Recent Advances in Generative Adversarial Imitation Learning

2020/10/27
朱佳成
Outline

- Generative adversarial imitation learning (GAIL)
- Multi-modal imitation learning
- Imitation learning from incomplete demonstration
Cons of other imitation learning methods

- **Behavioral Cloning:**

 learns a policy as a supervised learning problem over state-action pairs from expert trajectories. (mapping from states to actions)

 \[
 \min_{\theta} \sum_{(s,a) \sim \tau_E} -\log \pi_\theta(a | s)
 \]

- **Inverse Reinforcement Learning:**

 learns a cost function that prioritizes entire trajectories over others.

 \[
 IRL_\psi(\pi_E) = \arg \max_{c \in \mathbb{R}^{S \times A}} -\psi(c) + \left(\min_{\pi \in \Pi} -H(\pi) + \mathbb{E}_\pi [c(s,a)] \right) - \mathbb{E}_{\pi_E} [c(s,a)]
 \]
Generative adversarial imitation learning (GAIL) [Ho & Ermon, NIPS 2016]

• The GAIL objective:

$$\min_{\theta} \max_{\omega} \mathbb{E}_{\pi_{\theta}} [\log(D_{\omega}(s, a))] + \mathbb{E}_{\pi_{E}} [\log(1 - D_{\omega}(s, a))] - \lambda H(\pi_{\theta})$$

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories $\tau_{E} \sim \pi_{E}$, initial policy and discriminator parameters θ_{0}, w_{0}
2: for $i = 0, 1, 2, \ldots$ do
3: Sample trajectories $\tau_{i} \sim \pi_{\theta_{i}}$
4: Update the discriminator parameters from w_{i} to w_{i+1} with the gradient

$$\hat{E}_{\tau_{i}}[\nabla_{w} \log(D_{w}(s, a))] + \hat{E}_{\tau_{E}}[\nabla_{w} \log(1 - D_{w}(s, a))]$$

(17)

5: Take a policy step from θ_{i} to θ_{i+1}, using the TRPO rule with cost function $\log(D_{w_{i+1}}(s, a))$. Specifically, take a KL-constrained natural gradient step with

$$\hat{E}_{\tau_{i}} [\nabla_{\theta} \log \pi_{\theta}(a|s)Q(s, a)] - \lambda \nabla_{\theta} H(\pi_{\theta}),$$

where $Q(s, a) = \hat{E}_{\tau_{i}}[\log(D_{w_{i+1}}(s, a)) | s_{0} = \bar{s}, a_{0} = \bar{a}]$

(18)

6: end for
Outline

- Generative adversarial imitation learning (GAIL)
- Multi-modal imitation learning
 - InfoGAIL & Triple-GAIL
- Imitation learning from incomplete demonstration
Multi-modal imitation learning

- GAIL can not learns a good policy from multi-modal demonstrations as it assumes all the demonstrations come from a single expert, and can not disentangle the demonstrations.

Figure 1. Learned trajectories in the synthetic 2D plane environment
InfoGAIL: Interpretable imitation learning from visual demonstrations [Li, Song & Ermon, NIPS 2017]

• Main challengings:
 1. Discover the latent factors of expert demonstrations
 2. Learned policies that produce trajectories correspond to latent factor
Solution

Introduce a latent variable c into policy function: $\pi(a \mid s, c)$

Guide the generating process.

Discover the salient semantic features of the data distribution.

Maximize the mutual information between c & trajectories

$$I(c : \tau)$$

$$L_1(\pi, Q) = \mathbb{E}_{c \sim p(c), a \sim \pi(. \mid s, c)} [\log Q(c \mid \tau)] + H(c)$$

Lower bound $L_1(\pi, Q) \leq I(c ; \tau)$

Approximation of true posterior $P(c \mid \tau)$
InfoGAIL: Interpretable imitation learning from visual demonstrations [Li, Song & Ermon, NIPS 2017]

- The InfoGAIL objective:

\[
\min_{\pi} \max_Q \mathbb{E}_{\pi}[\log D(s, a)] + \mathbb{E}_{\pi_E}[\log(1 - D(s, a))] - \lambda_1 L_1(\pi, Q) - \lambda_2 H(\pi)
\]

