

# A Unified View of Multi-Label Performance Measures

### Background

• Multi-label classification deals with the problem where each instance is associated with multiple relevant labels.



Multi-class: Multi-label:





• Evaluation in multi-label classification is complicated.



- A has more correct predictions.
- B has less wrong predictions.
- Many performance measures are proposed to evaluate the MLC prediction. To mention a few:
  - Hamming loss: the fraction of misclassified labels.
  - ranking loss: the average fraction of reversely ordered label pairs of each instance.
  - one-error: the fraction of instances whose most confident label is irrelevant.
  - coverage: the number of more labels on average should include to cover all relevant labels.
  - average precision: the average fraction of relevant labels ranked higher than one other relevant label.
  - macro-F1 / macro-AUC: F-measure/AUC averaging on each label.
  - instance-F1 / instance-AUC: F-measure / AUC averaging on each instance.
  - micro-F1 / micro-AUC: F-measure / AUC averaging on the prediction matrix.

### **Zhi-Hua Zhou** Xi-Zhu Wu

<sup>1</sup>LAMDA Group, National Key Lab for Novel Software Technology, Nanjing University, China {wuxz, zhouzh}@lamda.nju.edu.cn

### Contribution

- There are so many measures. We try to properties among different measure unified margin view for multi-label perfo
- We propose two new concepts called instance-wise margin to revisit el theoretical results show that by maxim according measures are to be optimized
- Inspired by the theoretical findings, (Label-wise and Instance-wise Margin and conduct experiments to validate ou

### Label-wise & instance-wise

- Multi-label real-value predictor  $F : \mathbb{R}^d$
- Training set (X, Y)
- The set of all the (relevant, irrelevant instance *i*:  $Y_{i}^+ \times Y_{i}^-$
- The set of all the (positive, negative) label j:  $Y_{\cdot i}^+ \times Y_{\cdot j}^-$
- Label-wise margin:  $\gamma_i^{label} = \min\{f_u(\boldsymbol{x}_i) - f_v(\boldsymbol{x}_i) \mid (u, v)\}$
- Instance-wise margin:

 $\gamma_j^{inst} = \min_{a} \{ f_j(\boldsymbol{x}_a) - f_j(\boldsymbol{x}_b) \mid (a, b) \}$ 

### LIMO approach

The objective function, if we use linear

 $\underset{\boldsymbol{W},\xi}{\operatorname{arg\,min}} \sum_{i=1}^{N} ||\boldsymbol{w}_i||^2 + \lambda_1 \sum_{i=1}^{N} \sum_{(u,v)} \xi_i^{uv} + \lambda_2 \sum_{i=1}^{N} \xi_i^{uv} + \lambda_2 \sum_{i=1}^{N$ s.t.  $w_u^{\top} x_i - w_v^{\top} x_i > 1 - \xi_i^{uv}, \ \xi_i^{uv} \ge 1$ for  $i = 1, \cdots, m$  and  $(u, v) \in Y_{i}^+$  $oldsymbol{w}_{j}^{ op}oldsymbol{x}_{a} - oldsymbol{w}_{j}^{ op}oldsymbol{x}_{b} > 1 - \xi_{ab}^{j}, \hspace{0.1cm} \xi_{ab}^{j} \geq 1$ for  $j = 1, \cdots, l$  and  $(a, b) \in Y_{j}^+$ 

An SGD-style algorithm is designed for

|                                                                  | wann res                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uits                    |                                   |              |                      |                                                                                                                           |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|
| o disclose some shared                                           | <ul> <li>Here is the summary table of our theoretical findings.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                   |              |                      |                                                                                                                           |
| es and established a ormance evaluation.                         | <ul> <li>'x-effective' means all the x margins of F on the dataset are positive. Double-effective means both the label-wise and instance-wise margins are positive;</li> <li>'√' means F in this cell is proved to optimize this measure;</li> </ul>                                                                                                                                                                                                                         |                         |                                   |              |                      |                                                                                                                           |
| leven measures. Our                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |                                   |              |                      |                                                                                                                           |
| izing each/both margin,<br>ed.                                   | <ul> <li>'X' means F in this cell does not necessarily optimize the measure;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |                         |                                   |              |                      |                                                                                                                           |
| we design the LIMO<br>Optimization) approach,<br>ur findings.    | - '•'/' $\circ$ ' means the calculation is with/without thresholding.                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                                   |              |                      |                                                                                                                           |
|                                                                  | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x-e<br>label-wise       | effective F<br>inst-wise          | double       | Threshold            |                                                                                                                           |
| nargin                                                           | ranking loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\checkmark$            | X                                 | <b>√</b>     | 0                    | Performance<br>measures with same<br>combination of √/X<br>are similar, and can<br>be optimized by<br>according margin(s) |
|                                                                  | avg. precision                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\checkmark$            | X                                 | V            | 0                    |                                                                                                                           |
| $ ightarrow \mathbb{R}^l$ , $F = \{f_1, \ldots, f_l\}$ ,         | coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V<br>V                  | x                                 | v<br>v       | 0                    |                                                                                                                           |
|                                                                  | instance-AUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\checkmark$            | X                                 | <b>↓</b>     | 0                    |                                                                                                                           |
|                                                                  | macro-AUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                       | $\checkmark$                      | $\checkmark$ | 0                    |                                                                                                                           |
| nt) label index pairs of                                         | micro-AUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                       | ×                                 | $\checkmark$ | 0                    |                                                                                                                           |
|                                                                  | macro-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                       | $\checkmark$                      | $\checkmark$ | •                    |                                                                                                                           |
|                                                                  | instance-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\checkmark$            | ×                                 | $\checkmark$ | •                    |                                                                                                                           |
| instance index pairs of                                          | micro-F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\checkmark$            | ×                                 | $\checkmark$ | •                    |                                                                                                                           |
|                                                                  | Hamming loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\checkmark$            | $\checkmark$                      | $\checkmark$ | •                    |                                                                                                                           |
| $Y) \in Y_{i\cdot}^+ \times Y_{i\cdot}^- \}.$                    | <ul> <li>Experiment</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               | ents<br>on b            | oth svr                           | nthetic      | : data a             | nd benchmark data are                                                                                                     |
| $) \in Y_{\cdot j}^+ \times Y_{\cdot j}^- \}.$                   | <ul> <li>Benchman</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d (results<br>rk datase | s on syn<br>ets: CAI              | thetic_500,  | data are<br>enron, n | e omitted here).<br>nedical, corel5k, bibtex.                                                                             |
|                                                                  | • The small                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er the av               | verage r                          | rank, t      | he bette             | r the algorithm does.                                                                                                     |
| $\sum_{l=1}^{l} \sum_{(a,b)} \xi_{ab}^{j}$ $0,$ $X = X_{i}^{-},$ | ranking loss       O       A       + □×       *         avg. precision       O       A       + □×       *         one-error       A       + □×       *       BR         coverage       O       + □×       *       GFM         Hamming loss       O       + □×       *       A         instance-F1       O       + □×       *       A         instance-AUC       O       + □×       *       *         meansere       F1       The       experimental       results       area |                         |                                   |              |                      |                                                                                                                           |
| $0, \\ \times Y_{.j}^{-}.$                                       | macro-AUC E<br>micro-F1 micro-AUC                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | ~ <del>~</del><br>★ <u></u> +<br> | *            | consiste             | ent with our theoretical                                                                                                  |
| or optimization.                                                 | 1 2 3 4 5 6<br>average rank                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                                   |              |                      |                                                                                                                           |



## Learning And Mining from DatA

http://lamda.nju.edu.cn

