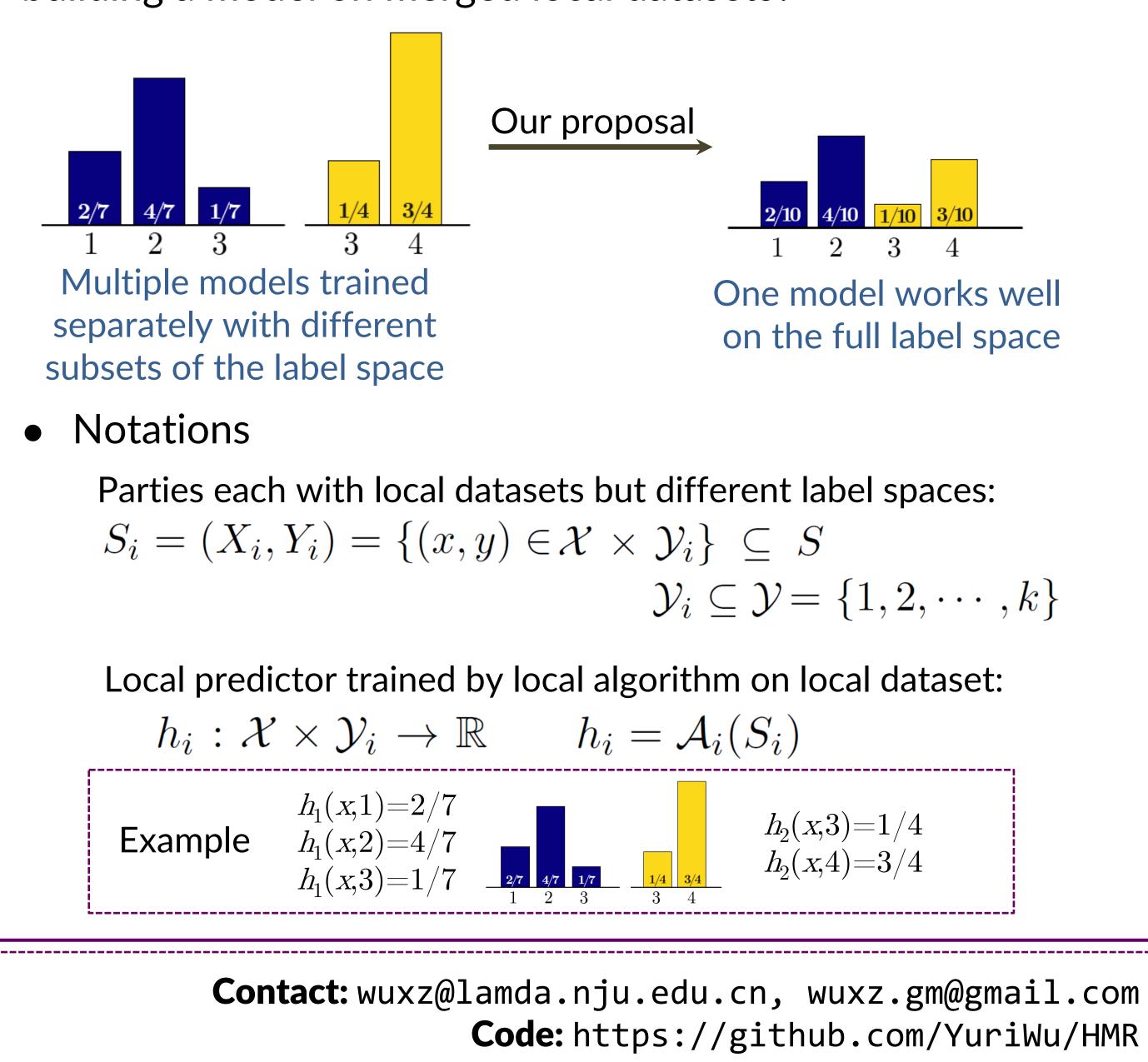


¹LAMDA Group, Nanjing University, China {wuxz,zhouzh}@lamda.nju.edu.cn

Problem setting

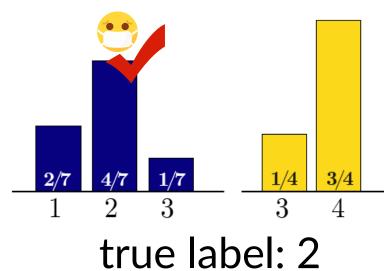

- Problem: Multiparty multiclass classification
- Example: Flu detection

Global problem: to detect all 4 flu types in the US

But, the types of flu diverse geographically, the distribution of patients records collected by a hospital in California is different from Florida. Good local models are built:

The patients' records are confidential. Can we smartly reuse the local models to learn the global problem, instead of building a model on merged local datasets?

Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin Xi-Zhu Wu¹, Song Liu^{2 3}, Zhi-Hua Zhou¹


²University of Bristol, ³The Alan Turing Institute, United Kingdom song.liu@bristol.ac.uk

Behavior of an ensemble of

• The intuitive ensemble of local models predictor: Given a set of multi-class h_n , the max-model predictor h_H is defined

 $h_H(x,y) = \max_{y \in \mathcal{Y}_i, h_i \in H} h_i(x)$

- However, max-model predictor may model is perfect (see Claim 1 in our statement).
- Intuition: another local model which is class may mislead the final prediction.

