
This is the supplementary material for Heterogeneous Model Reuse via Optimizing Multiparty
Multiclass Margin.

Appendix A: Proof

Here we provide the proof of Theorem 1 presented in main paper. Let us restate the theorem first.

Suppose there are two parties A and B equipped with linear predictors defined by wA and wB .
Assume YA = YB = Y , the calibration operation on received example (x, y, y−) is:

w
(t+1)
i+ = w

(t)
i+ + ηΨ(x, y),

w
(t+1)
i− = w

(t)
i− − ηΨ(x, y−),

(1)

where η > 0 controls the step size.

Theorem 1. Assume ‖x‖ = 1, then the calibration operation described in (1) on linear predictors
{hA, hB} defined by {wA, wB} will increase the MPMC-margin on sent example (x, y) by at least η.

Proof. Our goal is to show that after one calibration operation at iteration t,

ρ
(t+1)
H (x, y)− ρ(t)H (x, y) ≥ η. (2)

We prove this theorem by enumerating all possible cases. For a selected non-positive margin example
(x, y) at iteration t, four cases may happen:

I: i+ = A, i− = A;

II: i+ = A, i− = B;

III: i+ = B, i− = A;

IV: i+ = B, i− = B.

Without loss of generality, it suffices to prove that (2) holds in case I and II. The last two cases can be
proved similarly due to the symmetry between two parties.

If the algorithm enters case I at iteration t, according to the definition of MPMC-margin, we have

ρ
(t)
H (x, y) = 〈w(t)

A ,Ψ(x, y)〉 − 〈w(t)
A ,Ψ(x, y−)〉 ≤ 0. (3)

Besides, case I requires that hA makes both maximum predictions on the correct class y and the
incorrect class y− between hA and hB , so we can get the following inequalities:

〈w(t)
A ,Ψ(x, y)〉 ≥ 〈w(t)

B ,Ψ(x, y)〉, (4)

〈w(t)
A ,Ψ(x, y−)〉 ≥ max

y′∈Y\{y}
〈w(t)

A ,Ψ(x, y′)〉, (5)

〈w(t)
A ,Ψ(x, y−)〉 ≥ max

y′∈Y\{y}
〈w(t)

B ,Ψ(x, y′)〉. (6)

The calibration operation as described in (1) now sequentially updates wA by:

w
(t+1)
A = w

(t)
A + η

(
Ψ(x, y)−Ψ(x, y−)

)
. (7)

Now we check how the MPMC-margin changes at t + 1. Notice that ‖Ψ(x, y)‖ = ‖x‖ = 1 and
〈Ψ(x, y),Ψ(x, y−)〉 = 0, the prediction value on the correct class y is increased because

〈w(t+1)
A ,Ψ(x, y)〉 − 〈w(t)

A ,Ψ(x, y)〉

=〈w(t+1)
A − w(t)

A ,Ψ(x, y)〉
=η〈Ψ(x, y)−Ψ(x, y−),Ψ(x, y)〉
=η

(
‖Ψ(x, y)‖2 − 〈Ψ(x, y),Ψ(x, y−)〉

)
=η(1− 0) = η.

(8)

1



Combine (4) and (8), and recall that wB stays the same,

〈w(t+1)
A ,Ψ(x, y)〉 > 〈w(t)

A ,Ψ(x, y)〉 ≥ 〈w(t)
B ,Ψ(x, y)〉 = 〈w(t+1)

B ,Ψ(x, y)〉. (9)

Therefore 〈w(t+1)
A ,Ψ(x, y)〉 remains the maximum prediction on y at t + 1, and will be used in

computing ρ(t+1)
H (x, y). Then for either i− ∈ {A,B},

ρ
(t+1)
H (x, y)− ρ(t)H (x, y)

=
(
〈w(t+1)

A ,Ψ(x, y)〉 − max
y′∈Y\{y}

〈w(t+1)
i− ,Ψ(x, y′)〉

)
−
(
〈w(t)

A ,Ψ(x, y)〉 − 〈w(t)
A ,Ψ(x, y−)〉

)
=〈w(t+1)

A − w(t)
A ,Ψ(x, y)〉+

(
〈w(t)

A ,Ψ(x, y−)〉 − max
y′∈Y\{y}

〈w(t+1)
i− ,Ψ(x, y′)〉

)
≥η

(
‖Ψ(x, y)‖2 − 〈Ψ(x, y),Ψ(x, y−)〉

)
+ 0

=η.

The last inequality holds because of (5) and (6), given the fact that the calibration operation only
affects wA’s prediction on y and y−. Hence (2) is proved in case I.

In case II, the MPMC-margin is

ρ
(t)
H (x, y) = 〈w(t)

A ,Ψ(x, y)〉 − 〈w(t)
B ,Ψ(x, y−)〉 ≤ 0. (10)

Then the maximum value on y− is predicted by wB :

〈w(t)
B ,Ψ(x, y−)〉 ≥ max

y′∈Y\{y}
〈w(t)

B ,Ψ(x, y′)〉, (11)

〈w(t)
B ,Ψ(x, y−)〉 ≥ max

y′∈Y\{y}
〈w(t)

A ,Ψ(x, y′)〉. (12)

The calibration operation is:

w
(t+1)
A = w

(t)
A + ηΨ(x, y),

w
(t+1)
B = w

(t)
B − ηΨ(x, y−).