Algo 1 InfoGAIL

- **Input**: Initial parameters of policy, discriminator and posterior approximation \(\theta_0, \omega_0, \psi_0\); expert trajectories \(\tau_E \sim \pi_E\) containing state-action pairs.
- **Output**: Learned policy \(\pi_\theta\)
- **for** \(i = 0, 1, 2, \ldots\) **do**
 - Sample a batch of latent codes: \(c_i \sim p(c)\)
 - Sample trajectories: \(\tau_i \sim \pi_{\theta_i}(c_i)\), with the latent code fixed during each rollout.
 - Sample state-action pairs \(\chi_i \sim \tau_i\) and \(\chi_E \sim \tau_E\) with same batch size.
 - Update \(\omega_i\) to \(\omega_{i+1}\) by ascending with gradients
 \[
 \Delta \omega_i = \mathbb{E}_{\chi_i}[\nabla \omega_i \log D_{\omega_i}(s, a)] + \mathbb{E}_{\chi_E}[\nabla \omega_i \log(1 - D_{\omega_i}(s, a))]
 \]
 - Update \(\psi_i\) to \(\psi_{i+1}\) by descending with gradients
 \[
 \Delta \psi_i = -\lambda_1 \mathbb{E}_{\chi_i}[\nabla \psi_i \log Q_{\psi_i}(c|s, a)]
 \]
 - Take a policy step from \(\theta_i\) to \(\theta_{i+1}\), using the TRPO update rule with the following objective:
 \[
 \mathbb{E}_{\chi_i}[\log D_{\omega_{i+1}}(s, a)] - \lambda_1 L_1(\pi_{\theta_i}, Q_{\psi_{i+1}}) - \lambda_2 H(\pi_{\theta_i})
 \]
- **end for**
Improved InfoGAIL

\[
\min_{\theta, \psi} \max_{\omega} \mathbb{E}_{\pi_\theta}[D_\omega(s, a)] - \mathbb{E}_{\pi_E}[D_\omega(s, a)] - \lambda_0 \eta(\pi_\theta) - \lambda_1 L_I(\pi_\theta, Q_\psi) - \lambda_2 H(\pi_\theta)
\]

Algorithm 2 InfoGAIL with extensions

Input: Expert trajectories \(\tau_E \sim \pi_E\); initial policy, discriminator and posterior parameters \(\theta_0, \omega_0, \psi_0\); replay buffer \(B = \emptyset\);

Output: Learned policy \(\pi_\theta\)

for \(i = 0, 1, 2, \ldots\) do

Sample a batch of latent codes: \(c_i \sim P(c)\)

Sample trajectories: \(\tau_i \sim \pi_{\theta_i}(c_i)\), with the latent code fixed during each rollout.

Update the replay buffer: \(B \leftarrow B \cup \tau_i\).

Sample \(\chi_i \sim B\) and \(\chi_E \sim \pi_E\) with same batch size.

Update \(\omega_i\) to \(\omega_{i+1}\) by ascending with gradients

\[
\Delta \omega_i = \mathbb{E}_{\chi_i}[\nabla_{\omega_i} D_{\omega_i}(s, a)] - \mathbb{E}_{\chi_E}[\nabla_{\omega_i} D_{\omega_i}(s, a)]
\]

Clip the weights of \(\omega_{i+1}\) to \([-0.01, 0.01]\).

Update \(\psi_i\) to \(\psi_{i+1}\) by descending with gradients

\[
\Delta \psi_i = -\lambda_1 \mathbb{E}_{\chi_i}[\nabla_{\psi_i} \log Q_{\psi_i}(c|s, a)]
\]

Take a policy step from \(\theta_i\) to \(\theta_{i+1}\), using the TRPO update rule with the following objective (without reward augmentation):

\[
\mathbb{E}_{\chi_i}[D_{\omega_{i+1}}(s, a)] - \lambda_1 L_I(\pi_{\theta_i}, Q_{\psi_{i+1}}) - \lambda_2 H(\pi_{\theta_i})
\]

or (with reward augmentation):

\[
\mathbb{E}_{\chi_i}[D_{\omega_{i+1}}(s, a)] - \lambda_0 \eta(\pi_{\theta_i}) - \lambda_1 L_I(\pi_{\theta_i}, Q_{\psi_{i+1}}) - \lambda_2 H(\pi_{\theta_i})
\]

end for
Triple-GAIL: A multi-modal imitation learning framework with generative adversarial nets
[Fei et al., IJCAI 2020]

\[
\min_{\alpha, \theta} \max_{\psi} \mathbb{E}_{\pi_E} [\log(1 - D_\psi(s,a,c))] + \omega \mathbb{E}_{\pi_\theta} [\log D_\psi(s,a,c)] + (1 - \omega) \mathbb{E}_{\pi_\alpha} [\log D_\psi(s,a,c)] + \lambda_E R_E + \lambda_G R_G - \lambda_H H(\pi_\theta)
\]

\[
R_E = \mathbb{E}_{\pi_E} [-\log p_{C_\alpha}(c|s,a)] \\
\approx -\frac{1}{N} \sum_{i=0}^{N} \frac{1}{T} \sum_{t=1}^{T} c_{i,t} \log p_{C_\alpha}(c_{i,t}|s_{i,t}, a_{i,t-1})
\]

\[
R_G = \mathbb{E}_{\pi_G} [-\log p_{C_\alpha}(c|s,a)] \\
\approx -\frac{1}{N} \sum_{i=0}^{N} \frac{1}{T} \sum_{t=1}^{T} c_{i,t} \log p_{C_\alpha}(c_{i,t}|s_{i,t}, a_{i,t-1})
\]
Algorithm 1 The Training Procedure of Triple-GAIL