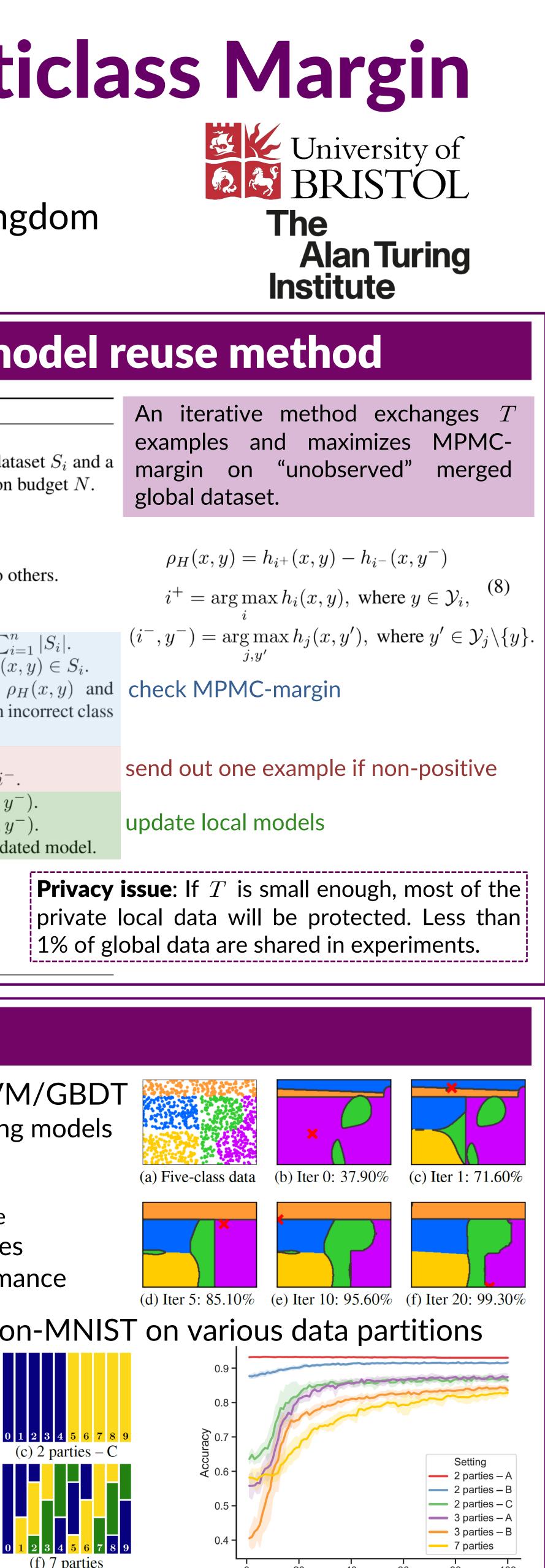
Max-model predicto

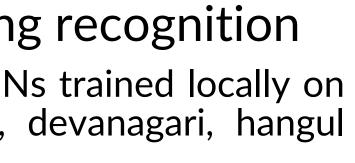
wro

Contribution

Q: How to measure the global behavior of A: Multiparty multiclass margin. (MPMC-

Q: How to optimize the global behavior? A: The HMR method, which maximizes M


MPMC-margin


 The multiparty multiclass margin (N local predictors set $H = \{h_1, \dots, h_n\}$ at is defined as:

 $\rho_H(x, y) = \max_i h_i(x, y) - \max_{j, y'} h_j(x, y')$ where $y \in \mathcal{Y}_i, y' \in \mathcal{Y}_j \setminus \{y\}.$

 Non-positive MPMC-margin causes w want to maximize it.

flocal models	Heterogeneous m
Is is to use max-model predictors $H=\{h_1, \dots, m_n\}$ ined as:	Algorithm 1 HMR input: Parties $1, 2, \dots, n$, each owns a local dat local model h_i . Example communication
(x, y)	output: Calibrated local models h_1, \dots, h_n . procedure:
fail even if each local r paper for the formal	1: Each party broadcasts its local model to c 2: Inner iteration counter $T = 0$ 3: while $T < N$ do 4: Sample a party <i>i</i> according to $ S_i / \sum_i^r$ 5: Party <i>i</i> randomly selects an example (<i>x</i> 6: Party <i>i</i> computes MPMC-margin ρ
tor	records the party i^+ , i^- and maximum in y^- as in (8). 7: if $\rho_H(x, y) \le 0$ then 8: Party <i>i</i> sends (x, y, y^-) to i^+ and i^- 9: Party i^+ calibrates h_{i^+} with (x, y, y) 10: Party i^- calibrates h_{i^-} with (x, y, y) 11: Party i^+ and i^- broadcast their updates
$\xrightarrow{2/7} \frac{4/7}{1} \xrightarrow{1/4} \frac{3/4}{4}$ The second reducted label: 4	12: if $i^+ \neq i$ or $i^- \neq i$ then 13: $T = T + 1$. 14: end if 15: end if 16: end while
	Experiments
of multiple models? -margin) /IPMC-margin. y modifying local models, vithout merging local datasets.	 Toy example on LR/SVN Heterogeneous learning LR: green, yellow SVM: green, magenta GBDT: magenta, orange Exchanged 20 examples Nearly perfect perform
-margin) /PMC-margin.	 Heterogeneous learning LR: green, yellow SVM: green, magenta GBDT: magenta, orange Exchanged 20 examples

bal accuracy of 420k examples

WGPO2mKVXJ