Heterogeneous Model Reuse via Optimizing Multiparty Multiclass Margin

Xi-Zhu Wu¹, Song Liu^{2 3}, Zhi-Hua Zhou¹

¹LAMDA Group, Nanjing University, China

Problem setting

- Problem: Multiparty multiclass classification
- Example: Flu detection

But, the types of flu diverse geographically, the distribution of patients' records collected by a hospital in California is different from Florida. Good local models are built:

Local model in California detects {1,2,3} types

Maximize MPMC-margin

$$\rho_H(x,y) = h_{i^+}(x,y) - h_{i^-}(x,y^-)$$

Increase the first term & decrease the second

Most correct party i^+ : Increase $h_{i^+}(x, y)$ by adding (x, y) to local training data Most incorrect party i^+ : decrease $h_{i^-}(x, y^-)$ by increase $h_{i-}(x, R)$ by adding (x, R) to training data 1/10 3/10 6/10 1/4 3/4 **Detailed algorithm Algorithm 1** HMR An iterative method exchanges Tinput: examples and maximizes MPMC-Parties $1, 2, \dots, n$, each owns a local dataset S_i and a margin on "unobserved" merged local model h_i . Example communication budget N. global dataset. output: Calibrated local models h_1, \dots, h_n . $\rho_H(x,y) = h_{i^+}(x,y) - h_{i^-}(x,y^-)$ procedure: $i^+ = \arg \max h_i(x, y), \text{ where } y \in \mathcal{Y}_i,$ (8) 1: Each party broadcasts its local model to others. 2: Inner iteration counter T = 0 $(i^-, y^-) = \arg \max h_j(x, y'), \text{ where } y' \in \mathcal{Y}_j \setminus \{y\}.$ 3: while T < N do Sample a party *i* according to $|S_i| / \sum_{i=1}^n |S_i|$. Party *i* randomly selects an example $(x, y) \in S_i$. Party *i* computes MPMC-margin $\rho_H(x, y)$ and check MPMC-margin locally records the party i^+, i^- and maximum incorrect class y^- as in (8). if $\rho_H(x,y) \leq 0$ then send out one example if non-positive Party i sends (x, y, y^{-}) to i^{+} and i^{-} .

Local model in Florida detects {3,4} types

The patients' records are confidential. Can we smartly reuse the local models to learn the global problem, instead of building a model on merged local datasets?

Q: How to measure the global behavior of an ensemble? A: Multiparty multiclass (MPMC) margin.

Q: How to optimize the global behavior? A: The HMR method, which maximizes MPMC-margin. Party i^+ calibrates h_{i^+} with (x, y, y^-) .

Measure the behavior of multiple models

Simply max-over outputs of multiple local models can be wrong. We propose multiparty multiclass margin to measure the global behavior of multiple local models.

(Single-party) multiclass margin:

$$\rho_h(x,y) = h(x,y) - \max_{y' \neq y} h(x,y')$$

Multi-party multiclass margin:

- update local models Party i^- calibrates h_{i^-} with (x, y, y^-) . 10: Party i^+ and i^- broadcast their updated model. 11: if $i^+ \neq i$ or $i^- \neq i$ then 12: **Privacy issue:** If T is small enough, most of the T = T + 1.13: end if private local data will be protected. Less than end if 1% of global data are shared in experiments.
- Experiments

16: end while

Toy example on LR/SVM/GBDT

- Heterogeneous learning models
 - LR: blue, yellow
 - SVM: green, magenta
 - GBDT: magenta, orange
- Exchanged 20 examples
- Nearly perfect performance

(b) Iter 0: 37.90% (a) Five-class data

(c) Iter 1: 71.60%

(d) Iter 5: 85.10% (e) Iter 10: 95.60% (f) Iter 20: 99.30%

Benchmarking on fashion-MNIST on various data partitions