(13)

Similar to (8) and (9), it is easy to see 〈wt+1
A ,Ψ(x, y)〉 remains the maximum predictor on y at t+ 1.

Then for either i− ∈ {A,B}

ρ
(t+1)
H (x, y)− ρ(t)H (x, y)

=
(
〈w(t+1)

A ,Ψ(x, y)〉 − max
y′∈Y\{y}

〈w(t+1)
i− ,Ψ(x, y′)〉

)
−
(
〈w(t)

A ,Ψ(x, y)〉 − 〈w(t)
B ,Ψ(x, y−)〉

)
=〈w(t+1)

A − w(t)
A ,Ψ(x, y)〉+

(
〈w(t)

B ,Ψ(x, y−)〉 − max
y′∈Y\{y}

〈w(t+1)
i− ,Ψ(x, y′)〉

)
≥η‖Ψ(x, y)‖2 + 0

=η.

The second term is lower bounded by 0 because of (11) and (12), combined with the fact that the
changes on wA and wB only affects the prediction on y and y−. This completes the proof in case II.
Since case III is symmetric to II, and IV is symmetric to I, we can conclude that the MPMC-margin
on (x, y) increases by at least η after the calibration operation.

Appendix B: Supplement to the experiments

We provide the code for reproducing toy example in main paper, and some implementation details
for benchmark and multi-lingual experiments. Because the code of benchmark and multi-lingual
experiments need to be run on specific deep learning environment (keras 2.2.0 [Chollet et al., 2015],
tensorflow 1.9.0 [Abadi et al., 2015]), and a complete run on latter experiment requires ~10GB
data over 20 hours on a single Titan Xp GPU. It is difficult to reproduce these experiments only
with source code at review stage, and we will make them open-source after acceptance, including
preprocessed data.

2



B.1 Code for reproducing the toy example

Run jupyter notebook in the command line and then open file HMR_toy_example.ipynb through
your browser. Visualizations will be drawn on the page. Common Python 3 distributions (Anaconda,
Python(x,y), ...) include all the required packages.

Please visit https://github.com/YuriWu/HMR/ for updated toy example and other helpful codes.

B.2 Parameter setting for the benchmark experiment

We use the network structure in Google Colab 1. Each local model is trained by Adam [Kingma and
Ba, 2014] optimizer with learning rate 1e-4, 50 epochs, batch size 256.

B.3 Details for the multi-lingual experiment

The CNN structures used in our multi-lingual handwritting recoginition experiment are shown in
Table B.1. The structures for Hiragana/Katakana/Kanji are the best structures used in Tsai [2016].
We tried some structures and find out good ones for the other scripts. The performance of HMR
can be better if script-specific “tricks” are implemented into these local models. For example, The
performance on Hangul can be improved about 1% by hybrid learning proposed in Kim and Xie
[2015]. The single neural network in non-private setting over the entire combined dataset uses the
same structure as Devanagari, which is the best we found among the four structures on the entire data.

Table B.1: ConvNet configurations for different scripts. The convolutional layer
parameters are denoted as “conv〈receptive field size〉-〈number of channels〉”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
Letters Hiragana/Kanji Devanagari/Hangul Katakana
conv3-64 conv3-64 conv3-64 conv3-64
conv3-64 conv3-64 conv3-64

maxpool
conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-192 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256

maxpool
conv3-256 conv3-512 conv3-512

conv3-512 conv3-512
conv3-512

maxpool
FC-512 FC-1024 FC-1024 FC-4096
FC-512 FC-1024 FC-1024 FC-4096

FC-#classes
softmax

We use Adam [Kingma and Ba, 2014] optimizer with learning rate 1e-4. The batch size is set to 128
and we train the models for at most 50 epochs if the multi-class cross-entropy loss does not converge
earlier.

The reserved class output is implemented by creating a new neuron at the last layer, and use the
average weights of other neurons at the same layer to initialize the weights of this new neuron. Each
local model will be retrained with augmented data for one epoch at calibration operation.

1https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/
fashion_mnist.ipynb

3

https://github.com/YuriWu/HMR/
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/fashion_mnist.ipynb
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/fashion_mnist.ipynb


References
Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.

tensorflow.org/, 2015.

François Chollet et al. Keras. https://keras.io, 2015.

In-Jung Kim and Xiaohui Xie. Handwritten hangul recognition using deep convolutional neural networks.
IJDAR, 18(1):1–13, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.
URL http://arxiv.org/abs/1412.6980.

Charlie Tsai. Recognizing handwritten japanese characters using deep convolutional neural networks, 2016.

4

https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
http://arxiv.org/abs/1412.6980

	Proof
	Supplement to the experiments
	Code for reproducing the toy example
	Parameter setting for the benchmark experiment
	Details for the multi-lingual experiment


