has high
retrieval accuracy for fine-grained images. Meanwhile, SCDA
had the comparable retrieval performance on standard general
image retrieval datasets. The satisfactory results of both fine-
grained and general-purpose image retrieval datasets validated
the benefits of selecting convolutional descriptors.

In the future, we consider including the selected deep
descriptors’ weights to find object parts. Another interesting
direction is to explore the possibility of pre-trained models
for more complicated vision tasks such as unsupervised object
segmentation. Indeed, enabling models trained for one task to
be reusable for another different task, particularly without ad-
ditional training, is an important step toward the development
of learnware [46].
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