Input: The multi-intention trajectories of expert τ_E; **Parameter**: The initial parameters θ_0, α_0 and ψ_0

1: for $i = 0, 1, 2, \cdots$ do
2: for $j = 0, 1, 2, \cdots, N$ do
3: Reset environments by the demonstration episodes with fixed label c_j;
4: Run policy $\pi_\theta (\cdot | c_j)$ to sample trajectories: $\tau_{c_j} = (s_0, a_0, s_1, a_1, \ldots s_{T_j}, a_{T_j} | c_j)$
5: end for
6: Update the parameters of π_θ via TRPO with rewards: $r_{t_j} = -\log D_\psi (s_{t_j}, a_{t_j}, c_j)$
7: Update the parameters of D_ψ by gradient ascending with respect to:

\[
\nabla_\psi \frac{1}{N_e} \sum_{n=1}^{N_e} \log (1 - D_\psi (s_n^e, a_n^e, c_n^e)) + \frac{1}{N} \sum_{j=1}^{N} \left[\frac{\omega}{T_j} \sum_{t=1}^{T_j} \log D_\psi (s_t^g, a_t^g, c_j^g) + \frac{1 - \omega}{T_j} \sum_{t=1}^{T_j} \log D_\psi (s_t^e, a_t^e, c_j^e) \right] \tag{9}
\]

8: Update the parameters of C_α by gradient descending with respect to:

\[
\nabla_\alpha \frac{1}{N} \sum_{j=1}^{N} \left[\frac{1 - \omega}{T_j} \sum_{t=1}^{T_j} \log D_\psi (s_t^g, a_t^g, c_j^g) - \frac{\lambda_E}{T_j} \sum_{t=1}^{T_j} c_j^g \log p_{C_\alpha} (c_j^g | s_{t-1}^g, a_{t-1}^g) - \frac{\lambda_\alpha}{T_j} \sum_{t=1}^{T_j} c_j^e \log p_{C_\alpha} (c_j^e | s_t^e, a_{t-1}^e) \right] \tag{10}
\]

9: end for
Outline

- Generative adversarial imitation learning (GAIL)
- Multi-modal imitation learning
- Imitation learning from incomplete demonstration
 - Adversarial imitation learning from incomplete demonstrations
Adversarial imitation learning from incomplete demonstrations [Sun & Ma, IJCAI 2019]

$$\max_D \mathbb{E}_{s \sim \pi} \log D(s) + \mathbb{E}_{s \sim \pi_E} \log(1 - D(s))$$

$$L_I(\pi, Q) = \mathbb{E}_{a_E \sim \tau_{Ea}} \left[\log Q(a_E | a, s_E) \right] + H(a_E)$$

$$\leq I(a_E; a \sim \pi(s_E))$$
Adversarial imitation learning from incomplete demonstrations [Sun & Ma, IJCAI 2019]

- **Objective:**

\[
\min_{\pi \in \Pi} \left[-\lambda_1 H(\pi_\theta) - \lambda_2 L_1(\pi_\theta, Q_\psi) + \max_D \mathbb{E}_{s \sim \pi_\theta} \log D_\omega + \mathbb{E}_{s \sim \pi_E} \log(1 - D_\omega) \right]
\]

Algorithm 1 Action-guided adversarial imitation learning

Input: expert trajectories \(\tau_E = \{(\tau_E^i, \tau_{Ea}^i)\} \sim \pi_E \\
Parameter: Policy, discriminator and posterior parameters \(\theta_0, \omega_0, \psi_0 \); hyperparameters \(\alpha \) and \(\beta \) \\
Output: Learned policy \(\pi_\theta \)

for \(i = 0, 1, 2, \ldots \) do

Sample trajectories: \(\tau_i \sim \pi_{\theta_i} \) during each rollout.

Sample states \(s_i \sim \tau_s^i, s_{E}^i \sim \{\tau_{Es}^i\} \) by same batch size.

Update \(\omega_i \) to \(\omega_{i+1} \) for \(D_\omega \) based on Equation 4.

Query \(\{a_{E}^i\} \) and run \(\pi_{\theta_i} \) on \(\{s_{E}^i\} \) to collect \(\{a_i^i\} \).

Update \(\psi_i \) to \(\psi_{i+1} \) for \(Q_\psi \) based on Equation 5.

Update \(\theta_i \) to \(\theta_{i+1} \) via TRPO for Equation 6 with rewards

\[r(s, a) = \alpha D_{\omega_{i+1}}(s) + \beta Q_{\psi_{i+1}}(a_E|s, a) \quad a_E \sim \tau_{Ea} \]

end for