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Problem setting

e Problem: Multiparty multiclass classification
e Example: Flu detection
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Global problem: to detect all 4 flu types in the US

But, the types of flu diverse geographically, the distribution
of patients' records collected by a hospital in California is
different from Florida. Good local models are built:
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The patients’ records are confidential. Can we smartly reuse
the local models to learn the global problem, instead of
building a model on merged local datasets?

Local model in Florida detects {3,4} types

Our proposal
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Multiple models trained One model works well

separately with different on the full label space
subsets of the label space

Maximize MPMC-margin
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Increase the first term

& decrease the second
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Most correct party i : Increase h;+(x,y)
by adding (2,9) to local training data

Most incorrect party ' : decrease h,- (x,y™ )
by increase h;—(z, R)
by adding (x, R) to training data
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Contribution

Q: How to measure the global behavior of an ensemble?
A: Multiparty multiclass (MPMC) margin.

Q: How to optimize the global behavior?
A: The HMR method, which maximizes MPMC-margin.

Measure the behavior of multiple models

Simply max-over outputs of multiple local models can be
wrong. We propose multiparty multiclass margin to measure
the global behavior of multiple local models.

Max-over models
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Multi-party multiclass margin:
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most correct party 2 vs. most incorrect party 7
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We want multiparty multiclass (MPMC) margin to be positive!

Detailed algorithm

Algorithm 1 HMR

An iterative method exchanges T

input: examples and maximizes MPMC-

Parties 1,2, --- ,n, each owns a lorcal'dataset S; and a margin on “unobserved” merged
local model /;. Example communication budget V.
global dataset.

output:
Calibrated local models Ay, -, h,,.

procedure:

1. Each party broadcasts its local model to others. T = = arg max h;(x,y), where y € ),

2: Inner iteration counter 7' = 0 e

3: while 7' < N do (i",y") = argmaxh;(z,y’), where y" € V;\{y}.

4:  Sample a party 7 according to |S;|/ > ., |Si]- 7Y

5. Party 7 randomly selects an example (z,y) € S;.

6: Party i computes MPMC-margin pg(z,y) and check MPMC-margin locally

records the party ™, 7~ and maximum incorrect class

PH (33 y) — ]’L%+(Cli',y) - h?l_ (CU,y_)
(8)

y~ asin (8).
7. if py(x,y) <0 then : -
B Party i sends (z,y,y~) to i+ and i~ send out one example if non-positive
9: Party i* calibrates h;+ with (z, v,y ).
10: Party i~ calibrates h;— with (z,y,y7). update local models
11: Party i+ and ¢~ broadcast their updated model.
12: if i™ # i or i~ # i then =
13: T=T+1. i Privacy issue: If T' is small enough, most of the!
14: end if private local data will be protected. Less than
15:  endif !

1% of global data are shared in experiments.

16: end while

Mail: wuxz@lamda.nju.edu.cn | wuxz.gm@gmail.com
Code: https://github.com/YuriWu/HMR ¢

Toy example on LR/SVM/GBDT

e Heterogeneous learning models
e LR: blue, yellow
e SVM: green, magenta
e GBDT: magenta, orange

Exchanged 20 examples
e Nearly perfect performance
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(a) Five- class data (b) Iter 0: 37.90% (c) Iter 1: 71.60%
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(d) Iter 5: 85.10% (e) Iter 10: 95.60% (f) Iter 20: 99.30%

Benchmarking on fashion-MNIST on various data partitions
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Setting

Accuracy
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(d) 3 parties — (e) 3 parties — (f) 7 parties lteration

Multi-lingual handwriting recognition [ jA [ A 13| N IN H %] 5
e 6 different structured CNNs trained locally | =z || |/ ¥ | 2|/ x || v 7| @
on hiragana, katakana, kanji, devanagari, [&|4n|[B]|FH 28 [%7| 5] %] 73] 4
hangul and English letters B3 3IRIFE D

e 1600+ classes, 94.32% global accuracy Z| W[ 2] %] [ 2] ][ =] [2] =] [
e Non-private single model: 96.38% WG PO LAV XD

e Only exchanged 300 out of 420k examples
(about 0.07% data)




